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Abstract: As the most abundant element in the world, hydrogen is a promising energy carrier and
has received continuously growing attention in the last couple of decades. At the very moment,
hydrogen fuel is imagined as the part of a sustainable and eco-friendly energy system, the “hydrogen
grand challenge”. Among the large number of storage solutions, solid-state hydrogen storage is
considered to be the safest and most efficient route for on-board applications via fuel cell devices.
Notwithstanding the various advantages, storing hydrogen in a lightweight and compact form
still presents a barrier towards the wide-spread commercialization of hydrogen technology. In this
review paper we summarize the latest findings on solid-state storage solutions of different non-
equilibrium systems which have been synthesized by mechanical routes based on severe plastic
deformation. Among these deformation techniques, high-pressure torsion is proved to be a proficient
method due to the extremely high applied shear strain that develops in bulk nanocrystalline and
amorphous materials.
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1. Introduction

With the continuously increasing energy demand of the world, several problems
associated with energy production have become more and more important [1,2]. Currently
the vast majority of the energy we use is produced from non-renewable energy sources like
coal, oil and natural gas [3,4]. The supply of these sources will inevitably deplete in the near
future [1,4,5] and their usage poses environmental issues, thus finding suitable alternatives
is highly desirable. Unfortunately, a number of renewable energy sources (like wind or
solar) are ill suited to deliver a continuous supply of energy which would be essential for
(at least partly) replacing the existing (non-renewable) production methods. Renewable
energy requires efficient storage, transportation and conversion into the energy form that
is useful for the actual demand [6]. Consequently, energy storage technologies have to be
developed to ensure the competitiveness and large-scale usability of renewable energy.

Hydrogen-based energy storage is one promising technology that uses hydrogen as
an energy vector [1,7]. Its potential lies in some advantageous features of hydrogen like
high energy density per mass unit (120–140 MJ/kg), high abundance, and the absence
of harmful byproducts during its conversion in fuel cells [1,2,4,8,9]. Unfortunately, as
hydrogen is a low-density gas at normal temperatures and pressures, its storage is difficult
and this remains one of the major issues in the way of applications [10]. Apart from
the traditional gas and liquid phase storage, hydrogen can be stored in the solid state,
for example in the form of metal hydrides which offer significantly higher volumetric
hydrogen densities [2,4,10,11]. Despite the extensive research in the past couple of decades,
no material can simultaneously satisfy the performance requirements for hydrogen storage
systems set up by the US Department of Energy (DOE) at present [12].

Nevertheless, notable progress has been made so far, for example, various catalysts,
nanostructuring and different synthesis techniques have been developed and extensively
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used in order to improve the hydrogen storage properties of different solids [13–17]. In
particular, creating nanostructured materials has received much attention in the past
decades with the aim of increasing the active surface area and enhancing the diffusion of
hydrogen in the material. High energy ball milling (HEBM) of powders has been frequently
used to decrease the grain size to the nano-regime and to create different composites and
alloys [14,16–19]. Notwithstanding the significant benefits, HEBM has some weaknesses
in processing nanoscale hydrogen storage alloys, including the problem of scaling-up to
the industrial level, exhaustive energy consumption, high production cost and potential
fire risk. To address these issues, bulk processing techniques [20] based on severe plastic
deformation (SPD) have recently been applied very intensively to obtain hydrogen storage
materials with enhanced properties [14,16,21,22]. It was shown that the refinement of
grain structure, the formation of high-angle grain boundaries and various lattice defects
occurring during the SPD process have beneficial effects on the hydrogen sorption kinetics
of the material [14,21,22]. The prospect of relatively simple and low cost manufacturing of
bulk samples with better air resistance compared to powders makes these SPD techniques a
promising supplement to the ball milling process. High-pressure torsion (HPT), the subject
of the current review, is one of the severe plastic deformation methods which has been
applied successfully to manufacture different hydrogen storage materials [23].

In this overview paper, we first describe the details of the HPT process, including mod-
els that estimate the temperature conditions in the highly deformed disk-shaped specimens
(Section 2). As one of the most abundant solid-state hydrogen storage materials, Mg-based
systems will be highlighted in Section 3, including the latest findings on nanocrystalline
Mg/MgH2, Mg-Ni, other Mg-based systems, and nanotube-catalyzed Mg processed by
HEBM and HPT. In Section 4, several non-equilibrium Mg-(Ni,Cu)-(Y,Ce) glassy, partial
amorphous, and crystalline alloys will be discussed with respect to their H-storage perfor-
mance. High-pressure torsion can significantly improve the sorption properties of other
(mainly Ti-based) nanocrystalline systems as highlighted in Section 5. In the last part of the
manuscript (Section 6), the improvement of H-production by HPT will be summarized.

2. The High-Pressure Torsion Procedure

Among the several SPD methods, HPT has received intensive attention in the last
couple of decades due to the extremely high applied shear strain that can be achieved in
bulky sample volumes [20]. As was highlighted by Edalati and Horita, the HPT technique
was originally invented in 1935 by Bridgman [24].

