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Abstract: In petroleum engineering, imbibition is one of the most important elements for the hy-
draulic fracturing and water flooding processes, when extraneous fluids are introduced to the
reservoir. However, in unconventional shale formations, osmosis has been often overlooked, but
it can influence the imbibition process between the working fluid and the contacting formation
rocks. The main objective of this study is to understand effects of fluid–rock interactions for osmosis-
associated imbibition in unconventional formations. This paper summarizes previous studies on
imbibition in unconventional formations, including shale, tight carbonate, and tight sandstone for-
mations. Various key factors and their influence on the imbibition processes are discussed. Then, the
causes and role of osmotic forces in fluid imbibition processes are summarized based on previous
and recent field observations and laboratory measurements. Moreover, some numerical simulation
approaches to model the osmosis-associated imbibition are summarized and compared. Finally,
a discussion on the practical implications and field observations of osmosis-associated imbibition
is included.

Keywords: imbibition; osmosis; unconventional formations; shale; EOR; hydraulic fracturing; wa-
ter flooding

1. Introduction

Imbibition is defined as a movement in which the wetting fluid occupies pore space
through the displacement of the non-wetting fluid. Osmosis refers to a process of water
molecules’ spontaneous movement through a semi-permeable membrane, such as clay,
from a low-salinity to high-salinity region against concentration gradient [1]. Previously,
the major mechanism of imbibition was narrowed to capillary pressure; however, osmosis
due to molecule diffusion and the semipermeable membrane effect has been overlooked.

In unconventional formations, such as shale and tight sandstone, the imbibition exists
when the injected working fluid contacts the formation rock during hydraulic fracturing
and water flooding. The capillary pressure is considered as one of the driving forces
for imbibition. Since this force is in inverse proportion to the pore size, it is particularly
significant in the formation of nanopores and micropores. Thus, unconventional formation
with smaller pore size usually has much higher capillary pressure and larger imbibition
effect. In recent years, the imbibition effect was considered as a potential explanation
for the low percentage of flow back after hydraulic fracturing in the shale gas reservoir.
Roychaudhuri et al. [2], Makhanov et al. [3,4], and Zhou et al. [5,6] proved that a large
volume of the fracturing fluid can be imbibed by the shale samples. Imbibition has also
been studied as part of the research related to water flooding to achieve a sweep area as
large as possible [7].
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Osmosis requires a semi-permeable membrane and concentration differences. Clay
can act the membrane because of its salt-exclusionary behavior. In tight clay-rich forma-
tions, such as shale, clay distributes on the wall of the porous space so that the membrane
has a high efficiency to exclude the passage of salt ions, which is called membrane effi-
ciency. In addition, due to the salinity differences between the injected fluid and formation
brine, the imbibition process in clay-rich formations is often associated with osmosis.
Fakcharoenphol et al. [8] and Zhou et al. [9,10] both indicated the osmosis effect on water
flooding and hydraulic fracturing.

Therefore, besides capillarity, it is necessary to study the effect of osmosis on imbibition
for water flooding and hydraulic fracturing in unconventional formations. In this paper,
previous studies are reviewed and summarized for the osmosis-associated imbibition.
The details and conclusions are described to provide insights about osmosis-associated
imbibition in petroleum engineering applications.

2. Imbibition

The main study of imbibition is through experiments. The spontaneous imbibition
experimental setup is indicated in Figure 1. There is no extra pressure applied during the
spontaneous imbibition. Figure 2 shows the forced imbibition experimental setup, which
can apply injection pressure on a sample.
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According to the experimental results, the imbibition rate and volume are significantly
affected by various factors including wettability, initial water saturation, temperature, flow
direction, fluid and rock properties, and clay content, which are described respectively in
the following subsections.

Wettability. Wettability is an important factor that can impact the imbibition process.
The wettability indicates the ability of a fluid to adhere to the walls of a solid. The fluid
includes gas and liquid phases. When the three phases (gas, liquid, and solid) interact, the
contact angles between the gas–liquid interface and the solid–liquid interface can be used to
indicate wetting and non-wetting states. In the reservoir, the rock with the smaller contact
angle exhibits a faster imbibition rate for the wetting phase [12]. Therefore, adjustment of
the contact angle is an effective way to control imbibition and is widely investigated [13–18].
Zhou et al. [5,6] designed experiments to compare imbibition rates in shale samples with
various contact angles. The results showed that the imbibition rate was strongly influenced
by changing contact angles.

