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Abstract: Hydrate-based carbon dioxide (CO2) separation and capture is a new technology for
achieving CO2 emission reduction. However, it is still not commercially applied for the ambiguity of
microscopic hydrate formation mechanism. In a constant volume experiment of hydrate formation,
there are two or more pressure platforms, indicating that there might be two or more different
hydrates formation in succession. In order to reveal the relationship between the microscopic
process and the gas consumption in the process of hydrate formation, hydrate composition and
formation mechanism of cyclopentane-CO2 (CP-CO2) system was investigated using a differential
scanning calorimeter (DSC) and Raman spectroscopy. The results indicated CO2-CP binary hydrate
and CO2 hydrate are formed successively, and they coexist in the final hydrate. CP-CO2 binary
hydrates forms preferentially, and as crystal seeds, inducing the formation of CO2 hydrates. The two
hydrates formation processes cause the two pressure-drops. The results provide a scientific basis
for increasing the gas consumption in different stages of gas hydrate formation in the presence of
hydrate formation promoter.

Keywords: carbon emission reduction; hydrate; microscopic mechanism; binary hydrate; DSC

1. Introduction

Energy and environment issues are the focus of researchers all over the world. With
the continuous development of industry, the CO2 emissions from fossil fuel combustion in-
crease year by year, which has become the main reason for greenhouse effect such as global
warming [1]. As there is no new energy that can completely replace the fossil energy to
social development, fossil energy will continue to be the main energy to support economic
development, thus the sustainable utilization of fossil energy is of great significance [2].
Therefore, while maintaining the efficient and sustainable utilization of fossil energy, it is
very important to separate and capture CO2 from the exhaust gas [3]. Many meaningful
methods of atmospheric CO2 fixation in inorganic and biomimetic structures have been
proposed [4]. The traditional methods of CO2 separation include physical absorption,
chemical adsorption, membrane separation, cryogenic separation and chemical cycle com-
bustion method, but all these methods have their individual defects, for instance, most
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of the chemical adsorbents aren’t environmental friendly, the capacity of a membrane
is small and the membrane is consumable, therefore, it is expected to develop new and
environmental friendly and efficient technology for gas separation [5–7]. Hydrate-based
gas separation technology has attracted great attention because of its advantages of simple
process, low energy consumption and relatively environmental friendly [8,9].

Gas hydrate is a kind of non-stoichiometric crystalline compound, which is composed
of water molecules as the host molecules and gas molecules (CH4, CO2, H2, etc.) as the
guest molecules. Water molecules form cages through hydrogen bond, and gas molecules
enter the cages and make the cages more stable by Van der Waals force [10]. Depending on
the pressure and the molecular properties of the guest, gas hydrates usually have different
structures. The three main structures include cubic structure I (sI), cubic structure II (sII)
and hexagonal structure H (sH), and sI hydrate crystal unit is composed of two 512 and six
51262 cages with chemical formula of 2 [512] · 6 [51262] · 46H2O. sII hydrate crystal unit is
composed of sixteen 512 and eight 51264 cages with chemical formula of 16 [512] · 8 [51264]
· 136H2O. sH hydrate crystal unit is composed of three 512 cages, two 435663 cages and
one 51268 cages with chemical formula of 3 [512] · 2 [435663] · 1 [51268] · 34H2O [11,12].
The principle of hydrate-based gas separation from gas mixture is that the different gas
components have their individual gas hydrate formation equilibrium conditions, and
the component with relatively moderate equilibrium condition preferentially enters the
hydrate cage and enriches in the hydrate phase, while the remaining components enrich
in the residual gas phase. For example, compared with H2 and N2, the phase equilibrium
pressure of CO2 hydrate is much lower at a certain temperature, and it is easier to enter
the hydrate to enrich in the hydrate, so as to achieve the purpose of separating CO2
from CO2/H2 or CO2/N2 mixture [13]. In fact, gas hydrate formation could only happen
under the condition of high pressure or/and low temperature. For example, the phase
equilibrium pressure is about 2.4 MPa for pure CO2 forming CO2 hydrate at 5 ◦C in
pure water system. And the higher pressure or lower temperature means the higher
energy consumption. Therefore, various promoters have been developed to moderate the
hydrate formation conditions. All the promoters are divided into thermodynamic promoter
and kinetic promoter [14]. The thermodynamic promoter itself, such as Tetrahydrofuran
(THF) [15–18], CP [19], Tetrabutyl Ammonia Salt (TBA+) [20–23], Propane (C3H8) [24,25],
can form hydrate with a relatively moderate phase equilibrium condition. Therefore, the
presence of the thermodynamic promoter can moderate the hydrate formation temperature
and pressure. Taken CP as an example, relative to CO2 or CH4, CP could form CP hydrate
at quite higher temperature and lower pressure, thus on one hand, the CP hydrate which
formed in advanced could offer cages for CO2 or CH4 to form CO2-CP or CH4-CP binary
hydrate, on the other hand, the CP hydrate could induce the formation of CO2 hydrate
or CH4 hydrate formation as crystal seeds, moderating the conditions of forming CO2
hydrate or CH4 hydrate [26,27]. The function of kinetic promoter, such as Sodium Dodecyl
Sulfonate (SDS) [28,29], Tween 80 [30], Dimethyl Sulphoxide (DMSO) [31], is to improve
the fugacity of gas in liquid phase by changing the surface tension and promoting gas
dissolution. Currently, the main thermodynamic promoters include THF, CP and TBAB,
etc. Many works have been carried out to investigate the effect of the promoters on hydrate
formation equilibrium conditions, kinetics and thermodynamics of hydrate formation, gas
separation efficiency, micro-mechanism of hydrate formation, etc. Without any questions,
the positive effects of the thermodynamic promoters on hydrate formation have been
systematically proven, and some new synergistic promoters such as Tetrabutyl Ammonium
bromide + Dodecyl Trimethyl Ammonium Chloride (TBAB+DTAC) [7], CP+TBAB [32],
THF+SDS [28], TBAB+DSMO [31,33] have also been developed. However, as reported
previously, different thermodynamic promoters have different selectivity for gases in the
process of hydrate formation depending on their physical and chemical properties. For
example, CP and THF are relatively more conducive to the formation of CO2 and CH4
hydrates, while TBAB could significantly reduce the formation conditions of hydrate but
being disadvantage of the gas consumption for the hydrate agglomeration [14]. Even so,
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the scientific basis supporting these experimental results, especially the thermodynamic
micro-mechanism, is still unclear.