During the HPT deformation technique, a cylindrical specimen (disk) is inserted
between two stainless steel anvils and subjected to simultaneous uniaxial pressure of
several GPa and concurrent torsional straining for N number of whole turns [25,26]. The
accumulated shear strain along the radius of the disk can be represented by

γ =
2π Nr

L
(1)

where r and L are the distance from the rotation axis within the sample and the thickness
of the disk, respectively [20,25]. Typical values achieved at the edge can be as high as
γ~70–100. At very high strains, the corresponding accumulated strain can be given as [24]

ε ≈ ln
(

θ r
L

)
= ln

(
2πN r

L

)
(2)

where θ is the angle of torsion.
In most cases, an HPT apparatus operates in constrained geometry without free

surfaces, see the schematic illustration in Figure 1. In the case of a conventional HPT-
device, r varies in the range of 3 to 10 mm, while L~1 mm, which means that the volume of
an HPT-disk is about 100 mm3 and its mass is in the order of hundreds of milligrams. It
is noted that a unique apparatus located at the Erich Schmid Institute (Leoben, Austria)
enables a significant scaling-up, since r can exceed 5 cm. It is noted that the highly
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inhomogeneous and anisotropic nature of the HPT deformation (see Equations (1) and (2))
was also supported by the finite element method [25].

Originally, this SPD method was applied to synthesize porosity-free bulk ultrafine-
grained materials with submicron crystallite size [20,24,26–29], nevertheless, it has recently
become a dominant technique to produce low-porosity metallic glass compacts from
amorphous ribbon chips [30,31] and reach large plastic strains in bulk metallic glass alloys
(BMGs) [32–34]. In a novel paper, it was reviewed that HPT can induce significant plasticity
in metallic glasses [35], while nanocrystallization of these alloys can also take place [36].
When HPT is applied to immiscible systems for extreme torsion numbers (N = 1500),
new metastable phases can form by mixing the elements on the atomic scale [37]. These
materials exhibit unpredictable hardness and tensile performance. Moreover, metastable
phases and compounds beyond the equilibrium phase diagrams can also be designed [38].

It is an important issue whether the heat release during the heavy shear deformation
results in any temperature rise in the specimen. It was recently found that the actual
increase of the temperature measured directly by a thermocouple on pure metals is re-
markably small [39], however, it is higher for harder materials and can reach ∆T = 80 K, in
accordance with finite element simulations [40]. For all materials, ∆T is more pronounced
with increasing the angular velocity of the apparatus. A free-volume-based simulation
of high-pressure torsion of BMGs provides a simple relationship between the measured
torque data and the temperature evolution and confirms a significant temperature rise
in these materials as well [41]. A macroscopic thermoplastic model incorporating the
numerical solution of the heat-conduction equation provides the time evolution and spatial
distribution of temperature during the HPT procedure [42,43]. It was shown that small sam-
ple thickness and/or high deformation rate enables a drastic temperature rise (∆T~300 K),
however, in other cases only a small increase is predicted in line with previous data.

A recent modification of the HPT method, continuous high-pressure torsion has
significant merit, i.e., a saturated level of hardness and minimum grain size are reached in
relatively short time [44]. It was demonstrated that a possible scaling up of HPT is feasible
if the ring shape sample is subjected to the severe plastic deformation [45].

Energies 2021, 14, x FOR PEER REVIEW 4 of 23 
 

 

 
Figure 1. Schematic representation of the HPT apparatus with the uniaxial compression (I) and 
subsequent simultaneous compression and torsion (II) stages [46]. 

3. Nanostructured Mg-Based Hydrogen Storage Systems 
3.1. Elemental Mg and MgH2 

As was described in the Introduction part of this Review, solid-state hydrogen stor-
age is still a significant technological challenge, nevertheless, numerous promising efforts 
have been occurred so far. Among metallic elements, magnesium attracts the highest in-
terest in the field of solid-state hydrogen storage due to its very high theoretical gravimet-
ric capacity (7.6 wt.%). It was found that at temperatures and hydrogen partial pressures 
of practical interest of H-storage, the α-MgH2 tetragonal rutile structure is stable and stoi-
chiometric (see Figure 2), in accordance with the small H-vacancy concentration [47]. 

Magnesium has several other advantages, i.e., it is lightweight, non-toxic, abundant 
and cheap [8,15,48]. On the other hand, the very high formation enthalpy (ΔH = −78 
kJ/mol) of the MgH2 phase (i.e., the high strength of the Mg‒H bonds), the high activation 
energy of H2 dissociation, and the sluggish sorption kinetics are the major drawbacks of 
on-board commercialization of MgH2 [15]. In order to overcome these difficulties, it is 
important to develop the kinetic and thermodynamic performance of Mg-based systems 
simultaneously. Until now, a large number of attempts have been targeted to deal with 
these issues, including nanostructuring by HEBM [49–51], which can significantly en-
hance the hydrogenation kinetics, particularly the diffusion of hydrogen due to the abun-
dant grain boundaries and lattice defects [16,52,53]. Due to the different coordination 
number of the Mg and H atoms in the grain boundary region, the surface morphology 
usually can affect both the kinetic and thermodynamic performance of the Mg-nanoparti-
cles [54]. The advantage of HEBM is not only manifested in rapid crystallite-size decrease, 
but the generation of metastable orthorhombic γ-MgH2 phase results in the decrease of 
the hydrogen sorption temperature [55]. 

