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Abstract: Forecasting energy demand within a distribution network is essential for developing
strategies to manage and optimize available energy resources and the associated infrastructure. In
this study, we consider remote communities in the Arctic located at the end of the radial distribution
network without alternative energy supply. Therefore, it is crucial to develop an accurate forecasting
model to manage and optimize the limited energy resources available. We first compare the accuracy
of several models that perform short-and medium-term load forecasts in rural areas, where a single
industrial customer dominates the electricity consumption. We consider both statistical methods
and machine learning models to predict energy demand. Then, we evaluate the transferability
of each method to a geographical rural area different from the one considered for training. Our
results indicate that statistical models achieve higher accuracy on longer forecast horizons relative to
neural networks, while the machine-learning approaches perform better in predicting load at shorter
time intervals. The machine learning models also exhibit good transferability, as they manage to
predict well the load at new locations that were not accounted for during training. Our work will
serve as a guide for selecting the appropriate prediction model and apply it to perform energy load
forecasting in rural areas and in locations where historical consumption data may be limited or even
not available.

Keywords: energy load predictions; statistical- and machine-learning-based approaches; short-term
load forecasting; longer forecasting horizons; transferability predictions

1. Introduction

Accurate load forecasting systems can reduce additional costs related to inaccurate
prediction of the energy demand and provide a better understanding of the dynamics
of existing power systems [1,2]. If the forecasts overestimate the demand, the result will
be excess power supply. Consequently, this will result in increased costs and contract
curtailments for the energy market participants. On the other hand, underestimation of the
demand could lead to a lack of energy availability at heavy loads, which in turn leads to
consequences for end-users, who in the worst-case scenario will not have sufficient energy
supply [3,4]. The global energy market is now evolving from centralized systems with
large power stations connected to a single electricity grid which support the area of interest,
towards the inclusion of more decentralized energy systems where the area of interest may
be supplied by multiple energy sources, such as local renewable distributed generation
(DG) technologies and battery storage systems [5–11]. In addition, inhabitants should have
the ability to participate actively in the energy market by acting as prosumers where they
both generate and consume electricity [12–17].
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In the transition from centralized to decentralized energy systems, there is a need
to develop methodologies for understanding and interpreting the dynamics of existing
energy systems, which in turn will be an essential tool in developing emerging energy
systems [18–20]. The Norwegian Water Resources and Energy Directorate (NVE) states
that using the current electricity grid costs the households and industries in Norway
approximately 27 billion NOK per year [21,22]. This cost is expected to increase significantly
in the future, as the current electricity network must be upgraded to handle the increased
electrification in society. Therefore, NVE has proposed new power tariff schemes that
penalize the use of electricity during periods of heavy loads [21]. By optimizing the energy
flows in the electricity network, the profile of the load demand will become more evenly
distributed throughout the day and could allow postponement of upgrades to the current
infrastructure. The requirements by NVE show the importance of optimizing the use
of resources in an energy grid and developing accurate energy-forecasting systems are
fundamental to achieving this goal.

To manage the limited availability of energy at locations that rely on the stable power
supply, accurate predictions of energy demand are essential. In this study, we analyze
two remote communities on the island of Senja in Northern Norway, which represent
extreme examples of the challenges stated by NVE. The two communities experience
frequent power outages due to heavy loads in specific periods and, if the current grid is not
optimized, upgrading the whole energy system will be inevitable. The energy consumption
on the grid is heavily affected by the activities of the islands’ major industries [23].

Besides Northern Norway, the challenges mentioned above also apply to remote
communities worldwide, especially developing countries [24,25]. In 2018, there were
approximately 860 million inhabitants of remote areas that either do not have reliable
sources of electricity or are not connected to power grids at all [26]. In addition, remote
areas in Russia, Alaska, and Canada are heavily dependent on diesel generators for elec-
tricity supply, which imposes an economic, environmental, and social burden on the local
populations as diesel generators create noise pollution, aggravate the local air quality and
increase the emissions of greenhouse gases [27]. These examples confirm the importance of
transitioning towards new energy systems to improve economic, social, and environmental
conditions, in addition to ensuring a reliable power supply [27–29].