The thermodynamic micro-mechanism of gas hydrate formation is usually inferred by
molecular dynamic (MD) simulation [34–39]. It could also be obtained by measuring the
reaction heat of hydrate formation. Since the 1980s, differential scanning calorimetry (DSC)
has been used to study the thermal properties of hydrates, such as hydrate decomposition
enthalpy and heat capacity [40,41]. Under a certain temperature, it is a kind of analytical
method for determining the energy difference related to the temperature between the
delivered substance and the reference substance. The gas hydrate decomposition enthalpy
(∆Hd) is a key parameter for predicting the heat for hydrate decomposing into water and
gas. Koh et al. [42] used DSC to measure the decomposition heat of hydrate formation
by carrying out experiments on simulated natural gas hydrate (NGH) formation and
decomposition under environmental pressure, and used DSC to quantify and compare
the effects of various kinetic inhibitors. Dalmazzone et al. [43] employed high-pressure
DSC to characterize the limits of the thermodynamic stability of methane hydrate and
other natural gas hydrates in the presence of hydrate formation kinetic inhibitors (KIs).
Zhang et al. [44] measured the decomposition temperature of H2 + CP and CO2 + CP
in different pressures by high pressure DSC. The results showed that the decomposition
temperature of H2 hydrate depends on the properties of additives, while the decomposition
temperature of CO2 hydrate is independent of the properties of the additives. In addition,
Seo et al. [45,46] (from Ulsan National Institute of Science and Technology) used HP µ-DSC
to prove the existence of sI and sII hydrates in the process of CH4-CO2 replacement and
obtain the transformation enthalpy of hydrate structure from sH to sI in the CO2 capture
and sequestration by hydrate method, which are of great significance for further study on
the mechanism of gas hydrate technology.

The hydrate formation or/and decomposition enthalpy is closely related to the hy-
drate structure and composition. And the hydrate structure and composition could be
determined by many micro analytical methods, e.g., Raman Spectroscopy, Fourier Trans-
form Infrared Spectroscopy (FTIR), Powder X-ray Diffraction (PXRD), Nuclear Magnetic
Resonance (NMR) [47–49]. For instance, Chen et al. [50] investigated structures of CO2
hydrate and THF + CO2 binary hydrate by Raman spectra, and they found in the pure
CO2 hydrate, CO2 molecules occupy both medium 51262 and small 512 cages, while CO2
molecules only occupy the small 512 cages in the binary hydrate. They further believed
that THF occupies the medium 51264 cages is the reason why the gas consumption in THF
system is lower than that in pure water system. Xu et al. [14] successfully achieved the
mechanism of hydrate formation promoters affecting on the gas selectivity in the process
of hydrate formation by Raman and Cryo-SEM. Seo et al. [51] carried out the experiments
to form CH4 hydrate in the presence of tetra-iso-amyl ammonium bromide (TiAAB), and
investigated the relationship between the transformation of hydrate structure among sI, sII
or/and sH and the composition of gas hydrate by DSC and Raman, then they found the
inclusion of CH4 had few effects on the semi-clathrate structure.

