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Abstract: The rapid spread of renewable energy resources has increased need for demand flexibility
as one of the solutions to power system imbalance. However, to properly estimate the demand
flexibility, demand characteristics must be analyzed first and the corresponding flexibility measures
must be validated. Thus, in this study, a novel approach is proposed to evaluate the demand
flexibility provided by Electric Vehicle Chargers (EVC) in the residential sector based upon a new
process of electric charging demand characteristic data analysis. The proposed model estimates the
frequency, consistency, and operation scores of the flexible demand resource (FDR) during identified
ramp-up/down intervals presented in our previous work. The scores are included in the components
that calculate the flexibility score referring that the closer it is to 1, the higher utilization as an FDR. A
case study was conducted by considering EV user segmentation based on their demand characteristic
analysis. The results confirm that flexibility scores of segmented EVC groups are about 0.0273 in
ramp-up and ramp-down intervals. Based on the experimental results, the flexibility score can be
utilized for multi-dimensional analysis and verification in perspectives of seasonality, participation
time interval, customer group classification, and evaluation. Thus, the proposed method can be used
as an indicator to determine how a segmented EVC group is adequate to participate as an FDR while
suggesting meaningful implications through EVC demand data analysis.

Keywords: demand response; demand flexibility; electric vehicle; data analysis

1. Introduction

Renewable energy resources have been replacing fossil fuels under the increasing
pressure for clean and safe energy, and research on distributed energy resources (DERs)
of microgrids is underway to implement so-called decarbonization policies. Unlike these
purposes, renewable energies such as solar and wind power are characterized by volatility
in power generation. Since the expansion of renewable energy in the distribution network
causes mismatch between power supply and demand balance and weakens economics of
power system operation, the scale of the ancillary service market inevitably increases. In
addition, while the global energy demand continues to grow every year, the expansion of
power generation and transmission infrastructure is not keeping this pace. To overcome
demand spikes that only take place for a few hours of the one-year period, the grid network
must be over-designed and approximately 20% of the rated capacity of generators partici-
pating in the energy market should be typically reserved [1,2]. Under certain situations of
energy imbalance, the flexibility of the network and resources is becoming an important
issue to ensure the stability of the power system.

The term flexibility has long been mentioned in schools or institutions, and its meaning
has changed over time reflecting the problem faced by the system [3]. Under the environ-
ment of utility privatization and competition since 1990s, system operators have used
the term to define power resources that endure rapid changes in generation price [4]. In
addition, the meaning has been expanded to identify generation and demand resources
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for the purpose of supplementing the intermittent power generation due to the spread of
renewable energy [5].

The main feature of flexible generation resources can be the rapid ramp up and down
rate characteristics, and they should be able to operate efficiently at a lower minimum
level throughout periods of high renewable energy output [6]. To quantify the supply
characteristics of the generation resources, their flexibilities are measured by the indicators,
namely magnitude, ramp frequency and response time for analyzing the power system
flexibility according to the different temporal and spatial scales [7].

In terms of demand resources, to achieve the economic balance of supply and demand
against irregular energy production, demand side management (DSM) is being developed
vigorously. As a part of DSM mechanism, demand response (DR), in which utilities
strategically (technically or through incentives) control the loads of participants to respond
to grid network imbalances, can increase the flexibility of the power system in a cost-
effective manner. For example, flexible energy buildings that have applied a DR program
using a smart carbon heating system or energy storage system (ESS) in building energy
operations can shift the peak electricity consumption period to an off-peak period [8]. In
these contexts, it is necessary to establish the resource flexibility from the viewpoint of
demand sides.