In the remote communities served by the Senja network analyzed in this paper,
there are still no services available for predicting the energy demand [23]. We evaluate
approaches to forecasting energy demand based on both statistical and machine learning-
based approaches to project future energy demand from historical data. The total energy
demand is characterized by a combination of load profiles from two sectors (households
and industry) that exhibit very different consumption profiles and require dedicated fore-
cast models. Unlike energy load profiles in cities and residential communities, where the
household sector is the main contributor to the total energy consumption, the total load
profiles for the remote communities analyzed here are dominated by industry [30]. Indus-
trial activities are therefore essential to consider when developing an accurate forecasting
model.

The contribution of our work is twofold. First, we investigate which model achieves
the best performance in predicting the energy load in rural areas, as a function of the forecast
horizon. Our analysis evaluates several statistical and machine learning approaches.

Secondly, we analyze the transferability of each prediction model, in terms of the
capability of predicting time series of energy demand at different locations within the Senja
electricity grid. Our study provides important insights about the possibility of applying
the models considered in our study to new geographical sites.

2. Background and Related Work

The energy load profiles are typically represented by time series that describe the
dynamics of the underlying energy distribution system and are characterized by typical
human-based seasonal and cyclic consumption patterns. Indeed, load patterns can vary
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significantly depending on the observation period, the nature of each system, and external
factors such as climate and weather. Achieving accurate load forecasting has been one of
the principal foci in several research areas. Different models have been proposed, each one
characterized by different properties in terms of complexity and effectiveness in predicting
on different forecasting horizons [31–33].

In this paper, we examine several approaches to predict energy consumption on both
short and longer forecasting horizons. Two different forecasting methodologies are used,
one statistical-based method, and one method based on neural networks.

2.1. Statistical Methods

For the statistical method, two different approaches were investigated. First, we
consider the statistical Autoregressive Integrated Moving Average (ARIMA) model, which
has been a baseline tool in prediction problems for several years [34]. The ARIMA model
is well known for its simplicity of implementation and high accuracy in predicting long
forecasting horizons [35]. The second approach is a newer statistical model called Prophet.
Prophet is a tool that has recently gained popularity due to its simplicity and flexibility
when performing predictions [36].

ARIMA models require an elaborated statistical analysis to optimize the model con-
figuration [37]. Moreover, ARIMA models make strong assumptions about the nature of
the underlying dynamical system that generates the observed time series. This usually
introduces strong biases that, in some cases, might be wrong and will hinder the accuracy
of the predictions [38]. In the study by Taylor [35], the ARIMA predictions at longer fore-
casting horizons were shown to outperform more complex models in terms of accuracy. In
Reference [39], short-term load forecasting with window-based ARIMA algorithms was
applied to predict electricity consumption to optimize the available energy supply. The
study concluded that it is sufficient to consider daily consumption data and aggregated
hourly coefficients of daily profiles to obtain accurate short-term predictions by use of the
sliding window-based forecasting algorithms proposed by the authors. In the study by
Bianchi et al. [40], the authors proposed a comparative study for heat demand forecasting
in a real-world case. The authors tested ARIMA models on different load time series and
the results showed that the ARIMA models can perform accurate predictions on long-term
horizons.

Prophet is implemented as an open-source library designed for making predictions
on univariate time series [36]. The library is easy to use and allows the identification
of optimum hyperparameter configurations for the model that will make a forecast of
the time series. The Prophet library offers a practical prediction tool that can be used
by analysts without expertise in time series modeling. In the original paper [36], the
authors compare the Prophet method against several automated forecast procedures such
as ARIMA, exponential smoothing models, random walk model with weekly seasonality,
and a TBATS model with both weekly and yearly seasonality. The result shows that the
Prophet forecasts result in lower prediction errors.

2.2. Machine Learning Methods

Five different neural network architectures are considered to predict the energy de-
mand. In particular, we examine both Recurrent Neural Networks (RNNs) and Convolu-
tional Neural Networks (CNNs).