Up to now, there is still no authoritative consensus on the micro process of gas hydrate
formation, especially whether there is a correlation between the thermodynamic properties
of hydrate formation and the hydrate structure and composition. In order to further reveal
the relationship between them, the thermodynamic properties of CO2 hydrate formation
in the presence of CP were studied by DSC, and the hydrate composition and structure
were analyzed by Raman. Through the scientific comparison and analysis of the experi-
mental results, it is expected to find the corresponding relationship between the formation
thermodynamic properties of gas hydrate and the hydrate structure and composition.

2. Experimental
2.1. Experimental Apparatus and Materials

The low-temperature and high-pressure DSC and Raman spectrometer used in this ex-
periment are Setaram BT 2.15 and Horiba LabRam, respectively. CO2 (A.R. > 99.99%) is pro-
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vided by Guangzhou Shengying Gas Co., Ltd. (Guangzhou, China), and CP (A.R. > 99.0%)
is offered by Xiamen Pioneer Chemical Reagent Co., Ltd. (Xiamen, China), and the deion-
ized water with a resistivity of 18.25 mΩ/cm is self-produced using an ultra-pure water
system supplied by Nanjing Ultrapure Water Technology Co., Ltd., Nanjing, China.

The whole experimental schematic diagram is shown in Figure 1. As shown, there
are two sets of experimental equipment. The left is special for gas hydrate formation
and Raman measurement, and the right is special for DSC measurement. For the left, the
high-pressure cylinder reactor is made of 304 stainless steel with an internal volume of
100 mL and a maximum bearing pressure of 10 MPa. There are visual windows at the front
and back of the reactor, through which the hydrate formation and decomposition process
can be observed. There is a flange on the reactor and it is connected with the gas cylinder
through the conduit. The temperature and pressure in the reactor are measured by a Omega
Pt 100 thermocouple with the uncertainties of 0.1 ◦C and a Trafag NAH 8253 pressure
transmitter with accuracy of 0.3%. Temperature and pressure are directly transferred to
computer through data acquisition system. The reactor is placed on a magnetic stirrer with
a rotating speed of 0–2000 r/min. The material in the reactor can be fully mixed by the
magnetic stirrer. The system temperature is regulated by a water-bath jacket outside the
reactor, and the jacket is filled with a 25 wt% glycol aqueous solution. DSC consists of three
main parts: gas control platform, reaction tank and calorimetric system, liquid nitrogen
(LN) temperature control system. An air-bath tank is set out around the DSC, which is full
of N2 during the measurement, and a LN tank is set in the DSC, which is filled with LN. A
DSC cell with inner volume of 3.60 mL is placed in the LN tank for test. Here is a program
controller for setting the temperature and pressure program.

Energies 2021, 14, x FOR PEER REVIEW 4 of 17 
 

 

2. Experimental 

2.1. Experimental Apparatus and Materials 

The low-temperature and high-pressure DSC and Raman spectrometer used in this 

experiment are Setaram BT 2.15 and Horiba LabRam, respectively. CO2 (A.R. > 99.99%) is 

provided by Guangzhou Shengying Gas Co., Ltd. (Guangzhou, China), and CP (A.R. > 

99.0%) is offered by Xiamen Pioneer Chemical Reagent Co., Ltd. (Xiamen, China), and the 

deionized water with a resistivity of 18.25 mΩ/cm is self-produced using an ultra-pure 

water system supplied by Nanjing Ultrapure Water Technology Co., Ltd., Nanjing, China. 

The whole experimental schematic diagram is shown in Figure 1. As shown, there 

are two sets of experimental equipment. The left is special for gas hydrate formation and 

Raman measurement, and the right is special for DSC measurement. For the left, the high-

pressure cylinder reactor is made of 304 stainless steel with an internal volume of 100 mL 

and a maximum bearing pressure of 10 MPa. There are visual windows at the front and 

back of the reactor, through which the hydrate formation and decomposition process can 

be observed. There is a flange on the reactor and it is connected with the gas cylinder 

through the conduit. The temperature and pressure in the reactor are measured by a 

Omega Pt 100 thermocouple with the uncertainties of 0.1 °C and a Trafag NAH 8253 pres-

sure transmitter with accuracy of 0.3%. Temperature and pressure are directly transferred 

to computer through data acquisition system. The reactor is placed on a magnetic stirrer 

with a rotating speed of 0–2000 r/min. The material in the reactor can be fully mixed by 

the magnetic stirrer. The system temperature is regulated by a water-bath jacket outside 

the reactor, and the jacket is filled with a 25 wt% glycol aqueous solution. DSC consists of 

three main parts: gas control platform, reaction tank and calorimetric system, liquid ni-

trogen (LN) temperature control system. An air-bath tank is set out around the DSC, 

which is full of N2 during the measurement, and a LN tank is set in the DSC, which is 

filled with LN. A DSC cell with inner volume of 3.60 mL is placed in the LN tank for test. 

