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Abstract: Current rotorcraft gas turbine engines typically use titanium alloys and steel for the
compressor section and single-crystal nickel superalloys for the hot-section turbine stator vanes and
rotor blades. However, these material selections are rapidly changing due to increased requirements
of power-density and efficiency. Future U.S. Army gas turbine engines will be using ceramic
matrix composites for many high temperature engine components due to their low density and
improved durability in high temperature environments. The gas turbine industry is also actively
developing adaptive concept technologies for production and assembly of modular gas turbine
engine components with integrated sensing. In order to actively monitor engine components for
extended seamless operation and improved reliability, it is essential to have intelligent embedded
sensing to monitor the health of critical components in engines. Under this U.S. Army Foreign
Technology Assessment Support (FTAS) program funded research project, embedded fiber-optic
temperature sensors from U.K.-based company, Epsilon Optics Ltd (Fordingbridge, UK)., were
experimentally evaluated to measure temperature responses on typical turbomachinery component
material coupons. The temperature responses from this foreign technology sensor were assessed
using a thermomechanical fatigue tester with a built-in furnace to conduct thermal cycling durability
experiments. The experimental results obtained from the durability performance of this embedded
fiber Bragg sensor are reported in this paper. This sensor technology, upon maturation to higher
TRL (technology readiness level), can greatly reduce the lifecycle cost of future U.S. Army gas
turbine engines.

Keywords: embedded fiber-optic sensor; turbomachinery; fiber Bragg temperature sensor; compo-
nent health monitoring; high temperature sensor evaluation

1. Introduction

The U.S. Army’s modernization challenges include reducing the logistic burden of
storing, transporting, distributing and recycling essential materials. In addition, there is a
great need for reducing the lifecycle cost of the U.S. Army’s future advanced capabilities.
With newer materials such as ceramic matrix composites (CMCs) introduced into future
U.S. Army rotorcraft gas turbine engine designs, there is a pressing need to monitor
the health conditions of these materials in engine operations, since we lack field usage
knowledge of these material components in the U.S. Army’s mission flights. Currently,
there is no reliable direct or in situ technique for measuring high temperature or strain in
the hot sections of turbine engines [1]. Advanced sensors have been developed over time,
but none is capable of meeting the requirements for monitoring engine hot sections [1,2].
Knowledge gathered from embedded sensor technologies will pave the way to reduce
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lifecycle costs of future gas turbine engines for U.S. Army helicopters. Efficient health
monitoring with advanced sensing systems will provide highly reliable gas turbine engines
for mission availability and enhance soldier safety at all times. Health monitoring of critical
engine components becomes absolutely necessary when military helicopters operate under
harsh conditions, such as severe sand storms or brown-out conditions during take-off or
landing operations in desert regions (Figure 1) [3,4]. NASA has previously demonstrated a
high temperature strain gage based on palladium chromium (PdCr) thin films capable of
operation up to 1100 ◦C [5]. Reference [6] gives details of ceramic thin film thermocouples
developed for SiC-based ceramic matrix composite (CMC) substrates. Willsch et al. [7]
reported a novel approach for the design of fiber-optic-based high-temperature sensors
for gas turbine monitoring. Riza and Sheikh [8] gave details on the development of silicon
carbide-based extreme environment temperature sensor using wavelength-tuned signal
processing. Wong et al. [9] have reported development of RTD (resistance temperature
detector)-based high-temperature embedded sensors by exploiting the predictable and
reproducible change in the resistance of a material with changes in temperature. In spite of
all the past development work, insertion of reliable in situ or embedded sensor technologies
into turbine engine hot-section components is still a significant technical challenge.
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Figure 1. Harsh sand dust cloud conditions experienced by vertical take-off and landing aircraft
during take-off, landing or hovering flight operations over sandy terrain. (a) Rotorcraft landing
operation on sandy terrain; (b) tilt rotor aircraft take-off/hovering operation over sandy terrain.
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The development of fiber-optic sensors has advanced over the past many years. In the
early 1980s, there was a prediction that fiber-optic sensors would compete eventually with
other solid-state sensor technologies in gaining wide use by the industry [10]. Fiber-optic
sensors are promising for sensing applications because of their advantages in terms of
small size, light weight, immunity to EM interference, resistance to chemical attacks and
multiplexing capability. Therefore, there have been continuous research and development
efforts on fiber-optic sensors for various niche applications in vehicle component health
monitoring. These include pressure, strain, flow measurement, temperature measurement,
etc. There have been several reported successes using fiber-optic sensing technologies
for strain monitoring [11], temperature sensing [12], and other sensing applications as
discussed in the references [13,14]. The effect of temperature on the response on fiber Bragg
gratings has been discussed together with appropriate fabrication methods in [15]. For
embedded sensing, substrate application techniques including surface bonding and proper
methods of embedding are discussed in references [16–18]. For any sensor, besides sensi-
tivity, durability plays a key role in long-term health monitoring applications. Typically,
fiber Bragg gratings (FBGs) show a decay in reflectivity under elevated temperatures. This
decay decreases with time and settles to a quasi-stable value over long time use. Hence, to
obtain stable FBG sensors, thermal annealing is usually performed prior to embedding on
a component [19]. For high temperature applications exceeding 500 ◦C, the normal type
FBGs with a polymer based coating cannot be used due to the strong decay in reflectivity.
However, for temperatures up to the 700–800 ◦C range, special types of FBGs have been
fabricated. These FBGs together with high temperature coatings make them suitable for
long term embedded monitoring of components that perform continuously under high
temperature conditions [20]. Additionally, the optical fiber distributed temperature sensors
provide the unique capability of monitoring the temperature profile of a component along
the length of the fiber embedded onto the surface of a component [21].