In prediction-related problems, RNNs have gained significant attention due to their
ability to capture complex non-linear dynamics in the time series [41], and RNN architec-
tures have been shown to outperform other models in tasks related to forecasting energy
demand [42]. The RNNs examined in this paper have been previously applied to solve
different types of prediction related tasks [43]. As trainable RNN architectures, we consider
Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Elman Recurrent
Neural Networks (ERNN). In addition, we consider the Echo State Network (ESN), which
is a randomized neural network from the family of Reservoir Computing approaches [42].
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The RNNs are capable of modeling any non-linear dynamical systems up to a given
precision and have been applied in many contexts where the temporal dependency is an
important feature that characterize the data [41]. A popular RNN architecture is the LSTM,
which provides the capability of storing information for long periods of time [44,45]. In load
forecasting problems characterized by complex and variable temporal dependencies, RNNs
have been shown to outperform several forecasting methods like ARIMA, Support Vector
Machines (SVM), Multilayer Perceptron, and Adaptive Network-Based Fuzzy Inference
System (ANFIS) [40]. The authors in Reference [43] reviewed and evaluated two real-
world datasets of electricity load, comparing modern deep learning architectures on short-
term load forecasting problems. In particular, the paper focused on feedforward and
recurrent neural networks, sequence-to-sequence models, and temporal convolutional
neural networks. The authors found that on short-term load forecasting problems, the
simpler ERNN performs comparably to more advanced networks such as GRU and LSTM
when adopted in aggregated load forecasting cases. Therefore, in such cases, the authors
conclude that the ERNN may represent the most effective solution as it offers the benefits
of a low-complexity model without compromising the prediction accuracy.

The Echo State Network is an RNN model that has received increased interest among
researchers for simplicity of training and high-accuracy performance in predicting real-
valued time series [42]. In predictions of real-world energy load time series, the application
of the ESN model has achieved state-of-the-art results on 1-h and 24-h forecast hori-
zons [31,40,46–48]. The authors in References [31,49] performed predictions by using ESN
and ARIMA approaches and combined the models to obtain high-accuracy results. In a
study by Jaeger and Haas [50], the ESN model was applied on both real and benchmark
datasets, and the authors highlighted the capability of the network to compute accurate
predictions even when forecasting chaotic processes. In a comparative study by Bianchi
et.al [40], the ESN model was tested against several RNNs on synthetic and real-world time
series in different contexts. The result showed that the ESN architecture was competitive in
most tasks in terms of prediction accuracy. Moreover, the simplicity of its implementation
and training compared to other RNNs makes the ESN architecture especially attractive.
For load forecasting problems on real-world time series, the ESN architecture was therefore
concluded to be a convenient prediction tool for real-valued time series [40].

So far, CNNs have received less attention compared to RNNs in energy load fore-
casting tasks [43]. However, recent work indicates that CNNs achieve high performance
in several sequence and time series prediction tasks [51]. The authors in Reference [52],
developed a deep CNN called DeepEnergy. The experimental results show that Deep-
Energy can predict energy loads with high accuracy over three days and outperforms
SVM and LSTM. The authors of Reference [53] compared a CNN to recurrent and feed-
forward architectures, showing promising results on benchmark time-series. Several works
combined CNNs together with RNNs to achieve a hybrid prediction tool that increases
the prediction accuracy. For example, the authors in Reference [54] combined a CNN
and RNN to integrate different input sources and use the convolutional layer to extract
features from the historical data. The RNN was thereafter used to learn the dynamics of
the system. In Reference [55], another hybrid model was presented where the historical
load was processed by a CNN and LSTM. Then, the features from both networks were
used to predict the day-ahead load.

2.3. Transfer Learning

A large amount of scientific work on forecasting time series has resulted in a large num-
ber of methodologies that provide accurate results in several prediction-related challenges.
However, accurate forecasting of time series is a challenging task when the availability
of training data is limited. Recently, the transferability of machine learning models has
gained increased attention due to the necessity of generating predictions in systems where
training data are not available. In Reference [56], the authors investigated how to transfer
CNNs for the time series classification (TSC) task. A hybrid transfer learning model for



Energies 2021, 14, 798 5 of 17

short-term electric load forecasting was proposed by Reference [57] and shows significant
improvement in electric load predictions for a location by using additional data from
another location. In Reference [58], the monthly electric load was predicted by collecting
data from different districts in Seoul. After collecting all historical data from the different
districts, the model was trained to predict the electric load in a target district by using
transfer learning. The authors also proposed a novel load-forecasting scheme for a district
by using similar data from other cities or districts. To demonstrate the performance, the
model was compared to other popular machine learning techniques. The authors in Refer-
ence [59] considered the problem of developing predictive models with limited data for
energy assets. An energy predictive model based on CNN’s was developed and applied by
using a transfer learning strategy. The approach was demonstrated on a case study of daily
energy demand time series. In Reference [60], the authors show for the first time that using
an LSTM auto-encoder with attention trained on a large-scale dataset with pre-processing
can effectively transfer time-series features. The authors in Reference [61] proposed a new
training strategy for time-series transfer learning with two source datasets that outperforms
existing approaches when predicting a target dataset. The authors tested the performance
of the approach on predicting financial time series, and the experiments show that transfer
learning based on two datasets (market indexes) is superior to other baseline methods with
only one source dataset.