The types of demand resources that can contribute to the system are largely classified
into industrial, commercial, and residential loads. In particular, with the emergence of
electric vehicles (EVs) along with a rapidly increasing residential demand nowadays, the
possibility of utilizing EVs as a demand flexibility resource is being investigated. There are
three types of EVs, classified by the degree that electricity is used as their energy source:
battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and hybrid
electric vehicles (HEVs). Due to the advanced development of lithium-ion battery and
charging infrastructure, there is a large potential for vehicle-to-grid (V2G) services [9]. For
the step of V2G utilization, one-directional flow of power from the grid to vehicles (V1G) is
currently being rolled out across California and in many places where EVs have become
popular. V1G programs in California include Power Your Drive from San Diego Gas and
Electric, EV-specific retail tariffs from Southern California Edison and a smart charging
pilot program, namely Charge Forward, from pacific Gas and Electric in collaboration with
Bayerische Motoren Werke [10].

Despite the current need for data analysis on the charging characteristics of EVs to
make them as demand resources, it is quite difficult to track the usage history data for
each EV individually, and there is a problem of privacy security invasion. Therefore, it
is reasonable to consider resource evaluation based on the data of the EV charger (EVC)
in which personal information is managed with encryption. Based on EVCs installed in
certain places, a clear analysis of the load characteristics (e.g., periodicity, seasonality) must
precede to use them as demand resources for securing flexibility.

A few related studies evaluated the general ability of EV fleet for power system
operation, collected or surveyed large-scale EV charging data through demonstration
projects, and analyzed the charging duration and amount of EVs [11–14]. However, to the
knowledge of the authors, there are no reported studies evaluating the flexibility of EVCs
with a valid formula that reflects EVC-data-driven characteristics, especially in a typical
demand side resource perspective for grid network security. Therefore, there is a need to
develop the method to estimate and evaluate the flexibility of EVC loads based on the data
analysis results of EVC charging characteristics.

In the view of above, the main objectives and contributions of this study can be
summarized as follows:

• A novel method to evaluate demand flexibility of the EVC based on guaranteed DR
potential estimation is proposed.

• A new data analysis framework of EVC charging demand data to determine flexibility
evaluation is suggested.
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The rest of the paper is organized as follows. In Section 2, a flexibility score estimation
method for EVC flexibility evaluation is proposed and subsequently associated mathemat-
ical formulation is presented. This is followed by a description of EVC data analysis in
Section 3. In Section 4, the results are presented accordingly to demonstrate and interpret
the effectiveness of the proposed model. The conclusions are drawn in Section 5.

2. Flexibility Score Estimation
2.1. Determination of the Ramp-Up/Down Intervals

Before presenting a methodology of evaluating demand flexibility for EVC demand
resources, it is necessary to define the ramp-up/down intervals for the flexible operation
of DR. In the field of power systems, the term ramp-up/down comes from the capability
to increase/decrease power generation in unit time, respectively [15]. In this study, the
criteria for ramp-up/down intervals to mitigate the grid congestion due to sharp PV power
reduction are self-referred from [16] (pp. 3). To mitigate fluctuations in net demand, flexible
demand resources (FDRs) must be properly engaged (i.e., consuming or reducing more
load if net demand sharply drops or increases, respectively). The start/end times of the
ramp-up/down intervals were defined based on the minimum/maximum inclination of
the net demand curves. The intervals for summer and winter, which are based on net
demand in Jeju Island, Korea, are shown in Figure 1, and they are accordingly estimated as
follows:

• Ramp-up interval: 12:00–17:59 (summer), 12:00–17:59 (winter).
• Ramp-down interval: 18:00–21:00 (summer), 18:00–20:00 (winter).
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2.2. Flexibility Score Formulation

The demand flexibility of EVC is greatly affected by the EVC’s rated capacity. However,
the chargers in residential sectors have a 7 kW of common rated capacity with a low-
voltage, which is very small to be used individually. Therefore, it is essential to estimate
the flexibility in the case of integrated EVC operation rather individual one. This paper
designed a scoring method to estimate the flexibility of a clustered demand operation
system based on the charging data characteristics of individual EVs. The formula evaluates
separately according to the ramp-up and ramp-down time interval, respectively. Three
indicators, namely frequency score (FSk), consistency score (CSk), and operation score
(OSk), were formulated to quantify the availability of resources [16]. The attributes were
scored between 0 and 1, and the closer scores are to 1, the more likely it is to be worth as
a FDR.



