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Abstract: It is very challenging to capture the drag effects for the computational fluid dynamics
numerical simulations of the urban canopy wind environment. This study proposed a novel canopy
drag coefficient model for accurate analysis of the urban wind environment based on a large eddy
simulation, where the drag coefficients varied with quantitatively identified canopy parameters along
with the height. Four computational parameters, namely the average kinetic energy, turbulent kinetic
energy, sub-grid scale turbulent kinetic energy, and sub-grid scale dissipation, were incorporated into
the conventional drag coefficient. The Meixi Lake International Community in Changsha, China, was
considered as a case study. The inlet boundary conditions were provided by the Weather Research
and Forecasting model, and the proposed drag coefficient model was utilized to simulate the wind
field characteristics. The results showed that the drag coefficient was relatively large near the ground,
and it decreased with the increase of height overall. The decay rate of the drag coefficient below
0.4 times the building was significantly higher than the other areas. Finally, compared with the field
measurement data, the proposed model had good accuracy of the simulated wind field compared to
previous approaches, thus offering a reliable model for analyzing the urban wind environment.

Keywords: urban canopy; LES; drag coefficient; wind environment

1. Introduction

A growing trend of urbanization and land surface modification is occurring because
over half of the world’s population lives in urban areas, and this is projected to increase by
two-thirds by 2050 [1]. Urban dwellers lead to an increased need for quality air, which is a
basic requirement for the daily life and productivity of residents [2–4]. However, the urban
atmospheric boundary layer (UABL) in an urban residential area is affected by different
scales of air movement. Many researchers [5–15] have conducted studies on urban wind
environments using numerical simulations.

In numerical simulations of the wind environment in the UABL, the airflow is complex
owing to the drag and shear forces exerted by buildings. Time-dependent airflows, such as
separated flows, high Reynolds number turbulence, and strong three-dimensional flows,
are usually involved. To simulate the urban wind environment accurately, one key factor is
the selection of suitable urban canopy parameters, and substantial research on the UABL
has thus been conducted [16–21]. For example, Zhang [22] simulated the urban wind
environment of a riverside area using a porous media model; however, the porosity and
pressure drop coefficient were subjective because the selected coefficients may not have
reflected the variation in the horizontal and vertical directions.
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In recent years, the urban canopy model has been considered to be equivalent to the
drag force in several studies [17,19,21], and this drag force is then added to the momentum
equations by compiling a source term. However, the drag coefficient varies in the vertical
direction and is very challenging to determine in the model. As a result, many scholars
have ignored the vertical variation in the drag coefficient and defined the coefficient as a
mean value [19], resulting in a relatively large deviation from the actual situation. To obtain
the detailed characteristics of the drag coefficient, drag models with different densities
and heights have been developed in recent years. For instance, Coceal et al. [20] obtained
variation in the drag coefficient with the height using the RANS method, based on wind
tunnel test data reported by Cheng and Castro [16]. Santiago et al. [23] proposed a modified
drag coefficient for a building model with different coverage areas. Hagishima et al. [18]
analyzed 63 different urban models with various heights and coverage areas based on
wind tunnel tests. Kanda et al. [24] conducted experiments in more than 100 actual districts
to obtain detailed parameters of the urban canopy in different districts, thus enriching
the urban canopy parameter database. However, in an actual situation, the magnitude of
the wind velocity near the ground is usually very low, and the drag coefficient near the
surface is often large without consideration of the turbulence effects. Martilli and Santiago
(2007) [21] noted that the drag coefficient decreases with height and the turbulent flux
play a very important role within the canopy. Lien and Yee [25] considered the turbulent
kinetic energy (TKE) and average kinetic energy (AKE) to obtain the drag coefficient
distribution at different heights; however, the drag coefficient distribution near the ground
was not reported.

In particular, the present drag coefficient models are not sufficiently straightforward
for application in practical engineering because the drag coefficient near the ground has an
important impact on the pedestrian-level wind environment. Drag coefficient models that
do not consider the turbulence characteristics cannot easily be adapted for simulating the
wind field characteristics of a ground surface with complex geometry. Especially, the LES
method’s basic concept is to solve the large-scale vortices directly, while the small-scale
vortices are closed with the sub-grid scale SGS. Thus, the SGS TKE and SGS dissipation are
two crucial components of the flow field’s energy composition in the actual simulation, and
as such, it is difficult to capture a high-precision flow field distribution at these locations. It
is clear that studying the drag coefficient near the ground by considering the turbulence
characteristics has theoretical and practical significance.