While not comprehensive, this short overview gives an idea of the significant amount
of research that has been carried out on developing forecasting methodologies. In addition,
the transferability of forecasting models has recently gained increased interest, and several
works have addressed the problem of accurate predictions when there are limited data
available for training.

3. Methodology

In this study, three trainable RNNs (LSTM, GRU, and Elman), a randomized RNN
(ESN), a CNN, and two statistical methods (ARIMA and Prophet) are compared for predict-
ing energy demand for multiple cases. The models are trained to predict energy demand at
the next hour and at longer time horizons (2, 6, 12, 24, and 165-h ahead). The predictions are
performed on two sectors (Households and Industry) at both communities of the Senja grid.

Section 3 explains the process of training the model and how to transfer them to a
new dataset. A brief description of the models used (LSTM, GRU, Elman, ESN, CNN,
ARIMA, and Prophet) is deferred to the Supplementary Materials (Chapter S7). In addition,
the Supplementary Materials briefly discusses the advantages and disadvantages of the
different approaches. All hyperparameter configurations used for predictions with the
different models are listed in Section S7.5 in the Supplementary Materials Section.

An overview of the methodology for making predictions with the different approaches
are provided in Figure 1. A brief explanation of each step is given in the Supplementary
Materials Section.

3.1. Prediction Strategy
3.1.1. Training, Validation, and Test

To train and evaluate the models, the time series is split into a training set (70%), vali-
dation set (15%), and test set (15%). The training set is used to fit the model parameters by
minimizing the prediction loss; the validation set is used to find the optimal configuration
of the hyperparameters and to compute the stop criterion for the models trained with
gradient descent; once the optimal model is found, its performance is evaluated on the test
set. We pre-process the data by removing the linear trend and the main seasonality (see
Section 4.2 for more details). Additionally, the data are standardized by subtracting the
mean and dividing by the standard deviation computed on the training set.
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3.1.2. Transferability

The strategy used to transfer the model is similar to the one proposed in Reference [61].
The model is first optimized on the training and validation set of a source dataset (location
1). Then, the trained model is used to predict the test set of the target dataset (location 2).
The data of both source and target datasets are pre-processed according to the statistics
computed on the target dataset.

3.2. Normalized Root Mean Squared Error

The normalized root mean squared error (NRMSE) is used both as the loss function
and as the metric to evaluate the prediction performance. The root mean squared error
(RMSE) is defined as:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (1)

where ŷ and y are the predicted and true values, accordingly. The RMSE measures the
discrepancy between the predicted values and observed values at time i, over n number
of observations [62]. The NRMSE relates the RMSE to the observed average value in the
observation period and is defined as:

NRMSE =
RMSE

y
(2)

where y is the average of the time series values.

4. Case Study

At present, the 66 kV cable that supplies Senja is operating close to its maximum
capacity. At Northern-Senja, the communities are provided with a 22 kV distribution
network. The total energy demand is characterized by a combination of load profiles from
two sectors (households and industry) that are very different from each other. The particular
feature of the rural communities in Senja is that industry accounts for more than 50% of
the total energy consumption [23]. When the industries operate at heavy load, the risk of
voltage drop at the end of the radial distribution network increases. Voltage drops increase
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the risk of interruption in the power supply. These communities have no alternative
energy supplies that can provide a backup when the voltage decreases. Therefore, given
the limited capacity of the existing grid, it is paramount to predict the periods with high
consumption. An accurate prediction tool is necessary for developing efficient strategies
to reduce the challenges in the existing grid. One way to deal with the current situation
is to build a new electricity grid connection with a higher capacity. However, this is
costly and time-consuming, has a huge environmental impact, and contradicts the vision
to better utilize the current electricity grid as stated by NVE [22]. Moreover, since the
communities are strongly industry-dominated, such an investment will be wasted if the
companies will stop their activities in the future, and the power companies will be left with
an over-dimensioned distribution network.