Here is a program controller for setting the temperature and pressure program. 

 

Figure 1. Schematic diagram of the experimental equipment. 

2.2. Experimental Procedure 

2.2.1. DSC Experiment 

The process of the DSC experiment is similar to that reported in Reference [52]. Before 

the experiment, the cell is firstly rinsed with the ionized water at least 3 times, and then 

thoroughly dried with a dryer. After being injected about 1.0 g solution (CP solution 5 

v%), the cell is transferred to the He-bath chamber. The chamber is vacuumized to −1.0 

MPa, and then is pumped to 1.0 MPa with pure helium (He). The feed gas is injected into 

Figure 1. Schematic diagram of the experimental equipment.

2.2. Experimental Procedure
2.2.1. DSC Experiment

The process of the DSC experiment is similar to that reported in Reference [52]. Before
the experiment, the cell is firstly rinsed with the ionized water at least 3 times, and then
thoroughly dried with a dryer. After being injected about 1.0 g solution (CP solution
5 v%), the cell is transferred to the He-bath chamber. The chamber is vacuumized to
−1.0 MPa, and then is pumped to 1.0 MPa with pure helium (He). The feed gas is injected
into the cell to exclude the air and then pumped to the set experimental pressure with
an automatic pressurizer. Whereafter, the temperature program is set according to the
experimental scheme, and then started. For each experiment, the same program runs four
times automatically. The detail procedure of DSC experiments is set as shown in Table 1.
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In this experiment, the final sample is 1.0550 g. And then install the high-pressure sample
cell into the measuring unit according to the operation specification.

Table 1. Temperature procedure in DSC measurement.

Exp. Run P (MPa) T (◦C) Cooling Rate
(K·min−1)

Constant
Time (h)

Heating Rate
(K·min−1)

1 2.5 20.0~−5.0 0.02 5 0.02
2 2.5 20.0~−10.0 0.02 5 0.02
3 2.5 20.0~−8.8 0.02 5 0.02
4 5.0 20.0~−8.8 0.02 5 0.02
5 0 20.0~−8.8 0.02 5 0.02
6 3.5 20.0~−8.8 0.02 5 0.02
7 6.0 20.0~−8.8 0.02 5 0.02

2.2.2. Raman Experiment

The steps of Raman experiment are similar to those in reference [52], including hydrate
formation, hydrate sampling, Raman measurement, etc., but due to the update of the test
system, the Raman spectrometer was replaced by InVia Reflex from Renishaw with a
single monochromator of 1800 grooves/mm grating, and a multichannel air-cooled charge
coupled device (CCD) detector is employed to measure the simulated CH4-CO2 binary
hydrate, using a 532 nm Argon laser with 100 mW. Before the measurement, the Raman
spectrum is calibrated with standard silicon (Si) crystal of 520.7 cm−1.

All the DSC measurement and Raman measurement were repeated by 3 times in
order to ensure all measurements were repeatable. In addition, the pressure in the hydrate
formation experiment and Raman measurement were gauge pressure, but the pressure in
the DSC measurement was absolute pressure.

3. Results and Discussion
3.1. Analysis of Hydrate Formation Process

First of all, two groups of gas hydrate formation experiments were carried out under
different temperature and pressure conditions, and in each group, the same experiment
was repeated 3 times. Figure 2 shows the changes of temperature and pressure in the
process of CO2 hydrate formation in the presence of CP with initial pressure of 2.5 MPa.
Same as other reported figures of pressure-temperature vs. time in the hydrate formation
processes, the pressure drops sharply firstly and then becomes stable gradually, and the
temperature also remains nearly the same. However, there is a little temperature rise in
the time zone where the pressure drops sharply. Actually, the sharp pressure-drop could
be attributed to two stages. One is the dissolution of gas, followed by the gas hydrates
formation. Because the solubility of gas in solution is very fixed under certain temperature
and pressure, especially for those gases with poor solubility or low solubility, the solubility
of gas is not the main contributor to pressure drop compared with gas entering hydrate
cage. Therefore, it is feasible to use the real gas equation to calculate the gas consumption
in the process of gas hydrate formation and then calculate the gas consumption rate to
further characterize the relevant hydrate formation kinetics. The equation is shown as
following: [52]

∆n =

(
PV
zRT

)
f
−

(
PV
zRT

)
0

(1)

where “∆n” is the mole of gas consumed in the hydrate formation or entering the hydrate
slurry, and “P”, “V”, “T” are the pressure, volume, temperature of the gas phase in the
reactor, respectively. In this work, it is assumed the liquid and hydrate are incompressible.
“R” is the gas constant, and “z” is the compressibility factor. The subscript “0” and “f ”
indicate the starting time and ending time of the hydrate formation, respectively.
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Figure 2. The CP-CO2 system pressure and temperature curves at 2.5 MPa.