Figure 1. Schematic representation of the HPT apparatus with the uniaxial compression (I) and
subsequent simultaneous compression and torsion (II) stages [46].



Energies 2021, 14, 819 4 of 22

3. Nanostructured Mg-Based Hydrogen Storage Systems
3.1. Elemental Mg and MgH2

As was described in the Introduction part of this Review, solid-state hydrogen storage
is still a significant technological challenge, nevertheless, numerous promising efforts have
been occurred so far. Among metallic elements, magnesium attracts the highest interest in
the field of solid-state hydrogen storage due to its very high theoretical gravimetric capacity
(7.6 wt.%). It was found that at temperatures and hydrogen partial pressures of practical
interest of H-storage, the α-MgH2 tetragonal rutile structure is stable and stoichiometric
(see Figure 2), in accordance with the small H-vacancy concentration [47].

Magnesium has several other advantages, i.e., it is lightweight, non-toxic, abundant
and cheap [8,15,48]. On the other hand, the very high formation enthalpy (∆H =−78 kJ/mol)
of the MgH2 phase (i.e., the high strength of the Mg-H bonds), the high activation energy
of H2 dissociation, and the sluggish sorption kinetics are the major drawbacks of on-board
commercialization of MgH2 [15]. In order to overcome these difficulties, it is important to
develop the kinetic and thermodynamic performance of Mg-based systems simultaneously.
Until now, a large number of attempts have been targeted to deal with these issues, includ-
ing nanostructuring by HEBM [49–51], which can significantly enhance the hydrogenation
kinetics, particularly the diffusion of hydrogen due to the abundant grain boundaries
and lattice defects [16,52,53]. Due to the different coordination number of the Mg and H
atoms in the grain boundary region, the surface morphology usually can affect both the
kinetic and thermodynamic performance of the Mg-nanoparticles [54]. The advantage
of HEBM is not only manifested in rapid crystallite-size decrease, but the generation of
metastable orthorhombic γ-MgH2 phase results in the decrease of the hydrogen sorption
temperature [55].
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Figure 2. Tetragonal crystalline lattice of the rutile-type α-MgH2 phase.

The microstructural characterization of consolidated MgH2 powders revealed that
significant grain refinement of the hydride phase takes place during the HPT deformation
with the average crystallite size in the range of 20 nm [56]. The severe shear deformation
also provokes a strong (002) texture and the formation of the metastable γ-MgH2 phase.
When HPT is applied for a different number of whole revolutions under p = 6 GPa to
deform compacted α-MgH2 micropowders, the material starts to transform into nanocrys-
talline high-pressure γ phase [57]. As presented by the TEM micrographs in Figure 3,
the shear strain leads to a significant crystallite size reduction after N = 15 whole turns
(~70 nm), while the selected area diffraction (SAED) patterns and the corresponding fast
Fourier transform (FFT) diffractograms confirm the gradual formation of the high pressure
phase. This phase exhibits a lower hydrogen binding energy and accordingly a lower
dehydrogenation temperature (T~610 K). This study pointed out that varying the crys-
tal structure is an efficient approach to destabilize the hydrides without compositional
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changes [57]. In a recent comparative research, H-sorption behavior was analyzed on two
different types of HPT consolidated Mg powder precursors. The results showed that the
nature of the initial powders has a pronounced effect, i.e., the compacts prepared from
ultrafine powder obeys faster absorption kinetics than the consolidated product obtained
from micro-sized atomized powder [58]. Nevertheless, the latter sample can absorb more
hydrogen and exhibits enhanced desorption.
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Figure 3. TEM images and corresponding SAED patterns (left) together with high-resolution lat-
tice images and corresponding FFT diffractograms (right) for (a) tetragonal α-MgH2 powder, disk
processed by HPT under p = 6 GPa for (b) N = 1 and (c) N = 15 whole turns [57].

When pure bulk Mg is torqued by HPT, a bimodal microstructure develops, including
nanocrystals and large recrystallized grains with an average grain size of ~1 µm. After
N = 10 torsion numbers, the hydrogenation improves significantly and the absorption rate
is increased [59]. This phenomenon is mainly attributed to the presence of high-angle grain
boundaries. The average dislocation density obtained from X-ray line profile analysis of
commercial Mg disks processed by HPT reaches a very large value (ρ = 8·1015 m−2) at
N = 10, referring to the extreme intensity of shear deformation. The hydrogen storage
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capacity increases with increasing N due to the formation of dislocations, which can
act as hydrogen absorption sites [60]. The hydrogen storage capacity was found to be
stable up to 200 hydrogenation/dehydrogenation cycles for the ZK60 Mg-alloy (Mg-5.8Zn-
0.57Zr, element concentration in wt.%) processed by HPT [61]. At the same time, both the
absorption and desorption curves can satisfactorily be fitted by the Johnson-Mehl-Avrami
function with an exponent n = 1 for all investigated cycling numbers (see Figure 4), which
can be attributed to the high density of hydride nuclei hindering each other to grow.