4.1. Real-World Time Series

The time series analysis in this paper is based on hourly energy consumption data in
the period spanning from 1 March 2019 to 1 February 2020. The time series are from two
separate communities located approximately 9 km apart in air distance, located at the end
of separate radials of the electricity network in the region. Both communities are small
with approximately 100 households at location 1, and 300 households at location 2.

The time series is provided from the power company Ishavskraft AS [63], which
collects consumption data for all their customers in the specific locations studied in this
paper. The time series is divided into three sectors: cabins, households, and industry. Due
to privacy policies, the household and cabin consumption is aggregated. From Figure 2, it
is possible to see that the industry sector in both locations is clearly the dominant source
for the total energy consumption pattern and the total energy consumption is significantly
larger for location 2 than for location 1, with average hourly consumption of 2553 kW/h
and 860 kW/h, respectively. Figure 2 illustrates that the consumption pattern decreases
significantly during the main holiday periods (Easter at end of April, summer vacation in
July, and Christmas in December/beginning of January). The period between September
and December is characterized by an increase in the total energy consumption due to the
electric heating because of colder temperatures. In addition, during this period the fishing
industries are heading towards the main fishing season when they operate frequently at
full load.
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To design an accurate predictive model, it is necessary to account for the different
consumption patterns, which vary between the holidays and the working periods.

We disregard the holiday periods, as the requirements for stable power supply are not
as critical as they are during working days. Consequently, we only consider the workdays
that are characterized by higher load consumption that is critical given the limited capacity
of the grid, and there is a risk of interruptions in the power supply.

For this reason, we train our prediction models only to predict the consumption during
workdays. The workdays also include the weekends, because especially in high-season, the
fishing industries have a high level of activity every day, including weekends. Specifically,
the periods with low consumption during holidays are removed from the data set and
we obtain a time series with 6544 time-steps in total. The resulting time series for both
locations with holidays removed are depicted in Figure 3.
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At each location, we analyze the consumption of households and industry separately.
The consumption of cabins is too low in both locations to significantly affect the overall
consumption patterns in the communities and the occurrence of power outages. Therefore,
the consumption of cabins is disregarded in this study.

4.2. The Industry Time Series in Location 1

Statistical analysis of real-world time series is important to gain a better understanding
of the consumption data and to interpret the results. Additionally, statistical models such
as ARIMA assume the data to be stationary, which implies that the trend, seasonality, and
short-term correlations must be removed before feeding the data into the models. On the
other hand, machine-learning models do not require the time series to be stationary [64].
By removing the trend and the seasonality from the data, the neural networks can exploit
all their resources to predict the “difficult” component of the time series. Such components
are fast and noise-like oscillations.

As an example, in the following, we show how the trend and the main seasonality are
computed for the industry sector in location 1. The trend is computed as the running mean
with a window size of one week (168 h).

The running mean of the industry consumption during workdays is plotted in Figure 4;
it shows a minor decrease from timestamp 0 to 3000 while increasing from 3000 to 6000
where the industry is heading towards the fishing season during the winter period. Figure 4
also shows that the consumption is cyclic with a similar load pattern every week.
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Figure 4. The industry energy consumption during workdays.

In order to identify the main consumption pattern in the time series, some statistical
analyses and pre-processing are required. First, the autocorrelation function (ACF) and
partial autocorrelation functions (PACF) are computed to get a better understanding of
the data provided. In addition, the ACF and PACF are interpreted to investigate whether
the data are stationary or not. When making predictions with statistical models such as
ARIMA, the time series are required to be stationary. If the ACF and PACF plots show no
correlations, the time series are stationary and ARIMA predictions can be performed [64].
The representation of the main consumption pattern together with the ACF and PACF for
the industry consumption is shown in Figure 5.
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The ACF and PACF show strong correlations outside the 95% confidence interval
(depicted as a blue area in Figure 5) at 24 h and between 150 and 175 h. We note that the
values outside of the blue cone are very likely actual correlations.
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Another way to identify the seasonality is through the Fourier transform, which
allows identifying the main periodicities in the time series [65]. The Fourier transformation
shows that the main seasonality is 24 h, which is expected as we have hourly data and the
consumption pattern follows a daily cycle. The time series has also a strong seasonality at
165 h, which corresponds to a week. This shows that the industry sector is strongly driven
by weekly consumption patterns in addition to the daily-varying consumption.