As shown in Figure 2, the total gas consumption per mole water is 0.0187 mol−1,
and there are two obvious pressure platforms (I and II) over time. According to the trend
of the pressure-drop in the figure, the whole pressure drop process is divided into two
stages, the first stage (stage I) and the second stage (stage II) with two platforms as the
boundary, respectively. The stage I, from 0 to 174 min, is defined as the first hydrate
formation platform. And at this stage, there are two processes, including gas dissolution
followed by the hydrate formation. The second stage, from the 174th minute to the end
of hydrate formation, is the hydrate secondary formation platform. At this stage, a large
amount of gas is consumed, but the average gas consumption is relatively slower than that
at the stage I. The second platform indicates the existence of hydrate secondary generation
in the system. Figure 3 shows the temperature and pressure changes over time in the
process of CO2 hydrate formation in the presence of CP with initial pressure of 5.0 MPa.
As shown, the general trend of pressure change is similar to Figure 2, and there are two
pressure platforms and the pressure-drop rate at the stage II is slower than that at the
stage I. Therefore, it also shows that there is a secondary hydrate formation at 5.0 MPa.
Unlike Figure 2, the first stage in Figure 3 has a higher pressure drop rate and a shorter time
for the second pressure to fall to steady. Additionally different from Figure 2, the pressure
drop rate of the first stage in Figure 3 is higher, and the time for the second pressure to fall
to stability is shorter, which shows that the increase of pressure is more conducive to the
first formation of gas hydrate. In fact, in a fixed system, the pressure-drop is completely
caused by the gas consumption in the process of gas hydrate formation. Therefore, in the
later content, we use gas consumption instead of pressure-drop. As our previous study [53],
the gas consumption at the second stage is slower than that at the first stage, which is
mainly due to the hydrate formed at the first stage hinders the gas diffusion at the second
stage. However, the diagram only reflects the P-V-T change rule of hydrate formation
process, so it can only judge the existence of secondary formation in the whole process, but
it is not clear about the information of hydrate structure, composition and thermodynamic
characteristics in the hydrate secondary formation. We combine DSC experiment with
Raman analysis to obtain these information and show it in the following content.
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Figure 3. The CP-CO2 system pressure and temperature curves at 5.0 MPa.

3.2. DSC and Raman Measurement

Figure 4 shows the heat flow and temperature changes vs. time corresponding to the
ice formation and melting under atmosphere with the Setaram BT 2.15. As shown, the ice
starts to form at about −11.20 ◦C and melt at 0.05 ◦C and the corresponding formation
enthalpy and melting enthalpy are −335.29 and 334.07 J/g. Because enthalpy is an integral
value obtained by the software program through calculating the area of the curve integral,
there will inevitably be errors in the integration process, and as long as the error is less
than 5%, we think the integral value is reasonable. Generally, in the system, the absolute
value of the formation enthalpy and decomposition enthalpy of the same gas hydrate
is equal, even if the integration error is considered, the error should be less than 5%.
Figures 5–11 show the heat flow and temperature changes vs. time corresponding to the
experiments listed in Table 1, and Table 2 shows the heat flow and temperature of the peaks
corresponding to hydrate formation and dissociation under different experimental runs. In
each figure, the black line shows that the sample temperature changes with time with the
DSC temperature program, while the red line represents the heat flow changes with time.
As shown, there are two exothermic peaks corresponding to hydrate dissociation in each
figure, which means there do be two kinds of compounds formed in the system. Moreover,
for each figure, the absolute values of hydrate formation enthalpy and decomposition
enthalpy are very close. The ratio of hydrate total decomposition enthalpy to hydrate
formation enthalpy is 99.26%, 101.52%, 99.48%, 100.23%, 101.46% and 97.15%, respectively,
indicating that hydrate formation and decomposition in the system are in accordance
with heat conservation. For each experiment as run 2–4, there are two distinct formation
peaks and decomposition peaks, and in the time dimension, the earlier formation peak
corresponds to the later decomposition peak, while the later formation peak corresponds
to the earlier decomposition peak. The absolute value of the enthalpy corresponding to the
formation or/and decomposition peaks is almost the same, but the enthalpy values of the
two decomposition peaks are quite different, which indicates that two different types of
hydrates have been formed in the process. This result is consistent with the results shown
in Figures 2 and 3.
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Table 2. The heat flow and temperature of the peaks corresponding to hydrate formation and dissociation under different
experimental runs.