Energies 2021, 14, x FOR PEER REVIEW 7 of 23 
 

 

 
Figure 4. Dehydrogenation (top) and hydrogenation kinetic curves (bottom) obtained at 350 °C, 10 
bar absorption pressure, 0.001 bar desorption pressure of the HPT-deformed ZK60 alloy [61]. 

3.2. Mg-Ni System 
Alloying Ni to Mg by HEBM results in an excellent combination of advantageous 

thermodynamics [62] and improved hydrogen sorption by accelerating the recombina-
tion/dissociation of hydrogen atoms at the grain boundaries [63,64]. Based on the binary 
Mg-Ni phase diagram, the two elements are mutually insoluble [65], while two interme-
tallic line compounds, i.e., Mg2Ni and MgNi2 exist, nonetheless only Mg2Ni reacts with 
hydrogen with a 3.62 wt.% gravimetric capacity [66]. Moreover, a remarkable reduction 
of hydrogen desorption temperature was obtained when MgH2 was catalyzed by Ni 
[67,68]. By varying HEBM parameters and the composition of the Mg-Ni powder blend, 
either a Mg + Ni → Mg2Ni mechanochemical reaction [69–71] or (partial) solid state amor-
phization can take place [72]. 

In pioneering research carried out on the HPT deformation of the Mg-Ni system, it 
was demonstrated that the extreme shear deformation can reach such levels that it is ca-
pable to provoke hydrogen absorption in the otherwise non-absorbing MgNi2 phase [73]. 
In recent work, it was demonstrated that the maximum H-absorption capacity of a 
Mg70Ni30 alloy is increased by 30–50% after HPT with respect to HEBM and can reach the 
theoretical value, due to the creation of new possible hydrogen absorption sites at the 

Figure 4. Dehydrogenation (top) and hydrogenation kinetic curves (bottom) obtained at 350 ◦C,
10 bar absorption pressure, 0.001 bar desorption pressure of the HPT-deformed ZK60 alloy [61].

3.2. Mg-Ni System

Alloying Ni to Mg by HEBM results in an excellent combination of advantageous
thermodynamics [62] and improved hydrogen sorption by accelerating the recombina-
tion/dissociation of hydrogen atoms at the grain boundaries [63,64]. Based on the binary
Mg-Ni phase diagram, the two elements are mutually insoluble [65], while two intermetal-
lic line compounds, i.e., Mg2Ni and MgNi2 exist, nonetheless only Mg2Ni reacts with
hydrogen with a 3.62 wt.% gravimetric capacity [66]. Moreover, a remarkable reduction of
hydrogen desorption temperature was obtained when MgH2 was catalyzed by Ni [67,68].
By varying HEBM parameters and the composition of the Mg-Ni powder blend, either a
Mg + Ni→Mg2Ni mechanochemical reaction [69–71] or (partial) solid state amorphization
can take place [72].
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In pioneering research carried out on the HPT deformation of the Mg-Ni system, it was
demonstrated that the extreme shear deformation can reach such levels that it is capable to
provoke hydrogen absorption in the otherwise non-absorbing MgNi2 phase [73]. In recent
work, it was demonstrated that the maximum H-absorption capacity of a Mg70Ni30 alloy is
increased by 30–50% after HPT with respect to HEBM and can reach the theoretical value,
due to the creation of new possible hydrogen absorption sites at the grain boundaries
and near the vicinity of dislocations generated during the simultaneous compression and
torsional straining [74]. Besides dislocations, other lattice defects, like stacking faults clearly
improve the kinetics of Mg2Ni processed by HPT [75]. It was also suggested that a large
fraction of cracks can act as pathways to transport the hydrogen from the surface of the
HPT disk and activate the material with fast kinetics. A new processing route, i.e., HPT
of ultrafine Mg + 2wt.% Ni powder prepared by arc plasma evaporation significantly
improves the H-kinetics and results in a hydrogen uptake at 100 ◦C [76]. Interestingly,
the co-deformation of 2 wt.% Fe to Mg by HPT has a negligible effect on the H-storage
performance of Mg, probably because ultrafine Fe powder particles did not intermix
with Mg.

Partially hydrogenated and dehydrogenated states of a nanocrystalline Mg75Ni25
sample processed by HEBM and subsequent HPT technique revealed the formation of
Mg2NiH0.3 hexagonal solid solution and the monoclinic Mg2NiH4 hydride phase during
absorption [77]. The desorption induced changes in the relative amount of the two hy-
dride phases indicated that the volumetric decrease of Mg2NiH4 and.Mg2NiH0.3 is not
simultaneous, i.e., at the initial stage of dehydrogenation, the decomposition of Mg2NiH4
is favored, while subsequently, the Mg2NiH0.3 →Mg2Ni + 0.3H2 reaction becomes more
dominant (see Figure 5). It was also shown that the combination of HEBM and HPT is an
effective deformation route to preserve the nanostructure of the alloy during the entire
hydrogenation-dehydrogenation process. Complimentary high-pressure calorimetry con-
firmed a two-step sorption sequence both upon heating and cooling [78]. At the early stage
of decomposition, the desorption of Mg2NiH4 occurs which is followed by the dehydro-
genation of Mg2NiH0.3 solid solution. The enthalpy of hydrogenation/dehydrogenation
reactions determined from the corresponding van’t Hoff plots suggests that HPT promotes
the destabilization of the metal-hydrogen bonds.
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3.3. Formation of New Hydrogen Storage Phases by HPT in Other Mg-Based Systems