As per the Brayton thermodynamic cycle [22], increasing the turbine inlet temperature
enhances the overall gas turbine engine efficiency and the power density. The development
of uncooled turbine blades and other hot-section components will be enabled in gas tur-
bines in future with the advent of new higher temperature capable engine materials, e.g.,
CMCs and novel coating materials such as sand-phobic thermal/environmental barrier
coatings (T/EBCs) [3,4]. Due to high temperature environments and rotating small blade
passages with inaccessible zones for sensor placement, the blade surface temperature is
often predicted from engine gas dynamic path analysis. Currently, there does not exist any
viable method to enable a non-intrusive sensing system that is capable of monitoring the
physical properties of the hot-section gas turbine blades and the integrity of blade thermal
barrier/erosion resistant coatings. Therefore, under this FTAS funded research effort, U.S.
Army Combat Capabilities Development Command (CCDC) Army Research Laboratory
(ARL) has evaluated the usage of a minimally intrusive measurement technique using em-
bedded FBG sensors to monitor the temperature of turbine blade substrate and/or coating
material surfaces to enable health monitoring of critical components in future gas turbine
engines. The intended outcome of this effort is an evaluation of embedded sensing methods
for in situ, non-intrusive or minimally intrusive health monitoring of engine components
that can support U.S. Army vehicle sustainment efficiently with well-informed usage-based
maintenance actions for gas turbine engine components operating in harsh engine envi-
ronment. This paper presents the embedded FBG sensor placement techniques on typical
turbomachinery material specimens, made of Ti-6Al-4V and IN718 alloys, temperature
measurements and sensor sensitivity responses with thermal cyclic conditions. The sensor
responses are compared with a thermocouple, which is also embedded at the same location
in proximity to the FBG sensor provided by Epsilon Optics Ltd., Fordingbridge, UK.