Wettability alteration is one of the main mechanisms to mobilize residual fluid during
water flooding. The alteration is dependent on fluid composition, rock surface mineralogy,
system temperature, pressure, and saturation history [19–23]. Imbibition process can also
alter the wettability of formation rocks. In previous studies, there are several situations of
wettability alteration due to imbibition, including the imbibition fluids being acid, water
with specific ionic content, and surfactant.

Dilute acid imbibition pre, post, or during hydraulic fracturing could improve the
wettability of carbonate-rich shale formations and hence improve production [24–28]. The
reaction between acid and rock can alter the wettability of formations by weakening the
oil–rock surface bonds on the oil-wet thin layer. The alteration is to improve the pore
connectivity; thereby, the trapped oil and gas are easier to be produced.

When the ionic content in water is changed, the wettability of reservoirs can be altered.
This usually happens during low-salinity or salinity-modified waterflooding. These mech-
anisms of the wettability alteration include fines migration and rock dissolution [29–32];
PH increases [33–35]; multi-component ion exchange [36–40]; and surface charge changes
or double-layer expansion [41–51].

The purpose of surfactant in imbibition fluid is to mobilize residual saturation [52–55].
Wettability alteration toward the hydrophilic state and a decrease in interfacial tension
(IFT) are caused by surfactant during imbibition [55]. Cationic surfactant adsorption
in negatively charged sandstone cores can decrease the performance to lower IFT and
wettability alteration [56]. Alameri et al. [57] reported that surfactants in combination with
low-salinity water flooding could be applied to circumvent the high salinity challenge and
improve recovery in oil–wet carbonate reservoirs. Surfactants or a hybrid of surfactant with
low-salinity water were observed to improve the wettability and IFT of formations at the
laboratory scale [11,18,49,58–60]. Figure 3 shows the wettability alteration (through contact
angle measurements) of carbonate formation, sandstone formation, and shale (Three Forks
shale formation) comparisons when the bulk fluids are seawater, seawater + CO2, and
low-salinity water + CO2 [11].

Contact angle measurements within the pore space are not realistic; thus, the spontaneous
imbibition and zeta potential measurements can provide realistic indicators of wettability al-
teration in porous media, especially in unconventional shale reservoirs [49,51]. Nontheless,
Mahani et al. [44] measured contact angle and zeta (ζ)-potential of the carbonate−brine
interface on crushed carbonate fragments. Their experiments showed that at lower brine
salinities, the ζ-potential of the limestone−brine interface become more negative, which is
indicative of a weaker electrostatic adhesion of the rock−brine interfaces and implies a wet-
tability alteration to a less oil-wet condition. Alvarez and Schechter [49] performed sponta-
neous imbibition, contact angle, and ζ-potential measurements on siliceous unconventional
liquid-rich Permian basin reservoir cores using surfactants and fracturing brine. Alvarez
and Schechter [49] experiments show anionic surfactants superior wettability alteration.
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Initial Water Saturation. It is difficult to determine the effect of initial water saturation
on imbibition through experiments due to several reasons. When the formation has
higher initial water saturation, the amount volume of imbibition can be smaller or larger.
The smaller imbibition amount was indicated by Blair [61] and Li et al. [62]. The larger
imbibition volume was pointed out by Cil et al. [63], Zhou et al. [64], and Morrow et al. [65].
Bennion and Thomas [66] discussed the existence of the state of noncapillary equilibrium
in a low-permeability gas reservoir with abnormally low initial water saturation, and
the undersaturated matrix will imbibe a significant amount of water during drilling and
completion, resulting in phase trap damage to the formation. In addition, some studies
indicated there was little effect from the initial water saturation on imbibition [62,67,68].
The reason for the contradictory conclusions is that the capillary pressure and effective
permeability both depend on water saturation. The capillary pressure has an inverse
correlation to the water saturation, while the effective permeability of water has a positive
correlation to the water saturation. Thus, when the initial water saturation is high, the
capillary pressure is normally low, but the effective permeability of water is high. The
imbibition volume is controlled by the opposite effects from low capillary pressure but
high permeability. Therefore, Morrow and Mason [69] said that the influence of initial
water saturation should be investigated specific to a formation. Zhou et al. [70] found that
in shale, the lower initial water saturation could cause a faster imbibition rate and higher
volume of the imbibition. This is due to the very small pore size of the shale, which causes
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the capillary pressure to dominate the imbibition process when the initial water saturation
is low.

