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Supplementary material 
All the models used are described briefly in this supplementary chapter, where rele-

vant references that describe the models more comprehensive are cited. In addition, a 
short discussion of the different advantages and disadvantages between the statistical-
and the machine-learning approaches are discussed. Then, the case study for the house-
hold sector, which follows the same methodology as for the industry case are described. 
In the end, all the hyperparameter configurations used for predictions are given in chapter 
5.5 

1. Statistical models 
1.1. Autoregressive Integrated Moving Average (ARIMA) 

The formalism ARIMA (p,d,q) can be used to define a large class of statistical models. 
The parameter p indicates the order of the auto-regressive component, d represents the 
initial differencing of the time series, and q the order of the moving average component. 
The value of the parameters must be carefully selected to achieve high prediction accura-
cies [1]. The equations for forecasting with ARIMA (p,q,d) are constructed as:  p: order of the autoregressive term d: order of differentiation q: order of the moving average term 

 y = Y ,                                        d = 0 y = Y − Y ,                           d = 1 y = Y − 2Y + Y ,           d = 2  
where y  is the d  difference of Y, which gives that the second difference of Y as the 

first difference of the first difference, i.e. the time series has performed first order differ-
encing two times. This could be necessary if the time series are not stationary after per-
forming differencing one time. The general forecasting equation for ARIMA predictions 
are: 

y = μ + ϕ y + ⋯ + ϕ y − θ e − ⋯ θ e , 1) 
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Where θ is the moving average parameter, ϕ the slope coefficient, μ are the auto-
regressive constant and 𝑒 are the exponential smoothing coefficient.  

In order to determine the optimal order of the ARIMA model to be used, some sta-
tistical analyses and pre-processing are required. First, the autocorrelation function (ACF) 
and partial autocorrelation functions (PACF) are computed to get a better understanding 
of the data provided, and the ACF and PACF are interpreted to investigate whether the 
data is stationary or not. Stationarity in time series is when statistical properties such as 
the mean and the variance do not change over time during the observation period. When 
performing predictions with ARIMA models, the time series are required to be stationary. 
To check for stationarity, the ACF and PACF are plotted. If the plots show no correlations, 
the time series are stationary and ARIMA predictions could be performed. Finally, by in-
terpreting the ACF and PACF plots, the correct orders of the AR and MA components are 
identified.  

1.2. Prophet 
The prophet-forecasting model developed by [2], uses a decomposable time series 

model divided into three main components [3]. The components are: Trend (h(t)), season-
ality (s(t)) and holidays (h(t)). The trend function models non-periodic changes in the data 
and the seasonality represents periodic changes in the data (for instance daily, weekly or 
yearly seasonality). The holiday effect h(t) represent potentially irregular data over one or 
several days. The model components are added together as: y t) = g t) + s t) + h t) + ϵ , 2) 

Where ϵ  are the error term representing changes that are not captured by the model, 
and are assumed to be normally distributed [2]. The trend are divided into two trend 
models, a saturating piecewise growth model and a piecewise linear model. The piecewise 
logistic growth model are derived to handle trend changes in the growth rate by explicitly 
defining change points where the growth rate are allowed to change. If the trend shows 
no saturating growth, the model are selected as a piecewise constant rate of growth. The 
seasonality it the time series are fitted by specifying seasonality models that are periodic 
functions of time. To capture periodic effects, the seasonality component rely on Fourier 
transformation that allows identifying the main periodicities in the time series that explain 
the consumption pattern [4]. The final component in the prophet-forecasting model, the 
holidays, are incorporated by assigning a dataset 𝐷  that represent the set of past and fu-
ture dates for the each holiday i . An indicator function are added, which represent 
whether time t is during the holiday i, and assign each holiday the parameter κ , which 
represent the corresponding change in the forecast.  

When all the components are implemented in equation (2), the prophet-forecasting 
model in can be fitted to predict the specific task. All derivations of the different compo-
nents are provided in detail in [2]. 