2. Sensor Technology

Unlike other strain measurements, fiber Bragg grating sensors (FBGs) offer a wide
measurement range and excellent linearity and repeatability over many millions of load
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cycles. Since the interference pattern is permanently written into the glass, the FBG sensor
can provide an absolute reference for strain measurements over the entire operating lifetime
of a structure without the need for recalibration. Other benefits include immunity from
EMI (electro-magnetic interference) and the capability of multiplexing up to 100 sensors
on a single optical fiber, thus minimizing cabling and installation costs and improving
overall reliability. In addition to being sensitive to strain, FBGs are also sensitive to
temperature. For many strain-sensing applications on engine structures under both thermal
and mechanical loads, it is necessary to compensate for temperature effects. There are
a number of ways of doing this effectively, the simplest of which is to install a second
FBG that is isolated from the strain in the structure but subjected to the same temperature
as the strain sensing FBG. Additionally, the temperature response of the FBG can also
be used as the basis of a temperature sensor either by using an unstrained FBG or by
bonding it to a carrier with a high coefficient of thermal expansion in order to provide
enhanced response. The fiber-optic sensing system includes a suitable opto-electronic unit
to interrogate the FBGs. The interrogation unit sends broadband light down the optical
fiber and accurately measures the wavelengths of the light reflected back from the FBGs.
Since there are many FBGs written into a single optical fiber, the interrogation unit must be
able to determine which reflection came from which FBG. There are mainly two ways in
which this can be done: (i) wavelength division multiplexing (WDM), and (ii) time division
multiplexing (TDM).

The temperature response of an FBG is primarily due to the change in refractive
index with temperature, but is also as a result of thermal expansion of the glass. As the
temperature increases the fiber expands and the wavelength of the pulses of light that the
FBG reflects increases and vice versa. Therefore, for accurate measurement it is essential
to isolate the FBG from any strain due to mechanical loads in the component to which it
is attached. High temperatures cause the glass to anneal and the FBG to fade until it no
longer reflects light with sufficient intensity for the wavelength to be measured. This effect
can be delayed by writing a very strong FBG with a high level of reflectivity.

Epsilon Optics Ltd.’s sensor patches make use of fiber Bragg gratings (FBGs) for
measuring strain and/or temperature. Epsilon Optics has developed a number of methods
for encapsulating the FBG and fixing it to the structure so that it is isolated from mechanical
strain and thus measures only the effect of temperature. Figures 2 and 3 show surface
bonded and embedded sensor examples from Epsilon Optics Ltd. Figure 2 shows a flexible
strain sensor patch, custom strain sensor patch and temperature sensor patch used in typical
structural health monitoring applications. Figure 3 shows an embedded sensor patch used
in composite structure health monitoring applications. Epsilon’s sensor development is
such that the high temperature effect on FBG’s degradation can be delayed by using a
femtosecond laser to produce the FBG. FBGs written with this technique have achieved
around 700 ◦C. There are potential advancements in this area that need to be investigated
to make available FBGs that can achieve a ~1000 ◦C capability.
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Historically, FBGs have been inscribed within optical fibers using ultra violet (UV)
light to create various photo-chemical effects within the core of an optical fiber. These
effects create the required variation along the length of the fiber, otherwise known as
fringes, which allow the FBG to act as a wavelength-selective reflective mirror. This process
has worked extremely well for decades of use within telecommunications, lasers and
benign environmental sensing applications. However, it has long been understood that
such FBGs have limited use in harsh environments due to the photo-chemical processes
being reversible once high temperatures are reached. UV-inscribed FBGs continuously
erase over time, with the erasure process dramatically accelerated with temperature. The
typical approach to handling this issue is to pre-anneal the FBG such that the FBG is
effectively aged before it reaches the end user. Pre-annealing requires the fiber to be
exposed to substantially higher temperatures than the final operating temperature. This
works well up to 300 ◦C, however above this temperature range, the thermal annealing
process elevates the FBG to such a high temperature that it almost completely erases
before it reaches stability. This limitation drove the development of a fundamentally
different inscription method, using femtosecond infrared lasers rather than UV lasers.
Femtosecond lasers deliver a substantially higher energy level into the core of the fiber
than a UV laser, creating large energetic changes in the atomic matrix. Subsequently,
these effects are substantially more challenging to erase from the optical fiber and requires
the glass of the optical fiber to be brought close to the point where the glass is starting
to melt or flow. According to Dr. Andy Gillooly of Fibercore, U.K, who performed
the sensor fabrication for this effort, these FBGs are femtosecond written but are not
inscribed with a point-to-point method, rather they have been inscribed with a phase
mask technique, much like the standard UV laser approach. Femtosecond FBGs have
a greater tendency to incur higher birefringence than a UV-inscribed FBG, as the FBG
can extend into the cladding and utilizes a very small focal area. Therefore localized
refractive index asymmetry within the core is possible. UV-inscribed FBGs are less prone
to this, as the refractive index variation is kept within the geometry of the core and thus is
bounded by a circular cross-section, subsequently removing any shape birefringent effects.
Point-to-point femtosecond FBGs can result in higher birefringence than phase mask based
femtosecond FBGs as the method of focusing and inscribing is less refined, ultimately
resulting in the fiber’s glass material being more aggressively modified locally [23,24].
Academically, reports have been made of femtosecond FBGs showing stability at 1000 ◦C,
whilst most commercial offerings state more modest limits of around 750 ◦C before the
FBG starts to erase [23,24]. Irrespective of test methodology and nuances associated
with different methods of inscribing femtosecond FBGs, in a side-by-side comparison,
UV-inscribed FBGs always erase far in advance of femtosecond inscribed FBGs. For high-
temperature, harsh environment FBG sensing applications, femtosecond FBGs are the
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primary choice for repeatable, long term performance. While standard FBG sensor patches
have been evaluated and verified in various structural health monitoring applications
including aerospace fuselage and landing gear, additional research and development is
needed to validate femtosecond FBGs for the health monitoring of high-temperature engine
components.