Temperature. Temperature impacts imbibition because wettability and fluid proper-
ties change under various temperatures. Handy [71], Pooladi-Darvish, and Firoozabadi [72]
indicated that higher temperature caused a faster imbibition rate. Peng and Kovscek [73]
proved this conclusion through the forced imbibition experiment system with temperature
control. Elevated temperature may result in formation damage due to fine migrations [74].

Flow Direction. The process of same flow direction for wetting and non-wetting
phases is called co-current imbibition, which usually happens during the water flooding
operation [75]. The opposite flow direction, which is regarded as counter-current imbibition,
mainly occurs in unconventional formations and fractured water-wet reservoirs [75,76].
Qin [77] pointed out that the direction of the flow was determined through the wettability
of the formation rock, fracture and boundary condition in the reservoir, and injection rate
during operation. In the studies of Bourbiaux and Kalaydjian [78], Kantzas et al. [79],
Pow et al. [80], and Li and Horne [81], it is found that co-current imbibition can cause a
faster rate of recovery than counter-current imbibition.

Fluid and Rock Properties. Fluid viscosity, rock permeability, and pore size can
impact the imbibition rate. When water displaces oil and gas in the reservoir, the imbibition
rate increases as water viscosity increases [82].

Rock permeability is also a factor to influence the imbibition rate. The higher per-
meability is expected to have a higher imbibition rate [83,84]. However, Graham and
Richardson [12] found that the high permeability ratio of fracture to matrix was difficult to
relate to imbibition rate.

Pore size indirectly affects imbibition rate. The small size of pores can cause a high
capillary pressure that is one of the driving forces of imbibition. Thus, the imbibition rate
would be higher in the small size of pores. However, Egermann et al. [85] indicated that
in unconventional formations, the pore size is small, while the permeability is also low.
Hence, the imbibition could be still slow in unconventional formation.

Clay Content. In clay-rich formations, such as shale, imbibition is strongly affected
by clay mineral [86]. Zhou et al. [6] analyzed the relationship between clay content and
imbibition. In shale, the sample with higher clay content could imbibe more volume and at
a faster rate than the sample with lower clay content. This was later confirmed in other
experimental measurements, such as NMR [87], and the excessive imbibed water beyond
capillary-driven water remains as irreducible water in the clay of shale. In addition, the
imbibition of fluid with additives was also different in various clay content shale samples.
In the high clay content sample, the fluid with 0.07% friction reducer has a greater imbibed
volume than the fluid with KCl or KCl substitute (choline chloride, magnesium chloride,
and tetramethyl ammonium chloride). However, the fluid with the 2% KCl was imbibed
more than other fluids in the shale with less than 10% clay content.

3. Osmosis

Imbibition in tight formations is usually accompanied by osmosis, especially in high-
salinity shale formations. Osmosis is a spontaneous net movement of solvent molecules
toward a higher concentration region so as to minimize the concentration difference be-
tween two sides of a semi-permeable membrane. Solute–membrane interactions are more
frequent on the higher solute concentration side than the low concentration side. Thus,
more solute particles, such as salt, try to pass through the membrane, but they are excluded
by the membrane due to its semi-permeable property. As those particles are pushed, a
momentum is generated and pulls water molecules through the membrane from the lower
concentration side [88].

Previously, osmosis was overlooked, since its effect is negligible during fluid flow in
porous medium of conventional formations. However, in tight (unconventional) forma-
tions, which contain high clay mineral contents, a semi-permeable membrane can arise
to generate osmosis. Neuzil and Provost [89] observed the anomalous fluid pressure in a
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subsurface when they performed osmosis measurements on moderately compacted high
clay content Pierre shale. This can be illustrated by electric double layer (EDL) theory [90].
Clay particles are naturally and commonly negatively charged. To neutralize the surface
charges, cations or counter-ions will be attracted to the clay surface and form a diffuse
double layer. However, the concentration of attracted ions decrease away from the clay
platelets as electrostatic force weakens. If there is enough distance between clay platelets,
there may exist a charge-neutral zone in the middle. However, due to some compaction
effect, the diffused layers overlap each other, where the excessive charges accumulate. This
overlap region carries charges and provides exclusion forces to any of the charged particles
that try to pass through it but not water molecules [91–94].