To address this issue, a novel urban drag coefficient model that incorporates several
key parameters, i.e., the AKE, TKE, sub-grid scale (SGS) TKE, and dissipation, was pro-
posed based on the large eddy simulation (LES) approach in this study. Considering the
Meixi Lake Community in Changsha, China, as a case study, a drag model and parameters
of the average wind profile at the inlet boundary (such as the roughness height, z0, and
zero plane height, d) were introduced to the LES equations through the compiled user-
defined function (UDF) program. The numerical simulation results were compared with
the measured wind field to verify the rationality of the parameter selection. The remainder
of this paper is organized as follows: the methodology is described in Section 2, a valid
case study is presented in Section 3; finally, conclusions and discussion are provided in
Section 4.

2. Numerical Model and Methodology
2.1. Introduction of the Drag Model

A drag force in the airflow usually occurs in the urban canopy layer owing to the
complex geometric characteristics of buildings, trees, and billboards, where it has a corre-
spondence with the square of the velocity [26], as follows:

Di =

∣∣U∣∣Ui

Lc
(1)

where U is the mean velocity, and Lc is the canopy drag length scale.
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According to the theory proposed by Coceal and Belcher [27], the drag effect of a cube
at height z can be equivalently expressed as

D(z) =
1
2

ρU2(z)cd(z)A f dz/h (2)

where A f is the average frontal area per unit for the building, ρ is the air density, U is the
wind velocity, h is the average height of the buildings, and cd(z) is the drag coefficient at
the height of z. The thin averaged volume at height z is given by (1− β)AtdZ, where At
is the total averaged area for the builidng, dz is the small element of the z direction, and
(1 − β) is the fractional volume occupied by air in the canopy. Therefore, with the result
of the equating Equation (1) with a generalized version of (2), the total drag effect can be
expressed as follows:

ρDi =
1
2

ρ
cd(z)∑ A f

hAt(1− β)
|U|Ui (3)

The roughness density is defined as λ f = ∑ A f /At, and the drag force of the urban canopy
is expressed as

Di =
1
2

cd(z)λ f

h(1− β)
|U|Ui =

|U|Ui
Lc

(4)

where Lc is given by the following:

Lc =
2h(1− β)

cd(z)λ f
(5)

The canopy drag length scale is influenced by the canopy roughness. Equation (5)
shows that the urban roughness length is influenced by parameters such as λ f , β, cd, and
h, where λ f , h, and β are constant for actual urban models. However, obtaining the drag
coefficient cd is challenging, and a detailed analysis of the drag coefficient for an urban
canopy is discussed below.

2.2. Set-Up of the Computational Model for Wind Tunnel Validation

To obtain the factors influencing the drag coefficient for a standard building, a nu-
merical simulation was conducted based on the wind tunnel tests reported by Brown [28].
The specific size of the wind tunnel was 18.3 × 3.7 × 2.1 m (L ×W × H), and the cubes
comprised 11 × 7 neatly arranged wood cubes. The size of each cube was 0.15 m in each
dimension (L = W = H); λ f is the cube coverage of the computational domain, which
was equal to 0.25. The layout of the cubes is shown in Figure 1. The drag coefficient was
analyzed for cubes in Row 6, marked with black boxes in Figure 1a.

In the entire computational domain, hexahedral meshes were adopted to ensure high
accuracy. To satisfy the requirements of the Architectural Institute of Japan (AIJ) and
European Cooperation in the field of Scientific and Technical Research (COST) [29,30], the
number of meshes in the three dimensions (length × width × height) was 350 × 240 × 70.
The grid system passed the independence test. The meshes near the ground and the cubes
were encrypted; the height of the first layer was 0.005 m, and the mesh stretching ratio
near the ground surface in the vertical direction was 1.05. The total number of meshes was
5.88 million. All calculations were performed on a workstation with an Intel (R) Xeon (R)
Gold 6226R processor, 32 cores, and 128 GB memory, the time step was 0.0001 s, simulate
30 s and the calculation time of single simulation was about 90 h. The boundary conditions
of the numerical model were consistent with those of the wind tunnel tests in Brown [28].
The average wind velocity at the inlet can be expressed as follows:

uin(z) = ure f

(
z

zre f

)α

(6)
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where ure f is the reference average wind, the reference height zre f = 0.15 m, and the
exponent α = 0.16, the selection of these parameters was based on the wind tunnel test. The
commercial software fluent was employed for the simulation, and the standard LES solver
was used. Table 1 lists the discretization schemes and solution techniques.
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Figure 1. Layout of the cube model. (a) Overall layout of the model; (b) Side view; (c) Plane view.

Table 1. Discretization schemes and solution techniques.