3. Experimental Set-Up

CCDC-ARL is equipped with a high-temperature jet burner rig (Figure 4), and Measure
Test Simulate (MTS) thermomechanical test rig (Figure 5) to conduct high-temperature
thermal cycling and thermomechanical fatigue tests. Sand/salt ingestion tests can also be
conducted to evaluate the durability of embedded sensors on engine component material
specimens under harsh dusty or corrosive environments relevant to military operations.
The jet burner rig shown in Figure 4 is capable of reaching temperatures of up to 1982 ◦C
(3600 ◦F) gas temperature to be able to test emerging high temperature CMC material
specimens. The MTS thermomechanical fatigue (TMF) rig shown in Figure 5 is equipped
with a box furnace that can reach up to 1500 ◦C. It is electronically controlled and integrated
into the TMF rig for conducting thermal cycling together with in-phase or out-of-phase
mechanical cycling loading capability. The high-temperature furnace is also equipped with
a Sapphire window port (as shown in Figure 6) that can be used for DIC (digital image
correlation) strain measurements on specimens.

For this research, the TMF rig was used to test embedded sensors on material spec-
imens under varying thermal conditions using the close-loop controlled box furnace.
Material specimens were specially designed, and embedded with FBG sensors that could
fit in the box furnace. The specimen embedded with the sensor was attached to the TMF
rig’s grips. One of the material specimens, Ti-6Al-4V with embedded FBG sensor from
Epsilon Optics, is shown in Figure 7. The test specimens were tested under varying tem-
perature conditions for long durations of up to 60+ h and also underwent long-duration
repeated test runs.
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Thermal cycling durability tests were conducted using the TMF test rig with em-
bedded FBG sensors placed on four Ti-6Al-4V (Ti6Al4V) material specimens and four
Inconel 718 (INC 718) specimens. In all the specimens, thermocouples were attached side
by side with FBG sensors to help correlate the sensor sensitivity response and accuracy.
The temperature sensing responsiveness and thermal cycling durability tests were con-
ducted for long durations of up to ~62 h continuously by ramping up the temperature
steadily and holding the furnace temperature setting at different levels for prescribed
time durations. Repeated long-duration thermal cycling tests were also conducted. The
acquired temperature data from the FBG sensors and the thermocouple measurements are
compared and presented in the “Results and Discussion section”. Some of the sensors were
tested under cycling temperature conditions beyond the temperature limit of the sensor
to examine the failure trends. Lessons learned from this research can enable innovation
of a novel in situ sensing technique to monitor the health state of turbomachinery blade
substrate and/or coating materials for future gas turbine components operating under
austere environmental conditions.