The large plastic strain accompanying the high-pressure torsion procedure not only
results in the reduction of the grain size and introduction of lattice defects but also new
stable and even metastable phases can form in certain systems [37]. Accordingly, Mg2Sn
and Mg2Ni intermetallics have formed after N = 100 rotations in Mg-V-Sn and Mg-V-Ni
systems, respectively. Further increasing the number of revolutions results in the evolution
of metastable phases in the Mg-V-Pd [37] alloy. It is noted that the corresponding binary
systems have negative (Mg-Pd [79] and Pd-V) and positive mixing enthalpies (Mg-V [37])
as well. It was also revealed that metastable phases can develop even in immiscible systems
with positive heat of mixing such as Mg-Ti [80] and Mg-Zr [81].The ultra-severe plastic
deformation can extend the solubility of the minor components, thus new hydrogen storing
materials can be manufactured. For example, in the Mg-Zr system N = 1000 revolutions
results in significant mixing of Mg and Zr (see Figure 6). Mutual dissolution of elements in
the Mg-Ti [81] and Mg-Zr [79] systems were observed by scanning electron microscopy,
whilst the formation of BCC, FCC and HCP Mg-Ti [81] and HCP Mg-Zr phases [79] were
confirmed by X-ray diffraction. Furthermore, during shear straining of MgH2-TiH2 mixture
metastable ternary Mg-Ti-H hydride phase develops [82].
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A first principle calculation to design Mg-based alloys with low binding energy was
recently reported [83]. Accordingly, a Mg4NiPd alloy of CsCl-type BCC structure has
been fabricated by HPT through N = 1500 revolutions. This alloy is highly metastable,
preserves its structure up to 440 K and possesses an extremely low (close to zero) hydrogen
binding energy which enables reversible absorption and desorption of hydrogen at room
temperature. At the same time, the reversible storage performance remains stable after
five sorption cycles. This pioneering work of Edalati et al. demonstrated first that tuning
the dehydrogenation temperature of Mg-based alloys to room temperature is possible by
applying binding energy principles. As a continuation of this concept, a metastable FCC
structure was also generated by HPT in the Mg-Hf binary system, however, attempts to
produce magnesium-hafnium hydrides have been unsuccessful so far [84].

A recent paper has demonstrated that high-pressure torsion can be utilized for the
synthesis of high-entropy materials for hydrogen storage [85]. MgVCr BCC and MgVTiCrFe
high-entropy alloys were successfully synthesized via the combination of HEBM and HPT.
The structure of the MgVTiCrFe product exhibits nanocrystalline and amorphous character.
Nevertheless, it was shown that the MgVCr possesses higher hydrogen storage capacity,
better kinetics and phase stability compared to the MgVTiCrFe alloy.

3.4. Nanocrystalline Mg Catalyzed by Nanotube Additives

Several recent researches have been dedicated to the addition of carbon nanotubes
(CNT) to nanocrystalline hydrogen storage materials to improve the kinetic behavior during
absorption and desorption. It was demonstrated that only a few wt.% of CNT results in
greatly enhanced kinetics of sorption reactions in Mg-Ni alloys [86,87]. CNT catalyzed
Mg was able to absorb approximately 1.5 times more hydrogen than its uncatalyzed
counterpart during the first couple of minutes of hydrogenation [88]. Based on these works,
it is believed that the role of the carbon nanotubes in absorption/desorption reactions is to
provide fast diffusion channels for the hydrogen atoms through a surface passivation layer
into the bulk material [86,89]. Apart from the kinetic improvements, it was also proved that
CNT addition is an efficient way to improve the long-term cycling stability of MgH2 [90,91].
It was indicated that a synergetic effect may emerge between CNTs and other types of
catalysts, such as Co [92], TiF3 [90], or Nb2O5 [93].

In a recent research, the influence of the different deformation routes on the microstruc-
tural evolution and hydrogen storage behavior of nanocrystalline Mg catalyzed by Nb2O5
and/or CNT have been demonstrated [94]. The systematic kinetic analysis of the hydrogen
sorption of Mg catalyzed by these additives is presented in Figure 7 [94]. As seen, the addi-
tion of Nb2O5 is important to achieve appropriate hydrogen sorption properties, however,
it is also evident that the combination of the HEBM+HPT process or the addition of CNT
catalyst can further improve the desorption kinetics of nanocrystalline Mg. The observed
improvement was appropriated to the (002) texture (which is preserved during cycling)
developed through the HPT procedure. Post-cycling XRD experiments demonstrated that
the HPT processing or the CNT additive prevents excessive grain growth during cycling. A
high resolution TEM image of the Mg-NbO-CNT disks confirms that the main portion of the
CNTs is preserved during the extreme plastic deformation of HEBM, subsequent HPT, and
hydrogenation/dehydrogenation cycling (see Figure 7) [94]. It was also shown that HEBM
parameters also significantly affect the sorption performance of the final Mg-NbO-CNT
HPT samples [95].
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powder samples and HPT-disks, with fitted model functions (top). HR-TEM image of the cycled
Mg-NbO-CNT_HPT disk, the inset shows a typical SAED pattern (bottom) [94].