Small pore sizes, which are a distinguishing characteristic of porous medium in tight
formations, also contribute to osmosis occurrence. First, small rock pores with high clay
contents can increase the quantity and quality of semi-permeable membrane. Second, the
disassociated ions from salt in the aqueous solution are usually hydrated and complexed
by water molecules. Thus, when the pore size is small enough, water molecules are more
mobile than the larger-size hydrated ions, which will experience more restriction through
the rock. Hence, as being excluded by the small rock pores, those hydrated ions may
acquire enough momentum to overcome the diffusive flux and pull the water out of low
concentration solution [95].

Hence, osmosis in tight formations has attracted research attention. Osmosis study
in drilling engineering is mainly related to wellbore stability, which is strongly affected
by water-based drilling fluid. When drilling fluid is invaded into formation rocks, it can
decrease rock strength and elastic modulus and increase pore pressure, which are all causes
of wellbore instability [96]. In shale formations, osmosis is considered as a significant
mechanism to result in fluid invasion [97,98]. However, osmosis is a particular mechanism
that allows fluid to have a bi-directional flow through controlling the salinity of the drilling
fluid. Abass et al. [99] indicated that a designed drilling fluid can extract formation fluid
out of shale to strengthen wellbore. The designed considerations are to increase osmotic
flow to the wellbore, which requires increasing the salinity and fluid viscosity as well
as reducing the shale permeability. High-salinity drilling fluid can induce osmotic flow
to the wellbore. High viscosity and small permeability can inhibit capillary flow into
formations. Membrane efficiency is also a consideration that is hard to control but should
be considered when designing. Membrane efficiency is a ratio between actual osmotic
pressure and theoretical osmotic pressure. Abass et al. [99] measured membrane efficiency
in shale samples from the Zuluf field of Saudi Arabia. The measurement showed that its
membrane efficiency was 4.2%. This result proves that osmosis cannot be neglected in
shale formations. Schlemmer et al. [100] discussed factors that can improve membrane
efficiency and hence increase osmosis. These factors are clay type of high cation exchange
capacity, shale pore structure with more compacted clay, formation fluid with lower salt
concentration, and compositions of drilling fluid that can affect the interface of clay.

However, those studies argued about the actual role of osmosis in fluid movement
because it is difficult to distinguish osmotic flow from capillary flow in the imbibition
process in tight formations. Zhou et al. [9] indicated this combinational mechanism during
fracturing fluid flow in shale gas formation rocks.

In Zhou et al.’s experiments, it was found that the weight of rocks increased and
decreased alternately when they were immerged into high salinity fluid, which can cause
osmotic extraction [9]. Weight increase indicated that fluid invaded into rocks because
capillary-driven imbibition was the dominant force. With the continuous fluid invasion,
capillary pressure was decreased so that fluid was imbibed into rocks less and less. When
osmotic extraction was stronger than capillary imbibition, the rock weight decreased
because fluid flowed out of the tight pores more than it flowed in. However, capillary
imbibition became stronger again when fluid saturation was declined, so that the weight
of rock increased again after a certain point of time. Hence, it is difficult to distinguish
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the capillary pressure and osmotic forces in the fluid movement processes, as they are
dynamically changing and interacting with each other.

The osmotic effect can also contribute to the enhanced oil recovery (EOR) mechanism
of unconventional shale formations. Recent studies show that low-salinity waterflooding
EOR is can significantly improve oil production from shale formations, especially in high-
salinity tight shale formations [8,101–104]. The concept is to enhance osmotic flow through
a smaller salinity of waterflooding fluid than that of formation fluid. Figure 4 shows
osmosis effect in clay-rich rocks. The application also depends on membrane efficiency.
Fakcharoenphol et al. [8] and Teklu et al. [102] proved in clay-rich tight formations that
osmosis can improve oil displacement under low-salinity fluid. Figure 5 shows experimen-
tal results of osmosis effect on oil displacements based on authors’ work. However, it is
challenging to quantify the osmosis effects on oil recovery, since fluid chemical equilibrium
and rock–fluid interactions all change dynamically with salinity change in this extremely
complicated process. Thus, direct measurement of osmosis during oil recovery experiments
may reveal new important insights.
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imbibition period. At imbibition Day 5 (top), the core was removed from a high-salinity brine
beaker and produced/expelled oil was wiped and immersed in low-salinity brine from Day 5 until
Day 10 (bottom). This shows that more oil is expelled due to osmosis during a low-salinity brine
imbibition period.