4. Results and Discussion

During the beginning of the experimental evaluations, the embedded FBG sensor’s
response in characteristic wavelength measurements from the interrogator were correlated
to temperature readings from the thermocouple that was placed adjacent to the embedded
FBG sensor. Figure 8 shows the correlation between the measured characteristic wavelength
change and the measured temperature from the thermocouple placed in close proximity
to the FBG sensor. This is typically a linear relation within the temperature limits for a
given type of FBG sensor. For the sensor used, the limit temperature was found to be
around ~720 ◦C, after which the signal strength fell much below the threshold and failed.
The sensor calibration curve shown in Figure 8 was used to convert the characteristic
wavelength recordings from the FBG sensor into calibrated temperature data.
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Figure 8. FBG sensor calibration.

The signal strength for each FBG sensor was also monitored during the thermal cycling
experiments. The sensor signal strengths are shown for the FBG sensor embedded onto
the Ti6Al4V specimen (numbered as A523-1) at room temperature (Figure 9a) and at an
elevated temperature of ~400 ◦C (Figure 9b). As seen from Figure 9a,b, the signal strength
was strong in this temperature range, much above the threshold setting enabling reliable
measurements at this range of temperature conditions. Figure 9b shows that the sensor
signal strength for the same Ti6Al4V specimen (A523-1) at 400 ◦C is clearly strong and still
good above the threshold at this higher temperature, ensuring reliable measurements.
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Figure 9. Specimen A523-1, Ti6Al4V, comparison of sensor signal strength at room and 400 ◦C temperatures.

Figure 10 shows the calibrated temperature data during thermal cycling experiments
on the Ti6Al4V specimen (numbered as A523-1) with the embedded FBG sensor over
several runs. The thermal cycling test runs were performed over a period of 2+ days
(~62 h) continuously and the measurements were recorded. A built-in time stamp counter
in the interrogator was used to plot the characteristic wavelength recordings. These were
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converted to calibrated temperature data as shown in Figure 10 along with elapsed physical
time.
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A523-1. (Note: break in data due to fixing cable connections during run 5).

As observed from Figure 10, the temperature data during some of the high temperature
runs, especially run 7 and run 8, appear to be wavy which could be due to the effect of
the furnace controller constantly adjusting to keep up with the set temperature level. The
furnace could not be perfectly sealed, resulting in some heat loss from the furnace caused by
radiation and also from the water cooled specimen grip. At 4% vanadium, the Ti6Al alloy
is in the alpha + beta phase field. As the temperature rises above 400 ◦C, the alpha content
demonstratively reduces and continuously transforms to the beta phase. The base material
phase change will thus affect the embedded FBG sensor reading. Hence, the user should be
mindful of these uncertainties while using such embedded sensing methods. However, in
general, gas turbine engine components consistently monitored using embedded sensing
can be beneficial in detecting anomalies during mission flights (especially during extreme
maneuvers) and provides the ability to locate and correct problems before any catastrophic
failure occurs. Figure 11 shows the temperature history plot for the Ti6Al4V specimen
A523-2, which was tested under ramp-down temperature conditions controlled by the
AMTECO furnace fitted to the test rig. During this test, the ramp down started from a
temperature of ~244 ◦C and went down to a temperature of ~224 ◦C, showing the FBG
sensor performed well in this small range (Figure 11). The temperature readings from the
thermocouple placed in proximity to the FBG sensor are also plotted in Figure 11. The
thermocouple measurements were acquired at 0.2 Hz, and so they are shown at discrete
time steps to show the comparison. In general, both data agreed well within a ±1% error.