2. Neural networks 
2.1. Elman Recurrent Neural Network (ERNN) 

The ERNN, also known as the Simple RNN, is usually considered as the most basic 
version of RNN [5]. The more advanced RNN architectures such as GRU and LSTM can 
be interpreted as an extension of ERNN. The ERNN was proposed by Jeffrey L. Elman [6], 
where the aim was to generalize neural networks for better handling data sequences like 
time-series. The effectiveness of the RNNs in handling time series comes from the ability 
of learning of an input sequence by means of a recurrent function [7]. The layers in an 
ERNN are divided into; input, hidden and output layers. The input and output layers are 
characterized by feedforward connections, while the hidden layer contain recurrent con-
nections. The specific ERNN processes one element of a sequence at time. At each 
timestamp t, the input layer process the information at 𝐱 t ∈ ℝ , where N  are the num-
ber of nodes in the input layer. The input time series x has a total length T.  In the input 
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layer, each component is summed with a bias vector 𝐛𝐢 ∈ ℝ  , where N  is the number of 
nodes in the hidden layer. Each component x[t] is then multiplied with a weight matrix 𝐖 ∈ ℝ  × . Similarly, the internal state 𝐡 t − 1 ∈ ℝ  from the recurrent time interval 
is summarized with a bias vector 𝐛𝐡 ∈ ℝ , before multiplied with the weigh matrix 𝐖 ∈ℝ ×  of the recurrent connections. Then, the transformed input and past network state 
are combined and processed by the neurons in the hidden layers. Finally, the output of 
the network at timestamp t, are: 𝐲 t = g 𝐖 𝐡 t + 𝐛𝐨) , 3) 

where the output are computed through the transformation 𝑔 ∙) on the matrix of the 
output weights 𝐖 ∈ ℝ ×  (𝑁  are number of nodes in the output layer). The output 
weights are applied to the sum of the current state h[t] and the bias vector 𝒃𝒐 ∈ ℝ  [5].  

2.2. Long Short-Term Memory (LSTM) 
The LSTM network are essentially build in a similar way as the ERNN architecture. 

The main difference between LSTM and ERNN is in the composition of the inner module, 
where the LSTM implements a more advanced internal processing unit, a cell [5,7].   

The LSTM network has the same output and input as the original ERNN. However, 
internally it implements a gated system that controls the neural information. The key fea-
ture of the gated networks, which makes the LSTM as a widely used neural network, is 
the ability to try to solve the vanishing gradient problem by not imposing any bias to-
wards recent observations. This provides the ability that the LSTM can maintain its inter-
nal memory unaltered for long time intervals [5,7].  

2.3. Gated Recurrent Units (GRU) 
The GRU networks are a simplified version of LSTM. The difference between GRU 

and LSTM network, is that in GRU, the forget and input gates are combined and merged 
into a single update. This controls how much each hidden unit can remember or forget. 
Therefore, the GRU network ends up having two gates compared to LSTM that has three 
gates [5,7]. Several works shows that GRUs can perform comparably to LSTM, but gener-
ally train faster due to lighter computation [8,9]. 

2.4. Convolutional Neural Network (CNN) 
CNNs are a class of neural networks designed to work with data that can be struc-

tured in a grid-like topology [7,10]. CNNs has been widely used for image recognition 
and classification, but are also suitable for forecasting univariate time-series. The CNNs 
are based on a discrete convolution operator, consisting of an input vector x, kernel w, 
and an output f. The convolution operator produces the output by sliding the kernel over 
the input vector. Each element in the output feature is obtained by summing up the result 
of the element-wise multiplication between the input patch and the kernel. The number 
of kernels used in the convolutional layer determines the depth of the output volume. In 
this study, the CNN are applied on a univariate energy demand time-series 𝐱 ∈ ℝ , with 
a one-dimensional kernel 𝐰 ∈ ℝ . The output feature of the 1D CNN is: 𝑓 i) = 𝐱 × 𝐰) 𝐢) = x i − j) w j), 4) 

where i represents the i  element of the convolution between x and w [7]. To better 
handle historical data, the original CNN are dilated to be able to learn long-term depend-
encies in the time-series. The dilated CNN proposed first time by the authors in [11], 
which named the dilated CNNs as Temporal Convolutional Network (TCN). In this study, 
three CNN layers are dilated by a dilation factor d, growing from d=1, d=2 and d=4. In 
each layer the kernel size is k=3.  

The output from the TCN using the dilation factor d is: 
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f i) = 𝐱𝐝 × 𝐰) 𝐢) = x i − dj) w j), 5) 

All neural networks considered here (ERNN, LSTM, GRU and CNN) have been im-
plemented with Python in Keras [12], with Tensorflow as backend [13]. 
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2.5. Echo State Network (ESN) 
The ESN consists of a large and untrained recurrent layer of nonlinear units in addi-

tion to a linear memory-less read-out layer. The full explanation of the underlying mech-
anisms for all components in the ESN architecture are explained in details in review paper 
by Bianchi et.al. [5].  

To optimize predictions with ESN, the hyperparameter configuration must be tuned 
in order to maximize the prediction accuracy. Hyperparameters control the structure and 
the capacity of the model, determines how the network is trained, and must be specified 
before the ESN is trained to solve the prediction task [14]. In order for proper selection of 
hyperparameters to achieve accurate prediction results, the dataset analyzed are divided 
into three parts; training, validation and testing part [15,16].  