Energies 2021, 14, 866 4 of 10

FSk indicates how often the demands are operated during the ramp-up and ramp-
down intervals. It involves to the utilization probability of the FDR during the periods
of system demand fluctuation, which can be a major factor in estimating the flexibility
via data. In addition, from the perspective of EVC aggregation operators, resources can
be operated flexibly only when the EVs are charged at an appropriate ratio to the total
demand capacity. Accordingly, FSk was designed as the ratio of operating EVCs to the
entire segmented customer group over the whole period (D), as shown in Equation (1).
Based on the threshold load (pth), the operational state of the EVC (ui,k,d) was determined
discretely as formulated in Equation (2):

FSk =
1

ND
· 1
Nk
· ∑

d∈D
∑
i∈Ik

ui,k,d (1)

ui,k,d =

{
1 pi,k,d,t > pth

0 otherwise
(2)

CSk indicates the similarities between the estimated demand patterns and actual
power consumption amounts. The FDRs with consistent power consumption could be
determined to have the flexibility to perform well on stable capacity in response to the
contractual participation offers. CSk was derived as shown in Equation (3) based on the
root mean square percentage error (RMSPk) between min-max normalized actual demand
(pn

i,k,d,t) and averaged demand pattern (pn,avg
k,t ). as in Equation (4). Min-max normalization

of demand data was performed over the entire periods (D) and groups (Ik) as shown in
Equation (5) and averaging normalized demand pattern was derived as formulated in
Equation (6).

CSk = 1− RMSPk (3)

RMSPk =

√√√√ 1
ND
· 1
NT
· 1
Nk
· ∑

d∈D
∑
t∈T

∑
i∈Ik

(
pn,avg

k,t − pn
i,k,d,t

pn,avg
i,k,t

)2

(4)

pn
i,k,d,t =

pi,k,d,t − min
t∈T,d∈D

(pi,k,d,t)

max
d∈D,t∈T

(pi,k,d,t)− min
d∈D,t∈T

(pi,k,d,t)
(5)

pn,avg
k,t =

1
ND
· 1
Nk
· ∑

d∈D
∑
i∈Ik

pn
i,k,d,t (6)

OSk evaluates the valid demand management volume of the FDR during ramp-up
and ramp-down intervals. As formulated in Equation (7), OSk was calculated based on the
actual charging demand of EVCs compared to the maximum peak power consumption for
charging the entire EVs during the intervals. During the ramp-down interval, the more
EVC being charged in the group, the greater the flexibility for reduction exists. On the
other hand, during the ramp-up interval, the less EVC being charged in the group, the
greater the flexibility increases through encouraging EV charging.

OSk =


1− 1

ND ·∑i∈Nk
max
t∈T

(pi,k,d,t)
· ∑

d∈D
∑

t∈T
∑

i∈Ik

ui,k,d·pi,k,d,t When ramping up DR issued

1
ND ·∑i∈Nk

max
t∈T

(pi,k,d,t)
· ∑

d∈D
∑

t∈T
∑

i∈Ik

ui,k,d·pi,k,d,t When ramping down DR issued
(7)

Finally, the flexibility score (Sk) is defined by the relational expressions of the afore-
mentioned attributes of FSk, CSk, and OSk as given in Equation (8).

Sk = FSk·SCk·OSk (8)
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3. Data Analysis of EV Chargers
3.1. Description of EV Charger Dataset

This paper utilized the charging data of individual EVCs in a whole residential sector
in Korea to estimate the flexibility in participating EVs for DR. The data was obtained
from Korea Electric Power Corporation (KEPCO), a Korean monopolistic utility, which
is in the business of supplying and operating EVCs. The charging data of 5148 EV users
were measured at 15-min intervals for a total of three months from 1 December 2019 to 29
February 2020. The initial data pre-processing was carried out to eliminate and impute
data of EV customers with high missing rates and outliers (e.g., power consumption data
exceeding the rate capacity of the charger). As a result, data of 4165 EV users were finally
able to analysis with the missing rate reduced from 7.68% to 0.78%.