In order to test the sensor’s decay of signal strength at higher temperatures, the experi-
ments were conducted at increased temperatures in steps, and the signal strength response
at different temperatures were captured. The Figure 12a–d show the sensor’s recorded
signal strength for the INC 718 specimen (numbered as A523-5) at room temperature,
600 ◦C, 700 ◦C, and slightly greater than 720 ◦C, respectively. There was complete loss of
signal at slightly greater than 720 ◦C, which suggested that the maximum limit operating
temperature for this embedded FBG sensor is 720 ◦C.
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Figure 13 shows the calibrated temperature data with time for the sensor embedded
onto the INC 718 specimen (numbered as A523-5). As observed from Figure 13, the sensor
stability was impaired during run 3 while operating at around 700 ◦C due to temporary loss
of signal strength. Another specimen, A523-6, INC 718 with embedded FBG sensor, was
subjected to thermal cycling testing as shown in Figure 14 in the first test cycle (test cycle#1).
After the prolonged testing continuously for about 2+ days, the thermal cycling test was
then repeated on the same specimen embedded with the sensor as per the thermal cycling
testing (test cycle#2) as shown in Figure 15. At these temperatures, the FBG sensor seems to
perform reasonably well capturing drifting temperatures caused by the furnace controller
and heat loss from the furnace. Additionally the base material Inconel 718 microstructure
is affected by the temporal length of exposure and thermal temperatures above 600. The
phase change from γ to γ’ and γ” will affect the sensor responses. At lower temperatures,
creep (prolonged exposure) may cause the sensor drifts. At higher temperatures of 600 ◦C
and higher, the drift effect is pronounced from both the temperature and the duration of
the exposure from creep.

A different specimen, A523-7, INC 718 with the embedded sensor, was subjected
to gradually increasing temperature testing (test cycle#1) as shown in Figure 16. The
acquired temperature measurements from the thermocouple are also plotted in Figure 16
to show the comparison between the readings from the embedded FBG sensor and the
thermocouple. As shown in Figure 16, the FBG sensor was in good agreement with
thermocouple data within a maximum of ±1.5% error. The same specimen was then
subjected to nearly constant temperature testing conditions (multiple runs) as well as
rapidly changing temperature conditions (test cycle#2) as shown in Figure 17. During the
test cycle#2 for INC 718 specimen A523-7 (shown in Figure 17), there was a slight water
leakage coming out of the water-cooled specimen grip fixture (on the TMF test rig), and
water was found dripping along the specimen from the top down. Due to this, the furnace
closed-loop controller constantly adjusted the heating to the set temperature level. Because
of persistent temperature adjustments, the temperature data is quite wavy as shown in
Figure 17. Although this was not intended in the testing, this actually demonstrated the
sensitivity of the sensor while operating under unsteady temperature conditions during
rapid heating or cooling of a turbine blade during engine startup/shutdown or during
on/off or intermittent blade film cooling conditions. However, in the last run (as shown in
Figure 17), when the specimen was rapidly taken to a temperature of slightly above 700 ◦C
and then brought down quickly, there was loss of data caused by impaired signal strength
which in turn shows that the FBGs start to erase.
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Figure 13. Calibrated temperature measurement using embedded FBG sensor on INC 718 specimen
A523-5. (Note-1: fixing cable connections during startup; Note-2, Note-3: data interruption due to
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Figure 17. Calibrated temperature measurement using embedded FBG sensor on INC 718 specimen
A523-7 (test cycle#2). (Note: loss of data caused by impaired signal strength, which in turn shows
that the FBGs start to erase).