The training set is used to fit the trainable parameters of the ESN, which are the 
weights of the readout. The generalization capability of the trained model, measured as 
the prediction accuracy obtained on future time steps of the energy load time series, is 
first evaluated on the validation set [15]. Since the weights of the ESN are not trained, the 
ESN performance is particularly sensitive to the choice of the hyperparameters. 

Hyperparameters are selected to yield the highest mean accuracy on the validation 
set. Different strategies can be used to search for the optimal hyperparameters. Here, we 
tune the hyperparameters by performing a grid search over a large number of configura-
tions (768), over 8 different hyperparameters. The hyperparameters that are optimized 
with cross-validation are; number of neurons in the reservoir (N ), spectral radius (ρ), the 
regression parameters (C), noise in the state update (ξ), connectivity (R ), and finally the 
scaling of the input, teaching and feedback weights (ω , ω , ω ).  

When implementing and predicting the time series with ESN in this study, a modi-
fied version of the Python implementation provided by Løkse et al. is used [17]. 

3. Advantages and disadvantages of the statistical models and neural networks 
A disadvantage of a model-based prediction approach such as the neural networks 

is that it is more difficult to interpret the results and understand the decision-process of 
the model. On the other hand, these models are easier to use for a practitioner and less 
domain-knowledge is required to use the models and obtain good results in terms of pre-
diction.  Statistical models are easier to interpret than the more advanced neural networks, 
and the user has more control on the procedure that generates the result. As a downside, 
a careful tuning that implies pre-analyses and a discrete amount of knowledge on the 
problem is required to achieve prediction results with high accuracy. This is in contrast to 
the neural networks, where no additional work except from careful tuning the hyperpa-
rameters is required when making predictions. 

4. The household time series in location 1 
This part of the supplementary chapter provides the same methodology as for the 

industry sector, this time for the aggregated household sector during workdays.  
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Figure S1. Energy demand for the aggregated household sector. 

From Figure S1, the cyclic pattern is no longer easy to identify as for the industry 
sector. There is no strong weekly consumption pattern, and the consumption is much 
more frequent than every week as for the industry sector.  During the summer period, the 
consumption is low as the weather is warm. The running mean average shows that the 
energy use evolves from high consumption early in July towards lower consumption in 
August. In the end of August, the consumption seems to increase again (from timestamp 
3000 to 4000). The representation of main consumption pattern together with the ACF and 
PACF functions for the household sector are shown in Figure S2.  

 
Figure S2. ACF and PACF plots for the energy consumption in households’ sector. The correlation 
outside the standard deviations are correlations and not a statistical fluke. 

The autocorrelation and partial autocorrelation show strong correlations outside the 
95% confidence interval at approximately 12, 24 and 48 hours. 

The Fourier transformation shows likewise a main seasonality at 24 hours. However, 
there is no longer a strong seasonality at 165 hours as for the industry sector. The con-
sumption pattern is strongly driven by the daytime consumption pattern occurring every 
12 hours, which in turn correlates well with the typical household daily life with routines 
as breakfast every morning and dinner every afternoon.  The seasonality of the time series 
was again removed with seasonal differencing and thereafter the short-term correlation 
was removed by first order differencing and the ACF and PACF functions were plotted 
again, indicated by red colors in Figure S2.   

5. Hyperparameter configurations and training of the models 
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For each model, the optimal hyperparameter configuration is searched on the vali-
dation set. In particular, we select as the optimal model the one yielding the highest pre-
diction accuracy on the validation set. Then, the performance of the optimal model is eval-
uated on the test set. 
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5.1. ARIMA 
To perform predictions with the ARIMA model, the time series need to be stationary. 

The seasonality of the time series is removed with seasonal differencing and thereafter the 
short-term correlation was removed by first order differencing. To check if the time series 
become stationary after differentiation, the ACF and PACF functions are plotted again, 
and they are depicted in red in Figure S2. As there are no longer strong correlations in the 
ACF and PACF plot (all values are almost zero in the red figure), we can assume that the 
time series are now stationary and ARIMA model can be applied. As the PACF function 
has no correlations, it is possible to use an ARIMA (1,0,1) predictive model.  

In addition to selecting the ARIMA orders by interpreting the ACF and PACF plots, 
a grid search of different ARIMA orders was performed to identify the configuration that 
yields the highest prediction accuracy. The different ARIMA orders searched are provided 
in Table S1. Even according to this second optimization scheme, we found that the ARIMA 
(1,0,1) model achieved the highest prediction accuracy in terms of NRMSE.  