3.2. Results of Data Analysis
3.2.1. Periodicity

Customers with similar charging characteristics should be clustered to determine
the flexibility level of the group. However, due to the prior necessity for identifying the
characteristics of charging data, a periodicity analysis of the data was performed. The
analysis result was confirmed through the 15-minutely and daily average charging amount
within the measurement period as shown in Figure 2. There was a daily periodicity, and
the average charging amount was lower on weekends and holidays than on weekdays.
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3.2.2. Variances

Due to the daily periodicity, the overall demand pattern was confirmed with generally
constant pattern as shown in Figure 3. In particular, the response to the time-of-use (TOU)
tariff plan for EV charging, the demand was the highest after 23:00 when the off-peak
pricing period began, and the demand and variance around 07:00 were the lowest. The
result means that when dividing the data to analyze them in units of a daily cycle, splitting
the data from 07:00 to 06:45 of the next day can preserve the load characteristics much
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more than from 00:00 to 23:45. Additionally, through confirming that there was a higher
demand for EV charging between 18:30 and 03:30 on weekdays than on weekends and
holidays, the reason of the aforementioned demand differences between weekdays and
weekends/holidays could be identified.
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3.2.3. EV User Segmentation

To evaluate the demand flexibility based on charging characteristics of EV users, the
representative charging profiles for clusters were created separately through customer
segmentation. In this study, we used k-means++ data clustering methodology that has
proven its performance in various research fields with the pre-determination of the number
of clusters as five through Davies-Bouldin index evaluation [17]. According to the afore-
mentioned periodicity characteristics, a total of three representative input profiles were
proportionally applied to each weight in the dataset: a profile of working days (Mon–Fri)
and two profiles of non-working days (weekends or holidays). The results of the seg-
mentation into five groups according to the daily pattern by setting the standard time of
the daily period to 07:00 are presented in Table 1 and Figure 4. The characteristics of the
group pattern were classified into light-use, late-night charging, evening charging, morning
charging and late-night heavy-use, respectively, and the light-use customers accounted for
more than 50% of the total.

Table 1. EV user segmentation results.

Group Number Group Characteristics Proportion

1 Light-use 57.1%
2 Late-night charging 17.6%
3 Evening charging 16.7%
4 Morning charging 4.8%
5 Late-night heavy-use 3.9%
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4. Results and Discussions
Comparison of Flexibility Scores

To estimate the demand flexibility score of EVC loads, the seasonal demand char-
acteristic must be pre-reviewed, and the score was calculated based on the seasons and
ramp-up/down intervals, respectively. In this study, the flexibility scores of group 1 to
group 5 were evaluated and compared only for the winter season based on the data col-
lected during the limited experimental period. According to the proposed scoring method
in Section 2, the scores for entire groups averaged at approximately 0.0273 as shown in
Table 2. According to the results, Group 4 was determined to have a demand flexibility
because there was an opportunity to shift the morning charging pattern into the daytime,
which is a ramp-up time period, and Group 3 was also a good FDR with the same reason
as above.

Table 2. Flexibility score result (season: winter; resources: groups 1 to 5).

Group Score Case 1
(Ramp-Up Interval)

Case 2
(Ramp-Down Interval)

Group 1

FS 0.456 0.435
CS 0.503 0.554
OS 0.038 0.049
S 0.009 0.012

Group 2

FS 0.498 0.494
CS 0.502 0.565
OS 0.020 0.025
S 0.005 0.007

Group 3

FS 0.629 0.655
CS 0.477 0.668
OS 0.064 0.186
S 0.019 0.081

Group 4

FS 0.685 0.508
CS 0.631 0.544
OS 0.164 0.078
S 0.071 0.021

Group 5

FS 0.685 0.508
CS 0.538 0.579
OS 0.067 0.077
S 0.025 0.023
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The scores for Case 1 and 2 were averaged 0.0258 and 0.0288, respectively. Accordingly,
in the ramp-down interval, there was a tendency to receive higher scores for the FDR
participation performance of customers than in the ramp-up interval. Considering the
increasing load usage pattern among household EVC owners in the evening, quantitative
indicators have identified more opportunities to reduce the load through EV charging
schedule adjustments.