Parameter Type

Time discretization Second-order implicit
Pressure discretization Second-order upwind

Momentum discretization Bounded central difference
Pressure–velocity coupling Pressure-implicit with splitting operators (PISO)

Under relaxation factors 0.3 for the pressure and 0.7 for the momentum

Figure 2 shows the numerical simulation monitored profiles for the cubes in Row 6
(the horizontal direction’s details location as the red points show in Figure 1a). The flow
field features such as wind velocity, pressure, TKE, SGS dissipation, and SGS TKE were
monitored during the simulation process.

Energies 2021, 14, x FOR PEER REVIEW 5 of 20 
 

 

field features such as wind velocity, pressure, TKE, SGS dissipation, and SGS TKE were 
monitored during the simulation process. 

x/H

z/H

0-0.5 1.5 3.5 5.5 7.5 9.5 11.5

1.0

2.0

A B C D E F G

 
Figure 2. Monitored profiles in the computational domain. 

2.3. Results and Validation of the Simulated Wind Field 
(1) Mean wind velocity (U) 

The longitudinal average wind profiles at locations A to D (Figure 2) are shown in 
Figure 3. The open circles represent the simulation results of the present study and the 
solid red points represent the measured values from the wind tunnel test performed by 
Brown et al. [28]. In contrast, the solid black line represents the inlet wind speed profile. 
Figure 3a shows the comparison of wind profile between the inlet and point A. It was 
found that the wind velocity at point A was lower than the velocity of the inlet near the 
ground. However, when z > H, the wind velocity at point A was consistent with the inlet 
because no building blocks the wind field. Meanwhile, it was also found that the velocity 
results of the numerical simulations were compatible with the results of the wind tunnel 
tests, thus validating the numerical simulation. Meanwhile, the mean velocity profiles at 
locations B and C near the ground demonstrated significant fluctuations in comparison 
with location A; in particular, negative wind velocities occurred at some points. This sce-
nario occurred because location A is not influenced by the presence of cubes, whereas 
profiles B to D are heavily affected by cubes. The deviation decreased with increasing 
height, and the wind velocity became steady when the height was more than twice that of 
the cubes. The detailed velocity profile graph is shown in Appendix A. 

0

1

2

3

4

5

-1 0 1 2 3 4

Velocity Profile at location A

   Experiment values
   Simulation values
     Inlet wind profile

 

 

U (m/s)

z/
H

H

 

0

1

2

3

4

5

-1 0 1 2 3 4

Velocity Profile at location B

   Experiment values
   Simulation values
     Inlet wind profile

 

 

U (m/s)

z/
H

H

 
(a) (b) 

Figure 2. Monitored profiles in the computational domain.



Energies 2021, 14, 796 5 of 18

2.3. Results and Validation of the Simulated Wind Field

(1) Mean wind velocity (U)

The longitudinal average wind profiles at locations A to D (Figure 2) are shown in
Figure 3. The open circles represent the simulation results of the present study and the
solid red points represent the measured values from the wind tunnel test performed by
Brown et al. [28]. In contrast, the solid black line represents the inlet wind speed profile.
Figure 3a shows the comparison of wind profile between the inlet and point A. It was found
that the wind velocity at point A was lower than the velocity of the inlet near the ground.
However, when z > H, the wind velocity at point A was consistent with the inlet because
no building blocks the wind field. Meanwhile, it was also found that the velocity results of
the numerical simulations were compatible with the results of the wind tunnel tests, thus
validating the numerical simulation. Meanwhile, the mean velocity profiles at locations B
and C near the ground demonstrated significant fluctuations in comparison with location
A; in particular, negative wind velocities occurred at some points. This scenario occurred
because location A is not influenced by the presence of cubes, whereas profiles B to D
are heavily affected by cubes. The deviation decreased with increasing height, and the
wind velocity became steady when the height was more than twice that of the cubes. The
detailed velocity profile graph is shown in Appendix A.
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(2) Turbulent kinetic energy (TKE)

TKE is an essential index for the fluctuation characteristics of wind fields. Especially
in the near-surface region of the canopy. Figure 4 shows the average TKE profiles of the
simulated model near the ground, where the height H equals 0.15 m. The figures indicate
the values of the TKE increase along the horizontal direction. It was relatively small near
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the ground for points B to E, but the TKE was relatively large near the ground due to the
reverse vortex effect for points F and G.
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(3) SGS TKE and SGS dissipation