Exp.
Run

P
(MPa)

T
(◦C)

First Formation
Peak

Second Formation
Peak

First Decomposition
Peak

Second
Decomposition Peak ∆Hd, t

∆Hf ,t

(%)T
(◦C)

∆Hf
(J·g−1)

T
(◦C)

∆Hf
(J·g−1)

T
(◦C)

∆Hd
(J·g−1)

T
(◦C)

∆Hd
(J·g−1)

1 2.5 20.0~−5.0 0.34 −50.823 − − 5.80 37.211 6.93 13.234 99.26
2 2.5 20.0~−10.0 −3.66 −63.974 −6.19 −217.557 −1.72 214.034 5.71 68.209 101.52
3 2.5 20.0~−8.8 −3.65 −67.769 −6.50 −243.679 −1.72 242.622 5.70 67.212 99.48
4 5.0 20.0~−8.8 13.98 −77.013 3.21 −39.510 10.03 39.014 14.36 77.775 100.23
5 0 20.0~−8.8 −2.63 −0.533 −2.05 0.535 100.37
6 3.5 20.0~−8.8 0.607 −113.919 −5.90 −218.931 −1.54 219.444 4.85 118.254 101.46
7 6.0 20.0~−8.8 T: 6.97 ∆H f : −469.133 −1.62 17.020 10.216 438.734 97.15