Table S1. Each hyperparameter is searched in the interval [min,max]. The parameters in Table S1 
are the following: Order of the autoregressive term (p), order of differentiation (d), and order of 
moving average term (p). The optimum hyperparameter configurations for each sector are se-
lected as the one yielding the highest prediction accuracy on the validation set. The ARIMA(1,0,1) 
configuration are the model providing highest prediction accuracy for both industry and house-
hold sector. 

ARIMA (p,d,q) p d q 
min 0 0 0 
max 2 2 2 

Optimal 1 0 1 
To check for stationarity, the ACF and PACF are given for the residual errors (pre-

dicted value subtracted from the actual value). The ACF and PACF plots for the residual 
errors are provided in Figure S3.  

 

 

. 

Figure S3. ACF and PACF plots for the residuals after predictions with the ARIMA(1,0,1) model. 

The ACF and PACF of the residuals does not show any significant correlations. This 
suggests that the ARIMA (1,0,1) model is able to predict the time series.  
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5.2. Prophet 
When making predictions with the open-source Prophet library, only the default con-

figurations were used. The GitHub repository for making forecasts with Prophet could be 
found here [18]. The Prophet prediction method are developed and explained in detail in 
[2]. 

5.3. Trainable RNNs 
The trainable RNNs (LSTM, GRU and Elman) are trained over several epochs on a 

set of configurations, where the epoch resulting in the highest accuracy on the validation 
set are selected for predictions on the test set. The hyperparameter configurations for the 
trainable RNNs are specified in Table S2.  

Table S2. The hyperparameter configuration for the trainable RNNs are specified as: Number of 
layers (L), number of units per layer (𝑛). The hyperparameter configuration are trained over 50 
epochs. 

 LSTM GRU ERNN 
L 1 1 1 𝐧 32 32 32 

optimizer adam adam adam 
Learning rate 0.001 0.001 0.001 

epochs 50 50 50 

5.4. CNN 
The CNN are trained in a similar way as for the trainable RNNs. However, inspired 

by the authors behind the Temporal Convolutional Network [11], we dilate the CNN to 
make the model able to learn long-term dependencies in the time-series. In this study, 
three CNN layers are dilated by a dilation factor d, growing from d=1, d=2 and d=4. In 
each layer, the kernel size is k=3. The hyperparameter configuration for the CNN are given 
in Table S3.  

Table S3. The hyperparameter configuration for the CNN are: Number of layers (L), number of 
units per layer (n), the convolutional kernel size (k). The dilation rate d , specifies how each con-
volutional layer L, are dilated with a factor a factor 2 . Here i are the specific layer of the network. 
The hyperparameter configuration are trained over 50 epochs. 

 L 𝐧 k 𝐝𝐫(L1,L2,L3) optimizer Learning 
rate epochs 

CNN con-
figurations 3 32 3 1,2,4 adam 0.001 50 

5.5. ESN 
When performing the predictions with ESN, the optimal hyperparameter configura-

tion was selected with a grid search. Each hyperparameter was searched in the range spec-
ified in Table S4. 

Table S4. Each hyperparameter is searched in the interval [min,max]. The parameters in the table 
are the following: Neurons in the reservoir (𝑁 ), connectivity (𝑅 ), noise in the state uptdate (𝜉), 
spectral radius (𝜌), the scaling of input, teaching and feedback weights (𝜔 ,𝜔 ,𝜔 ), and regression 
parameter C. The optimum hyperparameter configurations for each sector are selected as the one 
yielding the highest prediction accuracy on the validation set. 

Hyperpa-
rameters 

𝑵𝒓 𝑹𝒄 𝝃 𝝆 𝝎𝒊 𝝎𝒐 𝝎𝒇 𝑪 
min 300 0.15 0.0 0.5 0.1 0.25 0.0 0.001 
max 500 0.45 0.01 1.0 0.4 1.0 0.1 1.0 
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Optimum 
industry 

location 1 
300 0.15 0.0 0.9 0.1 1.0 0.0 0.001 

Optimum 
household 
location 1 

500 0.15 0.0 1.0 0.1 1.0 0.0 0.001 

To optimize predictions with the trainable RNNs and the CNN, the optimal hyperpa-
rameter configuration could be selected by performing a grid search as for the ARIMA 
and ESN model. However, since we use a small number of units (32 vs the 300-500 used 
in the ESN model), the models are not prone to overfitting and, therefore, regularization 
is not required. 

Additionally, since the parameters are optimized with gradient descent, the sensitiv-
ity on the hyperparameters is lower than for the ESN. Indeed, the ESN trade the precision 
of the gradient descent optimization with the redundancy of a large random reservoir 
that, inevitably, makes the model more sensitive to hyperparameters configuration. 

For this reason, we can expect good performance from ERNN, LSTM, GRU, and CNN 
by using a fixed hyperparameters configuration. 
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