A study by Padin et al. [103] performed high-pressure high-temperature chemical
osmosis-driven fluid flow experiments in carbonate-rich mud rocks (shales). Their ex-
periment showed a gradual, slow (within 120 days of experiment) increase of pressure
within the samples. Based on their experiments, they concluded that chemical osmosis
in organic-rich carbonate rocks could create a significant amount of driving force for oil
mobilization or EOR; also, they stated that water imbibition in their experiment cannot be
explained by only capillary forces.

4. Simulation for Osmosis-Associated Imbibition

The model that simulates spontaneous imbibition has been predominately attributed
to capillary action [71,105–117]. Osmosis has been overlooked for a long time, as it is not
as significant as other mechanisms, such as capillarity and gravity, because the membrane
efficiency in a conventional reservoir is too low to make a real impact. However, shale
and other unconventional formations present a significant osmosis effect due to their
mineralogy and pore size structure [9]. Recently, several modeling efforts have been made
to investigate the osmosis effect in unconventional reservoir development.

Fakcharoenphol et al. [118] proposed a triple-porosity fracture-matrix model and
incorporated the effects of matrix wettability, capillary pressure, relative permeability,
and osmotic pressure to investigate the impact of shut-in time on well productivity. In
the model, the fracture forms a continuum of an interconnected network created during
the hydraulic fracturing, while the organic and non-organic matrices are embedded in
the fracture continuum. Fakcharoenphol et al. [8] used a numerical model to calculate
osmotic pressure by tracking the salinity concentration. The simulation results indicated
that osmotic pressure can be a viable mechanism by promoting water–oil counter-current
flow. Wang and Rahman [119] proposed a numerical model to investigate both capillary
pressure and osmosis effects on fluid leak-off during shale gas reservoir stimulation. The
results showed that rock composition greatly affects the leak-off rate, and the invaded
water due to capillary and osmotic pressures significantly increases the pore pressure.
There is a strong non-linear relationship between imbibition volume and square root of
time. Li et al. [60] developed a multi-component matrix imbibition model to investigate the
effects of low-salinity water and surfactant on unconventional recovery. Simulation results
matched with experimental data and revealed some important insights on the effects of
water salinity and surfactant that the combination effects of contact angle and interfacial
tension determine capillary pressure imbibition and that the concentration of charged ions
and surfactant molecules affect the osmosis imbibition. All these processes are associated
with different rock components and mineralogy, and there exists an optimum water salinity
for maximum imbibition. Different from previous simulation studies, Li et al. [90] proposed
a multi-mechanistic numerical shale matrix imbibition model by dividing the rock into non-
membrane and membrane components. Figure 6 introduces the coupling in the model. The
model considered capillary pressure and osmotic pressure as a function of water saturation,
could track the dynamic water and salt movement, and was validated by matching with
experimental measurements. The principles associated with the imbibition and osmosis
behind each model of these reviewed works are summarized in Table 1.
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Table 1. Imbibition mechanisms for different models that considered imbibition and osmosis.

Model Capillarity Osmosis Diffusion Gravity

Fakcharoenphol
et al. [118]

Water saturation-based
capillary pressure
curve for organic,
non-organic, and

fracture media

Osmotic pressure as a
function of salt

concentration and
membrane efficiency

Fick’s Law
Gravity effect between

matrix and fracture
media

Fakcharoenphol
et al. [8]

Water saturation-based
capillary pressure

curve for matrix and
fracture system

Osmotic pressure as a
function of salt

concentration gradient
and membrane

efficiency

Fick’s Law
Gravity effect between

matrix and fracture
media

Wang and Rahman
[119]

Bundle of capillary
tubes associated with
pore size distribution
for clay, hydrophobic,

hydrophilic
components

matrix system

Osmotic pressure as a
function of salt

concentration gradient
and membrane

efficiency

Neglected N/A

Li et al. [90]

Water saturation-based
capillary pressure

curve for
two-component
matrix system

Osmotic pressure as a
function of salt

concentration gradient
and membrane

efficiency

Fick’s Law N/A

5. Discussion

In summary, those studies on osmosis-associated imbibition provide a good under-
standing of the fluid flow in unconventional formations. Osmosis is a critical mechanism
of fluid movement especially in clay-rich tight formations, and it can enhance the fluid ex-
traction process as an additional force to other forces, such as capillary pressure. However,
further studies are required to investigate the impacts of osmosis on the fluid imbibition
process to maximize production for field applications. Here, some discussions on the
practical implications of osmosis-associated imbibition are summarized.