Remark: P, T, ∆H f , ∆Hd, ∆H f ,t, ∆Hd,t presents operation pressure, sample temperate in the DSC cell, hydrate formation enthalpy, hydrate
decomposition enthalpy, total hydrate formation enthalpy and totla hydrate decomposition enthalpy, repectively.
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During the hydrate formation in the static water system, the decomposition enthalpy
may vary greatly under different experimental conditions because of the effects of factors
such as interference of ice, the wall-climbing of hydrate and the difficulty of gas diffusion
in hydrate. Even so, the gas molecular occupancy in hydrate cage can be qualitatively
analyzed according to the absolute value of enthalpy as long as the structure of hydrate is
determined. The higher the hydrate decomposition enthalpy, the higher the gas occupancy
in the hydrate cages. Temperature is an important index that can qualitatively determine
the type of hydrate. In other words, it could be determined what kind of the hydrate is
according to the hydrate decomposition temperature. As shown in Table 2 and Figure 5,
the two decomposition peaks occur at around 5.80 and 6.93 ◦C, respectively. Both the
temperatures are higher than freezing temperature, indicating that no ice forms in the
experiment of run 1. Compared with the results of other experiments, the temperatures
corresponding to the two decomposition peaks are relatively close. This is also reflected
in the corresponding formation peaks, as shown in Figure 5. In fact, two hydrates have
been formed successively, but only one obvious formation peak can be seen. The reason
is that the formation temperatures of the two hydrates are almost the same, so that the
corresponding peaks are overlapped and hard to be separated. According to the decom-
position temperature, actually, the two temperatures are close, thus there might be two
possibilities, one, there might be two different kinds of hydrates, CP-CO2 binary hydrate
and CO2 hydrate, another, there might be two endothermic processes during the hydrate
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decomposition that the two kinds of cages (512 and 51264) in the hydrate break down
in order.
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Admittedly, this result is different from other experimental results. As shown in
Table 1, The experimental programs of run 2 and 3 are same except for the lower-limit of
temperature, and the results of the run 2 and 3 listed in Table 2 are almost same, indicating
that the lower-limit of temperature of 8.8 ◦C is reasonable for the experiment and the
lower temperature is no need. For the experiments of runs 2 and 3, as shown in Table 2
and Figures 6 and 7, on one hand, the temperatures of the two decomposition peaks
are around −1.72 and 5.71 ◦C, respectively, which are different very much. The first
decomposition temperature is lower than the freezing point, while the second one is higher
than the freezing point. Thus, it is certain that the second peak does not correspond to
the ice melting. However, it is difficult to judge whether the first peak is ice peak by DSC
result directly. For this reason, we have measured the ice point of CP-water system under
atmospheric pressure. The temperature procedure of the DSC measurement is shown
in Table 1 as Exp. Run 5, and the results of the DSC measurement are shown in Table 2
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and Figure 9. As shown, there are a very sharp exothermic peak at −1.63 ◦C, a wide
and irregular endothermic peak at −1.50 ◦C, and two small exothermic peaks before and
after the endothermic peak. Compared with other DSC results, it can be seen that the
heat flow values corresponding to the exothermic and endothermic peaks in Figure 9 are
quite small, that’s also the reason there are two small exothermic peaks before and after
the endothermic peak. The absence of the secondary formation in other figures does not
mean that there is no hydrate secondary formation, but that the heat flow value of hydrate
decomposition is larger, so that the heat flow of the smaller hydrate secondary formation is
negligible in the figure. In addition, we carried out an experiment to measure the freezing
point of CP solution at atmospheric pressure. In the experiment, the reactor was injected
with only 30 mL CP emulsion (5 v%) but no gas, then the system cooled gradually. As
shown in Figure 12, the CP emulsion began to transfer into solid phase at around −1.50 ◦C.
And about 2 h later, almost all CP emulsions were converted to solid. The solid is a mixture
of CP hydrate and ice. According to the law of thermodynamics, the higher the pressure,
the lower the freezing point of the liquid. Therefore, for Figures 6 and 7, based on the DSC
results of this experiment, we conclude that the first peak presents the ice melting in the
mixed system because the temperature is quite close to the freezing point, and the second
peak presents the decomposition of CP-CO2 binary hydrate because the temperature is
quite close to that showed in Figure 5.
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In order to further investigate the effect of the operation pressure on the thermodynam-
ics of the hydrate formation, the experiment of run 4 was carried out under the constant
pressure of 5.0 MPa. It is worth noting that in the DSC measurement process, the pressure
of 5.0 MPa rather than higher pressure is selected to avoid CO2 liquefaction. As shown
in Table 2 and Figure 8, the two decomposition peaks with decomposition enthalpies of
39.01 and 77.78 J·g−1 occur at 10.03 and 14.16 ◦C, respectively. It can be determined that
these two peaks are independent of ice due to their corresponding temperatures much
higher than −1.50 ◦C. And the results are also quite different from those achieved in the
experiments of run 1~3. However, from the perspective of decomposition enthalpy, the
decomposition heat (∆Hd) corresponding to the first decomposition peak in Figure 8 is
close to that in Figure 5, while the decomposition heat corresponding to the second de-
composition peak is close to that in Figure 6. Therefore, it could be concluded that, firstly,
the increase of pressure from 2.5 MPa to 5.0 MPa makes the decomposition temperature
of hydrate increase significantly, secondly, it can be clearly determined that there are two
different hydrates, and according to the composition of the substances in the system, it can
be deduced that the first peak corresponds to CP-CO2 binary hydrate, and the second de-
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composition peak corresponds to CO2 hydrate. The result is consistent with that obtained
by Seo et al. [19]. In order to further clarify the influence of the pressure on the hydrate
formation, we carried out another two runs of experiments (Exp. Run 6 and 7 in Table 1)
with constant pressures of 3.5 MPa and 6.0 MPa, and the specific heat flow changes during
hydrate formation and decomposition are shown in Figures 10 and 11. As shown, there are
two decomposition peaks at −1.54 ◦C and 4.85 ◦C in Figure 10 and −1.62 ◦C and 10.22 ◦C
in Figure 11, respectively. For the heat flow peak at around 4.85–6.00 ◦C under 3.5 MPa or
less, what we can determine is the hydrate is CP-CO2 binary hydrate because the Raman
spectrum shows both CO2 and CP are included in the hydrate, as shown in Figure 13.
In Figure 13, it can be found two peaks appear at 1275.4 and 1379.5 cm−1, and another
two peaks appear at 2981.5 and 2875.0 cm−1. The first two peaks are the characteristic
peaks of CO2, and the second two peaks correspond to CP. Thus, it could be inferred that
CO2 and CP coexist in the hydrate. However, for Figure 11, due to that the heat flow
peak corresponding to hydrate decomposition at 10.22 ◦C is a relatively broad peak, its
composition needs to be further determined by peak-differentiating and fitting according
to the Gaussian-Lorentzian function [54].
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As mentioned above, on one hand, compared the experimental results of runs 3 with
run 6, the pressure rises from 2.5 MPa to 3.5 MPa did not affect the formation of ice and
hydrate structure in the system, but only increased the temperature of melting and hydrate
decomposition. This result is in accordance with the law of thermodynamic equilibrium.
In addition, the increase of pressure also leads to the increase of decomposition heat
of gas hydrate. Under the assumption that the structure of hydrate does not change,
the increase of decomposition heat can be inferred as more gas entering hydrate and
releasing more binding energy. On the other hand, compared with the experimental
results of runs 4 and 7, the experiment of run 7 also has two decomposition peaks, but the
difference is that the first peak appears melting ice, and the other peak appears hydrate
decomposition with a wider shoulder. According to the law of peak-differentiating and
fitting, we differentiate and fit the broad peak and get two decomposition peaks at 10.22 ◦C
and 14.58 ◦C, respectively. These two temperatures are very close to the corresponding
temperature of the two decomposition peaks in the experiment of run 4. And similarly,
there should be two kinds of hydrates were formed in the experiment of run 7, namely,
CP-CO2 binary mixture hydrate and CO2 hydrate.
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Figure 9. Heat flow and temperature curve at 20.0~ −8.8 °C and 0 MPa. 
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Figure 10. Heat flow and temperature curve at 20.0~ −8.8 °C and 3.5 MPa. 