Additionally, in order to analyze the meaning of the scores, the flexibility evaluation
result of EVC loads was compared with of industrial loads, which are suitable for FDR
participation with a large and consistent power consumption pattern. For example, the
scores for Case 1 and 2 of cement plants were averaged 0.2158 and 0.3173 with 61.04% of
demand reduction capacity ratio [16].

The typical OS of EVCs was significantly low and caused S to be undervalued as a
whole. Since the collection period of the dataset is only three months in winter and the
total number of customers is small, the variance of the charging pattern of the segmented
groups and the operation variability in each unit time interval were not considered in a
heterogeneous environment. According to the authors’ experiences, the more stable the
power consumption was and the more even the cycle was, the closer the score could be to
1. This could be seen in resources with flexible range of temperature control (e.g., furnaces),
or with clear periodicity of tasks. On the other hand, EV charging demands with binary
characteristics are highly uncertain and difficult to get close to score of 1. Compared to the
industrial loads, the average difference in S and OS were 0.24 and 0.50, respectively [16].

Therefore, the clustering of customers can be an important role in high scores, which
may be depend on the purpose of evaluating flexibility scores. Nevertheless, based on
the data acquired from the perfectly same EVC type scattered throughout the residential
sectors in the entire country, the high periodic similarity of the pattern was verified. In
addition, this study presents meaningful implications considering that the scores can be
used as the indicators to estimate demand flexibility for the day-ahead FDR operation plan
in the short term and the network investment plan in the long term, respectively.

5. Conclusions

This paper proposed a demand flexibility evaluation model for segmented EVCs in
the residential sector. The proposed methodology derives results with scores between 0
and 1, and it is designed such that the closer the score is to 1, the more likely it is to be worth
as an FDR. The value of segmented EVC groups were quantified from the perspective of
data analysis, reflecting the frequency of power consumption, the consistency of power
consumption, and the operational capability. Prior to the demand flexibility evaluation,
demand characteristic analysis was performed for typical EVC charging demand data with
pre-processing. As a result, weekly and daily periodicity and variance were confirmed,
and subsequently EV customers are segmented into five groups based on the similar
charging demand patterns. The flexibility scores were calculated for the segmented groups
and confirmed that the typical flexibility score during ramp-up and ramp-down intervals
was 0.0273.

The proposed method can be used as an indicator to determine whether an integrated
EVC demand group is adequate to participate as a FDR. In addition, there is an implication
to modify the proposed model according to the purpose of customer segmentation and scor-
ing result analysis (e.g., FDR participation in various DR programs and time intervals with
high reserve rate requirement, design for EV charging and discharging rates/incentives).

However, this study has certain limitations: a small dataset volume, the limited data
collection period, and the lack of consideration for environment variability. Thus, to
improve the reliability of the demand flexibility measurement, data collection and further
studies are required based on heterogeneous environments such as rate plans, seasons, and
EV/EVC types.
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Nomenclature

Indices
i Index of EV customers
k Index of segmented EVC groups
t Index of time slots
d Index of date slots
Sets
Ik The set of EV customers of segmented EVC group k
T The set of all time slots t
D The set of all date slots d
Parameters and Variables
FSk Frequency score of segmented EVC group k
CSk Consistency score of segmented EVC group k
OSk Operation score of segmented EVC group k
Sk Flexibility score of segmented EVC group k
RMSPk Root mean square percentage of k
Nk Total number of segmented EVC group k
ND Total number of all time slots D
NT Total number of all time slots T
pi,k,d,t Power consumption of EV i in EVC group k at date d, time t
pn

i,k,d,t Normalized power consumption pi,k,d,t

pn,avg
i,k,t

Normalized average power consumption of EV i in EVC group k at time t over
the span of D

pth Power consumption threshold that determines whether an EVC demand
is operating

ui,k,d Binary variable indicating charging state of EV i in EVC group k at date d
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