In a very recent paper, we have shown that the combined catalytic effect of metal-oxide
particles and CNTs can be replaced by applying only titanate nanotubes (TN) [96], note that
this research is still in progress. In this preliminary work, the HEBM+HPT deformation
route was applied on nanocrystalline Mg powders catalyzed by TN. As was shown the
HPT processing results in the decrease of the average crystallite size of HEBM Mg powders
and at the same time a strong texture was also developed. In addition, the processing
route considerably influences the H-sorption kinetics, i.e., the hydrogenation performance
(capacity and kinetics) of the composite produced for longer co-milling of TN together with
Mg significantly exceeds the sorption properties of the specimen when Mg was pre-milled
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and then milled together with TN for a short time. This observation can be attributed to
the different morphology of the additives (better dispersed and partially damaged TN
sections) and less to the microstructural parameters of the nanocrystalline Mg phase.

4. Hydrogen Storage in the Non-Equilibrium Mg-(Ni-Cu)-(Y-Ce) System

Besides severe plastic deformation techniques (HEBM and HPT), alternative methods
via rapid quenching, such as melt spinning and copper mould casting are also available
to produce H-storage magnesium and magnesium-nickel based alloys. The as-quenched
non-equilibrium alloy can either contain several fully crystalline phases [97–99], a super-
saturated solid solution [100], partial amorphous structure [101], or monolithic amorphous
glassy phase [102–104].

It was reported that the Mg-Ni-Ce system exhibits a hydrogen induced glass-to-glass
transition with a storage capacity of 5 wt.% H2, which value is significantly higher than
it was obtained for the crystalline alloy with similar composition, owing to the disor-
dered atomic structure and free volume of the glass [105]. The hydriding/dehydriding
performance of an as-quenched Mg-Ni-Y alloy synthesized by rapid-quenching is compa-
rable to that of nanocrystalline Mg2Ni obtained by ball-milling [106]. It was also found
that the amorphous Mg87Ni12Y1 alloy exhibits faster hydrogenation kinetics than the par-
tially or fully crystallized alloys, due to the faster hydrogen diffusion in the amorphous
phase, nevertheless, the H-capacity is practically independent of the atomic structure [106].
Melt-spun magnesium rich partially crystalline Mg80Ni10Y10 alloy possesses excellent
hydrogenation/dehydrogenation properties after several thermal activation cycles [107],
while supersaturated Mg12YNi solid solution shows fast kinetics of hydrogen absorp-
tion/desorption due to the catalytic effect of Mg2Ni and Y [100]. In the rapidly quenched
Mg-Ni-Mm (Mm=Ce, La) system the precipitation of the Mg12Mm intermetallic phase
preferentially occurs at the Mg grain boundaries providing pathways for enhanced hy-
drogen diffusion [108]. In order to further improve the sorption behaviour of as-spun
nanocrystalline Mg-Ni-based alloys, Ni was partially substituted by Cu [99] or Co [109].
As was demonstrated, the applied melt spinning rate has a significant influence on the
sorption properties of these alloys [108,110]. The enhanced H-storage performance of the
amorphous ternary Mg86N4Y10 glass can be attributed to the cracking and pulverization of
the alloy pieces when a MgH2 matrix with finely dispersed MgNiH4 and YH3 grains evolve
during the absorption process [111]. Hydrogenation of a rapidly quenched Mg-Ni-Mm
alloy resulted in the formation of a metastable cubic Mg2NiH4 phase and the disappear-
ance of the usual monolithic counterpart. This tendency becomes more pronounced with
increasing the spinning velocity, in accordance with the increased mechanical stresses
developed in the ribbon pieces [112]. A complex transformation behaviour during hy-
drogen absorption/desorption was explored by in-situ X-ray synchrotron radiation of
the Mg-Ni-La system, including a previously non-reported early stage formation of a
La2Mg17H~1.0 solid solution [113]. Detailed thermal characterization of a Mg54Cu28Ag7Y11
BMG revealed that this composition has an excellent glass forming ability [114]. High
pressure hydrogen-sorption experiments pointed out that the as-cast fully amorphous alloy
exhibits the largest enthalpy of desorption, compared to the partially and fully crystallized
states having similar concentrations. Since the fully crystallized sample does not desorb
hydrogen at all, it can be assumed that the disordered local atomic structure of the glass is
accountant for the hydrogen release [114].