5. Results and Discussion
5.1. Result of Short-Term Predictions (1-h Forecasting Horizon)

The resulting predictions on 1-h ahead energy demand obtained by statistical ap-
proaches and neural networks are reported in Figure 6.
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5.1.1. Industry Energy Prediction for Location 1

Figure 6 indicates that all models achieve good performance in predicting the energy
consumption, except for the Prophet model. This model clearly underperforms compared
to the rest of the models as it makes larger prediction errors compared to the actual
consumption. This indicates that the Prophet model performs poorly in predicting the
energy load profiles. For this reason, the Prophet model is not considered further in this
study. The other statistical model, ARIMA, predicts the load consumption data with high
accuracy (NRMSE = 0.070), but it overestimates consumption patterns. We experience
larger errors from ARIMA predictions when the consumption is low.

All the neural networks used in this study achieve accurate results, and the ESN
model outperforms the rest with an NRMSE result of 0.012. Among the trainable neural
networks, the GRU and Elman underperform compared to the rest with an NRMSE of
0.074. All results are provided in Table 1.

We also note that all the neural networks seem to capture the peak loads with high
accuracy. At peak loads, strategies for demand response by use of accurate forecasts are
fundamental. The strategies are developed to plan what measures can be carried out to
create an immediate change in the energy load profile. For the particular industry analyzed
in this study, reducing the peak load is critical to avoid production stops resulting from
power outages. The capability of capturing peak loads indicate that the neural networks
are suitable tools when developing demand response strategies. Such strategies could
contribute to avoiding production stops in periods where the industry operates at high
loads.
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Table 1. Results from 1-h prediction for all cases with all models.

Prediction Results on 1-h Forecasting Horizon

Case 1: Train on Location 1 to Predict Location 1 and 2

Location 1 Location 2 (Transferability)
Company Household Company Household

Model NRMSE NRMSE NRMSE NRMSE
LSTM 0.066 0.055 0.084 0.096
GRU 0.074 0.047 0.084 0.063

Elman 0.074 0.047 0.085 0.063
CNN 0.068 0.048 0.075 0.062
ESN 0.012 0.013 0.096 0.034

ARIMA 0.070 0.039 0.368 0.110
Prophet 0.160 0.093 - -
Average 0.075 0.049 0.132 0.071

Case 2 (Validation): Train on Location 2 to Predict Location 2 and 1

Location 2 Location 1 (Transferability)
Company Household Company Household

Model NRMSE NRMSE NRMSE NRMSE
LSTM 0.045 0.035 0.149 0.064
GRU 0.046 0.036 0.129 0.047

Elman 0.046 0.036 0.129 0.047
CNN 0.050 0.029 0.075 0.046
ESN 0.032 0.004 0.395 0.040

ARIMA 0.052 0.027 0.843 0.215
Prophet 0.220 0.076 - -
Average 0.070 0.034 0.286 0.077

5.1.2. Short-Term Transferability Predictions of Industry Consumption at Location 2

To evaluate the transferability of the models in terms of the capability of predicting
the load time series associated with different energy grids we perform the following
experiments:

• the energy consumption at location 2 is predicted with the models trained on the time
series on location 1;

• the energy consumption at location 1 is predicted with the models trained on the time
series on location 2.

When examining the transferability by predicting the energy consumption at location
2 with the models trained on the time series on location 1, there is a larger difference in
terms of prediction accuracy.

Regarding transferability predictions, the data reported in Figure 7 illustrate how
the ARIMA model is no longer able to predict the load profile. In addition, ARIMA does
not capture any of the actual consumption patterns. This could be because the statistics
between the two-time series are significantly different.

On the other hand, all the neural networks we considered in this study seem to capture
the dynamics of the load profile with high precision. Figure 7 shows that the ESN model
systematically underestimates the energy consumption. This could be due to the property
of the dynamical system which changes from one location to the other. When making
predictions, the ESN uses a very large reservoir, which implies many parameters in the
readout layer. While this helps to achieve a high prediction accuracy at location 1, the ESN
can tend to over-fit the data of location 1 used for training. For this reason, the ESN makes
more errors when transferred to the second location. On the other hand, the other RNNs
have fewer parameters and the resulting model can generalize better to the data of the
second location (see Supplementary Materials Section for more details about each model).
In fact, the results show that the CNN is the model that achieves the highest prediction
accuracy in transferability predictions with an NRMSE of 0.075, slightly better than LSTM
with a result of NRMSE = 0.084.
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5.1.3. All Periods and Sectors for Both Locations

The NRMSE for both household and industry sectors and both locations are given
in Table 1. The highest reported prediction accuracy is in bold. The results show that the
ESN model provides the highest accuracy in predicting the energy consumption one hour
onward at both locations.