The Figure 18a–d show the sensor stability during prolonged operation at high tem-
peratures close to the maximum limit temperature of the FBG sensor. The signal strength
variations from the specimen A523-6, INC 718 that was subjected to a constant temperature
testing condition of ~700 ◦C are shown from start to an elapsed time of 45 min in steps of
15 min. intervals sequentially in the Figure 18a–d. The Figure 18a–d clearly show that the
sensor fails over prolonged duration while operating near the limit of high temperature
conditions. In summary, overall the FBG sensors survived the thermal cycling durability
tests within their capable operating temperature limits, but at high temperature limits, the
stability and reliability of the sensor become impaired during a long-duration operation.
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The sensing sensitivity response and accuracy during temperature variations were found
to be reasonably good within the operating temperature limits.

Energies 2021, 14, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 17. Calibrated temperature measurement using embedded FBG sensor on INC 718 speci-
men A523-7 (test cycle#2). (Note: loss of data caused by impaired signal strength, which in turn 
shows that the FBGs start to erase). 

 
(a) Specimen A523-6, INC 718, sensor signal strength 

@ 700 °C at start. 
(b) Specimen A523-6, INC 718, sensor signal strength @ 

700 °C after 15 min. 

 
(c) Specimen A523-6, INC 718, sensor signal strength 

@ 700 °C after 30 min. 
(d) Specimen A523-6, INC 718, sensor signal strength @ 
700 °C after 45 min. (loss of signal—below threshold). 

Figure 18. Specimen A523-6, INC 718, sensor signal strength @ 700 °C (a) at start, (b) after 15 min., (c) after 30 min., and 
(d) after 45 min. 

Figure 18. Specimen A523-6, INC 718, sensor signal strength @ 700 ◦C (a) at start, (b) after 15 min., (c) after 30 min., and (d)
after 45 min.

5. Conclusions and Path Forward

In situ sensors on gas turbine engine components help to actively monitor engine
components for extended seamless operation and improved reliability. Under this U.S.
Army Foreign Technology Assessment Support (FTAS) program funded research project,
embedded FBG sensors from Epsilon Optics Ltd. (U.K based company) were evaluated to
measure temperature responses on typical turbine engine component material specimens.
Overall, the embedded FBG sensors survived the cyclic temperature conditions. The sensi-
tivity response and stability were assessed in long-duration thermal cycling durability tests
continuously, with ramping up and down temperature conditions. Although, the embed-
ded FBG sensor technology survived up to a maximum temperature condition of ~700 ◦C,
continued stability and response were impaired during long-duration testing. However,
much below 700 ◦C, the FBG sensors evaluated in this research demonstrated reasonably
reliable operation, subject to other influencing factors such as material phase changes, glass
annealing, etc. The experimental results confirmed the viability of using in-situ sensor
in gas turbine engine components operating under harsh cyclic thermal conditions as
compared to traditional current technology measurement devices that are intrusive and
cannot be used on gas turbine engine components due to narrow flow passages and their
detrimental aerodynamic effects on the flow field through these turbine engine components.
However, additional sensor maturation is needed along with innovative component design
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concepts and manufacturing methods to elevate the technology readiness level. Proper
protective shielding for the fiber-optic leads together with a wireless transmitter for rotating
blades in real engine installations should also be developed.

This research investigation has led to the development efforts in separate related SBIR
(small business innovative research) projects on embedded sensors for high temperature gas
turbine engine component applications. The development and assessment of embedded
sensors with the ongoing SBIR projects on this related research will enable transition of
this emerging in situ, non-intrusive sensor capability in the U.S. Army’s future vertical lift
propulsion systems in the near future. The sensor technologies being developed through
SBIR projects will be evaluated under gas turbine engine relevant conditions in the near
future.
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CMC Ceramic Matrix Composite
FBG fiber Bragg grating
FTAS Foreign Technology Assessment Support
INC 718 Inconel 718 (Ni-based superalloy)
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