The hydrogenation performance of BMGs and other glassy alloys can significantly
be improved when the material is subjected to severe plastic deformation by HPT. A
novel Mg65Ni20Cu5Ce10 nanoglass synthesized by rapid-quenching and subsequent tor-
sional straining exhibits a reduced hydrogenation temperature and improved H-sorption
kinetics [115]. These enhancements can be attributed to the interfaces between the nano-
glass regions that are developed during the HPT-process which can serve as abundant
pathways for fast hydrogenation.
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High magnification SEM-FIB images taken from the inner surface of the ion-milled
notches of the Mg65Ni20Cu5Y10 fully amorphous alloy deformed by HPT are presented in
Figure 8 [116]. The photograph corresponding to the central region of the disk (where the
deformation is the smallest, see Equation (1)) presents a couple of larger crystalline regions
(typical diameter ~1 µm) embedded in the contrastless amorphous matrix (Figure 8a).
EDX analysis of this area revealed that the composition of these blocks is very close to
Mg2Ni. Contrarily, the most strained periphery regions show a very different morphology
characterized by plenty of crystals ranging from 30 to 500 nm (Figure 8b).

High-pressure calorimetric measurements corresponding to the reference Mg65Ni20Cu5Y10
crystalline alloy, the fully amorphous as-quenched ribbon and the HPT-disk processed
for N = 2 whole revolutions are depicted in Figure 9 [117]. A clear exothermic peak
with a maximum at Tabs = 537 K characterizes the thermogram of the crystallized sample
containing multiple compound phases (Mg2Ni, Mg6Ni, Mg2Cu, Mg, Ni, Mg24Y5). This
exothermic heat contribution can be assigned to the formation of a hydrogen solid solution
mainly into the Mg2Ni phase. A broader H-absorption peak with comparable enthalpy
release characterizes the measurement of the fully amorphous structure, however, this
transformation occurs at Tabs~390 K, i.e., well below the glass transition temperature. The
observed decrease of Tabs can be correlated with the specific structural features of the
amorphous phase, such as lower excess free volume and atomic density [118], which can
result in faster diffusion of H-atoms and shorter diffusion distances. When the as-quenched
amorphous material is subjected to intensive straining by HPT, the hydrogenation takes
place in the 310–420 K temperature range, similarly to the original alloy. At the same
time, the enthalpy of hydride formation increases substantially, which is in line with the
nucleation of deformation induced Mg2Ni crystals (see Figure 8), indicating that severe
plastic deformation by HPT can provide additional hydrogen-sites and increase the storage
performance of the material. This phenomenon is more pronounced for the most deformed
(perimeter) region of the disk.
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5. Non-Magnesium-Based Materials

TiFe intermetallic alloy is a potential candidate for hydrogen storage in stationary
applications mostly due to its high volumetric capacity, low (de)hydrogenation temper-
ature, reversibility and relatively low price [119,120]. Unfortunately, surface oxidation is
a severe problem of this material which practically prevents the absorption of hydrogen.
Hence an activation procedure is necessary which normally requires exposure to hydrogen
(several MPa) at high temperature (~673 K) [119,121]. It was also shown that the already
activated TiFe easily deactivates if exposed to air [119]. Recently, the possibility of other
activation routes was investigated using severe plastic deformation methods. Mechanical
activation of TiFe via HPT [120], groove rolling [122], forging [123] and ball milling [124]
were presented. Significant improvement in the room temperature hydrogen absorption
was observed after HPT processing [120,122]. The material was capable to absorb 1.7 wt.%
of hydrogen without any high temperature activation procedure (see Figure 10). It was also
shown that the sample deformed by high-pressure torsion was able to absorb hydrogen
even after several hundred days of storage in air, thus HPT not only activates TiFe but
also prevents its deactivation upon air exposure [121]. Since the torsion process gener-
ates large number of grain boundaries, lattice defects and also cracks in the material, the
atomic diffusion considerably enhances. These microstructural features act as pathways
to hydrogen atoms through the surface oxide layer [120,122]. The refined structure is also
responsible for keeping the sample activated upon contact with oxygen and permeable to
hydrogen [121].
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The importance of the grain size and consequently the fraction of grain boundaries
were demonstrated in ref. [122], where it was shown that the TiFe sample processed by HPT
containing nanograins possessed better sorption capability than the groove rolled one with
a mixture of micrometer sized and submicrometer sized grains [122]. It was also pointed
out that after HPT processing Fe-rich islands form on the surface of the sample, according
to the authors these may act as catalysts for hydrogen dissociation (see Figure 11) [121].
Another investigation on Ti-Fe-Mn intermetallics processed by HPT was demonstrated
that the severe shear deformation not only creates lattice defects and grain boundaries but
partial amorphization occurs as well. The amorphous regions can serve as channels for
fast hydrogen diffusion, thus the heterogeneous microstructure consisting nanograins and
amorphous areas is believed to be the reason for the observed fast hydrogenation [125].
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In addition to the improvements of hydrogen sorption properties of TiFe by HPT, a
very recent paper has demonstrated that TiFe alloy can even be produced via HPT from Ti
and Fe powders [126].
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Another interesting Ti-based hydrogen storing system is the Ti-V alloy, which is able
to reversibly store 2 wt.% of hydrogen at room temperature [127,128]. Similar to TiFe,
Ti-V-based alloys are also prone to surface passivation, thus an activation procedure is
necessary for the first hydrogenation cycle. Additionally, they present slow hydrogen
sorption kinetics [127]. Ti-V alloy was successfully synthesized at room temperature using
a high-pressure torsion apparatus by Edalati and coworkers [127]. Hydrogen absorption
at room temperature was observed without any high-temperature activation process. It
was pointed out that a large amount of lattice defects (mainly edge dislocations) and grain
boundaries not only accelerate the hydrogen diffusion but also enhance the nucleation and
growth of the hydride phase. Surprisingly, the high density of lattice defects can also have a
negative effect on the hydrogen desorption process, as was explored in the ternary Ti-V-Cr
system [128,129]. Different microstructure (gradient structure) generated by ultrasonic
surface mechanical attrition treatment has proved to be more suitable for activating and at
the same time preserving the reversibility of Ti-V-Cr alloys [128,129].