Looking at the average prediction accuracy for the two sectors studied, the error is
larger in the industry sector than for the household sector. The reason may be the fact that
the industry sector has higher energy consumption in terms of magnitude. In addition, the
larger differences between maximum and minimum load thorough the day could make the
load profile more difficult to capture with high accuracy. The Fourier transformations show
that the seasonality for each sector is different; the main seasonality for the household
sectors was 24 and 12 h (see Supplementary Materials Section), while for industry sectors,
the main seasonality were 24 and 165 h, which in turn also could affect the accuracy of the
models and should be considered when performing predictions.

For transferability predictions, the ESN still outperforms all the other models in the
household sector. However, when making transferability predictions in the industry sector,
the CNN outperforms all other models at both locations.

Looking at the validation case where the models are trained on location 2 to predict at
location 2 and location 1, the results are the same: The ESN model outperforms the other
models when predicting energy demand in location 2 for both sectors. For transferability
predictions, the ESN outperforms the other models in the household sector, while the CNN
outperforms the other models in the industry sector.

The results show that the ESN and CNN models can predict the dynamics of the time
series with high accuracy at several locations, even when trained on one source-dataset.

5.2. Predicting at Longer (2, 6, 12, 24, and 165-h) Forecasting Horizons

In some cases, it is necessary to have a prediction tool that can predict longer than one
hour ahead [66]. One-hour predictions are useful when examining what demand response
measures can be taken to create an immediate change in the energy load profile.

When planning for strategies in the longer term to create a more stable energy system,
it is necessary to have a prediction tool that can provide accurate forecasts days and
weeks in advance [66]. To investigate whether the models can predict at longer forecasting
horizons, the models are tested on the industry time series for location 1, now with longer-
term forecasting horizons of 2, 6, 12, 24, and 165 h. Without changing the order of the
ARIMA model or any configurations in the neural networks, the results in terms of NRMSE
are the following.

Again, the bold values indicate the model with the highest prediction accuracy. Table 2
shows that the ARIMA model outperforms all the other models at the 24-h forecasting
horizon. The ESN model provides the highest prediction accuracy at the 1-h forecasting
horizon, while the lowest accuracy is for the 12-h forecasting horizon. However, at the
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24-and 165-h forecasting horizons, the accuracy increases again, which is in line with the
main seasonality of 24 and 165 h observed by means of the Fourier transform discussed in
Section 4.2. Since we remove the seasonality, the ARIMA model is not that sensitive to the
seasonality in the data and provides significantly better prediction result at 6 h and 12 h
relative to the neural networks.

Table 2. Normalized root mean squared error (NRMSE) at short- and longer-term forecasting horizon.

Multistep Prediction Results (NRMSE)

Timestamp LSTM GRU Elman CNN ESN ARIMA

1 h 0.066 0.046 0.046 0.068 0.012 0.070
2 h 0.071 0.072 0.067 0.079 0.078 0.070
6 h 0.078 0.086 0.094 0.074 0.163 0.083

12 h 0.077 0.101 0.119 0.093 0.182 0.108
24 h 0.518 0.441 0.531 0.524 0.142 0.139
165 h 0.164 0.181 0.083 0.114 0.166 0.159

Looking at the neural networks, there is no clear indication that there is a model that
achieves higher accuracy than the others at longer forecast horizons. It is noteworthy that
all the trainable RNNs and the CNN outperform the ESN on longer forecasting horizons,
which indicates that the ESN model is most suitable for being used on short-term prediction
tasks. The Elman model outperforms the other models at both 2- and 165-h forecasting
horizons. Again, the CNN shows impressive results, with the highest accuracy of all
models at 6 h horizon, and acceptable accuracy for all horizons except for more than 24 h
ahead.

The results suggest that the Elman RNN, ARIMA, and the CNN are the preferable
models for longer-term energy planning purposes. However, from the results in Section 5.1,
we see that the ARIMA model is difficult to transfer. This means that ARIMA must
be trained on the same location where the energy consumption must be predicted and,
therefore, it is necessary to possess historical energy consumption data. If no such historical
data are available for training the ARIMA model, the CNN model is suggested as the
optimal one.