Figure 9. Heat flow and temperature curve at 20.0~−8.8 ◦C and 0 MPa.
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In fact, the results of Raman measurement on hydrate also proved that the hydrate
formed in this system (CP emulsion-CO2) is the coexistence of CP-CO2 hydrate and CO2
hydrate. Figure 14 shows the Raman spectra of the hydrates formed at the initial pressure
of 5.0 MPa and temperature of 3.0 ◦C. On the left side of Figure 14 is the image of the real
hydrate formed in the reactor after the complete of the hydrate formation, which is taken
by Canon EOS 700 D. The two yellow spots “a” and “b” in the image are the focus of the
laser for Raman measurement. The upper and lower images in the middle of Figure 14
are the images of hydrates around “a” and “b” points after being magnified by 500 times,
which are captured by the software of Raman spectrometer (Type: Renishaw-In Via Reflex).
And on the right side of Figure 14 are the Raman spectra of the hydrates at the spots “a”
and “b”. The image on the left side of the figure is the optical micrograph of hydrate before
Raman measurement. As seen from the Raman spectrum of the hydrate at the spot “a”,
there are four sharp peaks, the two occurring at 1276.3 and 1379.6 cm−1 correspond to
O=C=O stretch vibrations, indicating that CO2 is included in the hydrate, the other two
occurring at 2876.2 and 2983.9 cm−1 correspond to the vibration of cyclopentane carbon
chain, indicating that CP is also included in the hydrate. In other words, CO2 and CP
coexist in the hydrate to form CP-CO2 binary hydrate at the spot “a”. However, from the
Raman spectrum of the hydrate at the spot “b”, only two sharp peaks corresponding to
O=C=O vibration appear at 1275.7 and 1381.9 cm−1, indicating that there is only CO2 in the
hydrate at the spot “b”, which is called pure CO2 hydrate. Therefore, the results of Raman
analysis prove that the hydrates formed the system are the coexistence of CP-CO2 hydrate
and CO2 hydrate. Thus, returning to the discussion of on the results of the experiment
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of runs 4 and 7, it could be concluded that the two decomposition peaks at 10.22 and
14.58 ◦C represent the decomposition peaks of pure CP-CO2 binary hydrate and CO2
hydrate, respectively.
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Indeed, we have also considered that these two peaks might be the heat flow peaks
generated by the step-by-step decomposition of the same hydrate. For example, for the
CP-CO2 binary hydrate, it is possible that CO2 and CP molecules successively escape from
the cages and absorb heat during the decomposition due to that CP and CO2 molecules
occupy different cages in the hydrate, respectively. Unfortunately, we do not have more
scientific evidence to support this view. Although there are successive collapses of different
hydrate cages in the molecular dynamics simulation, this kind of phenomenon only occurs
in a relatively small time scale. In the macro experimental study, this kind of successive
collapses is difficult to verify, let alone in two different hours. In the future work, we will
consider whether this possibility is scientific by measuring the single hydrate crystal.
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4. Conclusions

In order to reveal the relationship between the microscopic process and the gas
consumption of hydrate formation, hydrate composition and formation mechanism of
CP-CO2 system was investigated by DSC and Raman measurements on hydrates formed
from CP-CO2 emulsion system under different pressures. DSC results show that except
the formation and decomposition of ice, there are two peaks of hydrate formation or/and
decomposition heat flow, indicating that the two hydrates in hydrate form successively and
coexist. At the pressure of 5.0 MPa and above, the endothermic peaks of CP-CO2 binary
hydrate and CO2 hydrate decomposition appeared at 10.22 and 14.58 ◦C, respectively. The
Raman spectra also show that the CP-CO2 binary hydrate and the CO2 hydrate coexist
in the hydrate phase. The CP-CO2 binary hydrates forms preferentially, and as crystal
seeds, they induce the formation of the CO2 hydrates. And the formation process of these
two hydrates is the cause of two pressure-drop processes in the whole hydrate formation
process. The finding provides a research idea and scientific basis for further improving
the gas consumption during the gas hydrate formation in the presence of promoters. It
can be possible to increase the total gas consumption by controlling the formation of
binary hydrate.
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