The importance of HPT-created microstructure, particularly grain boundaries, was
demonstrated in the case of pure Pd [130]. Hydrogen permeation tests have shown that the
diffusion of hydrogen becomes faster (enhancement of the diffusion coefficient by 25%) after
the torsional deformation, mostly at lower temperatures (below 473 K). The observed im-
provement was associated with the increment of the fraction of grain boundaries which act
as diffusion paths for hydrogen. It was also revealed that the high-angle grain boundaries
with random character (which are present in large number in the HPT-processed Pd) are
the most important feature in accelerating the hydrogen diffusion as grain boundaries with
lower energy may act as trapping sites [131]. Krystian et al. [132] have presented evidence
of the formation of superabundant vacancies and vacancy-hydrogen clusters in Pd-H sys-
tem after high-pressure torsion. The investigation indicated that these vacancy-hydrogen
clusters (as obstacles for dislocations) may increase the stability of the microstructure of
the material. Hongo et al. [133] have investigated the effect of hydrogen on the mechanical
behavior of Pd processed by HPT. The authors have reported hydrogen-induced softening
and plasticity in the ultrafine-grained sample as a result of hydrogen-enhanced localized
plasticity in contrary to the coarse-grained reference sample in which hydrogen-induced
embrittlement and hardening have occurred.
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6. Improvement of Hydrogen Production by HPT

Recently it was shown that the high-pressure torsion procedure can be used not
only to enhance the hydrogen storage properties of materials but can also improve the
hydrogen generation behavior of Al-based alloys and TiO2 as well. In Al-Sn and Al-Bi
systems, the severe shear strain results in refined microstructure and increased density
of Al-Sn and Al-Bi interfaces, respectively, which facilitate the hydrolysis reaction of Al
in water (see Figure 12) [134,135]. The homogenous distribution of alloying elements is
not only important for creating these interfaces but also to enhance pitting corrosion. As
was demonstrated in the case of Al-Sn-Zn alloys, the good mixing of Zn achieved through
HPT-processing can increase the hydrogen generation rate and yield by accelerating the
corrosion of the material [136]. Photocatalytic water splitting by TiO2 is another method
for hydrogen generation. During the HPT process of the oxide powder, a TiO2 (anatase)→
TiO2-II (orthorhombic) phase transformation takes place, resulting in a narrower bandgap,
which improves the hydrogen generation rate under visible light [137,138].
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7. Conclusions

In a sustainable energy future, hydrogen will enjoy a solid and pronounced position,
since it exhibits the largest energy density. However, one of the key challenges in the
hydrogen economy, the efficient and safe way of energy storage is yet to be solved. In spite
of the wide range of materials capable of storing hydrogen, kinetic, thermodynamic, or
reversibility issues hamper the application of these materials. In recent years considerable
efforts have been directed towards the investigation of different methods to improve the
hydrogen storage properties. As a result, numerous catalysts, new hydrogen storage
compounds, and processing techniques have been developed.

In the present paper, we reviewed the latest assessments of the on-going basic research
on the hydrogen storage performance of a broad group of non-equilibrium materials
processed by high-pressure torsion. In general, the torsion procedure is used to enhance
the absorption/desorption kinetics by means of grain refinement, the introduction of high-
angle grain boundaries, and texture as was demonstrated in the case of various crystalline
Mg-based materials. The severe shear strain can also affect the storage properties of



Energies 2021, 14, 819 17 of 22

amorphous alloys, notably lowering the hydrogen sorption temperature. Other hydrogen
storing materials, like different Ti-based alloys, can exhibit improved activation properties
and air resistance due to the high-pressure torsion process. HPT can even enhance the
hydrogen generation behavior (hydrolysis and photocatalytic water splitting) of different
systems. Aside from improving the properties of materials, new compounds and metastable
phases can also be manufactured via high-pressure torsion.

Nevertheless, further, improvement is still required prior to wide-spread applications,
which should incorporate additional research and development. The main goal in the next
years is to take steps towards the up-scaling and commercialization of these systems. The
proper combination of different deformation techniques can be used not only to fine tune
the microstructure of certain materials for better H-storage performance but also enables
the manufacture of larger material quantities.
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