6. Conclusions

In this paper, we studied the application of statistical models and neural networks
to perform predictions of energy demand. The paper focused on predicting future loads
for two communities that experience frequent power outages due to heavy loads on the
existing electricity grid. Since the most important task is to predict the consumption when
the load is high and there is a risk of interruptions in the power supply, we focused on
energy consumption during workdays. Therefore, the periods with low consumption
during holidays was removed, and we analyzed a time series of 6544-time steps.

We performed statistical analysis on both aggregated household and industry sectors
and investigated the autocorrelation and partial autocorrelation functions before prediction
was performed. To determine the seasonality in consumption patterns within each sector,
the time series were transformed from the time domain to frequency domain by Fourier
transformations. From the Fourier transforms it is clear that the industry sectors have
a strong seasonality every 24 h and every 165 h, i.e., the seasonality of the industry
consumption is strongly dependent on the weekly pattern, while the households have a
strong seasonality every 24 h and 12 h (see Supplementary Materials Section).

The results of the predictive models in terms of NRMSE show that the ESN provides
the highest accuracy when making short-term predictions. In addition, the simplicity
in implementation and the fast training procedure makes the ESN model an appealing
instrument for time series prediction.

To evaluate the transferability of each model, we trained each model on location 1
(or 2) and used the trained models to predict the energy consumption at location 2 (or 1).
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For transferability predictions, the ESN model does also provide high accuracy results
when predicting at location 2 by use of the model trained on location 1. However, when
the differences in energy consumption in terms of magnitude are large, the ESN model
systematically underestimates the load at location 2, which has significantly larger energy
consumption. For the industry sector, the CNN model outperforms all the other models and
achieves impressive results in the transferability prediction. In particular, the CNN model
captured both the magnitude and consumption pattern with remarkable high accuracy.
In the household sector, where differences in energy consumption in terms of magnitude
were lower, the ESN model again outperforms the other models.

For longer-term predictions, the ARIMA model outperforms all models at all 24-h
forecasting horizons. However, the ARIMA model is limited in that it must be trained
on the same time series that are being predicted. Therefore, the ARIMA model cannot be
transferred effectively. In contrast, the neural networks, and the CNN model especially,
perform well when transferred to a second location. In addition, the CNN model achieves
accurate predictions at multiple forecasting horizons.

The study suggests that productive future research can be undertaken to investigate
the possibility of combining the ESN and CNN models for long- and short-term prediction
purposes. If such a model were able to achieve high prediction results in multiple locations
at both long-and short-term, it would be a valuable prediction tool to use for energy
planning purposes at several locations and sectors with different time series dynamics.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-107
3/14/4/798/s1, Figure S1: Energy demand for the aggregated household sector. Figure S2: ACF and
PACF plots for the energy consumption in households’ sector. The correlation outside the standard
deviations are correlations and not a statistical fluke. Figure S3: ACF and PACF plots for the residuals
after predictions with the ARIMA(1,0,1) model. Table S1: Each hyperparameter is searched in the
interval [min,max]. The parameters in Table S1 are the following: Order of the autoregressive term
(p), order of differentiation (d), and order of moving average term (p). The optimum hyperparameter
configurations for each sector are selected as the one yielding the highest prediction accuracy on the
validation set. The ARIMA(1,0,1) configuration are the model providing highest prediction accuracy
for both industry and household sector. Table S2: The hyperparameter configuration for the trainable
RNNs are specified as: Number of layers (L), number of units per layer (n). The hyperparameter
configuration are trained over 50 epochs. Table S3: The hyperparameter configuration for the CNN
are: Number of layers (L), number of units per layer (n), the convolutional kernel size (k). The
dilation rate dr, specifies how each convolutional layer L, are dilated with a factor a factor 2i. Here i
are the specific layer of the network. The hyperparameter configuration are trained over 50 epochs.
Table S4: Each hyperparameter is searched in the interval [min,max]. The parameters in the table are
the following: Neurons in the reservoir (Nr), connectivity (Rc), noise in the state uptdate (ξ), spectral
radius (ρ), the scaling of input, teaching and feedback weights (ωi, ωo, ωf), and regression parameter
C. The optimum hyperparameter configurations for each sector are selected as the one yielding the
highest prediction accuracy on the validation set.
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