The common perception is that water imbibition could cause water blockage and
clay swelling, which decrease the permeability of the formation. There were many experi-
ments and studies to indicate the decrease due to water blockage [108,120–123] and clay
swelling [124,125]. There was also an argument about whether the decrease is temporary
or permanent. On one hand, the damage could be eliminated by increasing drawdown
pressure or applying alcohol and alcohol surfactant. Therefore, the damage is tempo-
rary to the formation [15,126–130]. However, on the other hand, in some formations,
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additives of alcohol have little effect on gas permeability, so that water blockage can be
permanent [131–134].

In recent studies, it was found that osmosis-associated imbibition could improve
permeability in unconventional formations. In shale, the experiments established the
relationship between the amount volume of imbibition and permeability. It was found that
imbibition in shale could cause natural fractures instability and regrowth, thereby causing
a significant permeability increase [25,70,135,136]. While positive capillary pressure is the
main sucking force for strong imbibition in water-wet rocks, the imbibition volume and rate
can be significantly boosted by osmotic effect and lead to more natural fracture reactivations
and regrowth. However, that conclusion requires further investigation, because those
results were taken from the experiments under non-reservoir conditions. In another word,
it is not clear how many fractures can be reopened under reservoir high pressure due
to osmosis-associated imbibition. Hence, more studies are necessary to determine the
relationship between osmosis-associated imbibition and formation permeability under
reservoir conditions for unconventional formations.

In addition, there are studies that investigate the influence of osmosis-associated
imbibition on water recovery and production in shale. Those studies provided some
explanations on the field observations that extended shut-in time after fracturing treat-
ment often results in a lower percentage of water recovery and but higher production in
shale [137–141]. One of the potential reasons is that the near wellbore water blockage is
mitigated deeper to the reservoir due to strong imbibition enhanced by osmosis during
the extended shut-in. However, more evidence is required to establish a more accurate
relationship between osmosis-associated imbibition and water recovery and production.

Therefore, the findings through further investigation between osmosis-associated
imbibition and permeability change, water recovery, and production will be beneficial for
the hydraulic fracturing design and reservoir management, such that the injection amount
and fluid types of fracturing treatment and the shut-in time and flowback rate can be
specially designed to minimize the water blockage effect but maximize natural fracture
reactivations and well production performance.

6. Conclusions

Osmosis-associated imbibition has strong effects on fluid flow in porous mediums in
unconventional formations. Those effects are important to be related to production after
hydraulic fracturing and during the water-flooding process. Wettability and clay content
are the main factors in the imbibition behavior of unconventional formations. Wettability
can impact capillary pressure, which is one of the driving forces of imbibition. Clay content
has a strong relationship with osmotic pressure. Therefore, understanding those factors
can distinguish the dominant mechanism of fluid flow in unconventional reservoirs.

Although imbibition has been extensively studied in formations, it is necessary to
further investigate its impact in unconventional formations, especially after hydraulic
fracturing treatment. The effect of osmosis on imbibition was neglected before; however,
more evidence has shown that osmosis has a significant impact on the fluid flow in clay-
rich formations, such as shale. Thus, more experimental investigations are necessary to
prove its effect, such as high-pressure and high-temperature reservoir conditions with tight
pore space. From these further investigations, some insights can be drawn, such as how
osmosis-associated imbibition affects the production, and how to manage and control it.

In addition, the numerical modeling for a multi-mechanistic imbibition process has
shed some light on the interplay of multiple forces during the imbibition process, especially
the changes between capillary pressure and osmotic pressure. The simulation results
matched the experimental measurements and field observations, such as the dynamic
changes in salt concentration in laboratory and low flow-back recovery in the field. How-
ever, further investigations are recommended for simulations under reservoir conditions to
match the actual production data with proper upscaling from laboratory-based modeling.
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