The basic concept of the LES method is to solve the large-scale vortices directly, while
the small-scale vortices are closed with the SGS. Thus, the SGS TKE and SGS dissipation
are two important components of the energy composition of the flow field in the actual
simulation. Considering the effects of the sub-grid TKE and sub-grid dissipation allows
the drag coefficient near the ground to be analyzed more accurately. Figure 5 shows the
SGS TKE and SGS dissipation distributions for profiles B to G.
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= = × −
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As shown in Figure 5, the values of the sub-grid TKE were larger than those of
the sub-grid dissipation in the overall trend, and the peak value of the SGS dissipation
reached 0.006. The SGS kinetic energy and dissipation were relatively large in the first three
rows of buildings and tended to be stable from D to G. Generally, the peak value of SGS
kinetic energy and dissipation usually appeared at the average building height. Similar
studies have been reported in Martilli and Santiago [21]. However, B and C’s peak value
appeared at 0.3H, which was mainly due to the grid filtering. Therefore, the effects of the
dissipation on the numerical simulation results should be considered for high-precision
numerical simulations.
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2.4. Proposed Modified Drag Model Procedure

The drag force on the cubes for the vertical and horizontal sections are as shown in
Figure 1, where the shaded area represents a canyon unit. In this case, during the procedure
when the volume integral of the pressure gradient term was transformed into the integral
over the surfaces limiting the volume, an extra term appeared in the momentum equation
that involved the integral of the pressure over the surface of the obstacles [21], and can be
expressed as:

1
ρV

∫
V

∂P
∂xi

dv =
1

ρV

∫
W

PnidW +
1

ρV ∑ j=1,N
i=i,M

∫
W(i,j)

PnidW (7)

where V is the air volume, P is the pressure, W is the external surface of the grid cell, W(i, j)
is the surface area of cube (i, j). The sum is made over all the N and M obstacles present in
the grid cell. ρ is the air density, and ni is the scalar for the i direction.

The equations above can be used to integrate an individual cube at different heights
to obtain the drag effects of individual cubes. Using the results of the CFD model, this term
can be estimated at different heights in the canopy (e.g., for the averaging volumes defined
above, see Figure 1) and for each building canyon unit, which can be expressed as follows:

Dk =
1

ρV

∫
Wcube

PnxdW =
1

ρ(xyzk − H2zk)
× ∑

j=jS ,je

(
Pis,j,k − Pie,j,k

) H
Ncube

zk (8)

where Pis,j,k and Pie,j,k are the pressures at the corners of the cubes; js and je represent the
corners of cubes in the Y direction, and is and ie represent the corners in the X direction,
as shown in Figure 1. Ncube represents the number of grid points divided by the cubes
(Ncube = je − js + 1).

Assuming ∆x = ∆y = 2H in each region, Equation (8) can be simplified as follows:

Dk =
1

ρV

∫
Wcube

PnidS =
1

r3HNcube
∑

j=js ,je

(
Pis ,j,k − Pie ,j,k

)
(9)

The drag coefficients can be also expressed as

Dk = αkcdUK|UK| (10)

where αk represents the cube density.

α =
Hz

xyz− H2z
=

Hz
4H2 − H2z

=
1

3H
(11)

In Equations (9) and (10),

1
3H

cdU|U| = 1
ρ3HNcube

∑
j=js ,je

(
Pis ,j,k − Pie ,j,k

)
. (12)

Therefore,

cd =
1

U|U|
1

ρNcube
∑

j=js ,je

(
Pis ,j,k − Pie ,j,k

)
(13)

cd can also be expressed as follows:

cd =
P

1
2 ρU|U|

(14)

where P =
∑j=js ,je(Pis ,j,k−Pie ,j,k)

2Ncube
.
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As shown in Equation (14), the drag coefficient for the specified section is the pressure
change over the kinetic energy. According to Equations (7)–(14), this method can simulate
the drag coefficient at heights greater than 0.5 times the cube height. However, the velocity
near the ground is usually very small, and the drag coefficient obtained by Equation (14)
near the ground is large. As a result, negative average wind speeds may occur in several
places. Therefore, the drag coefficient model proposed by Coceal et al. [19] cannot be
applied in the near-surface region.

Meanwhile, owing to the blockage of the airflow by cubes and obstacles near the
ground, the wind field is complex and has high turbulence, and the pressure difference
is not only simply caused by the average wind velocity, but also affected by the fluctu-
ating component. Considering turbulence effects such as the AKE, TKE, SGS TKE, and
dissipation, Equation (13) can be modified as follows:

CDmod =
|U|

U
∣∣U2 + vk

2 + v2
εSGS + q2

SGS

∣∣ 1
ρNcube

∑
j=js ,je

(
Pis ,j,k − Pie ,j,k

)
(15)

2.5. Validation of the Variation in the Drag Coefficient with Height

By obtaining the above parameters (the AKE, TKE, SGS TKE, and SGS dissipation),
the drag coefficient distribution can then be determined using Equation (15). Figure 6a
shows the drag coefficient distribution for profiles B to G, revealing that the drag coefficient
relatively large near the ground, and it decreases with the increase of height. Compared
with previous studies, considering the TKE and SGS dissipation with the method in this
study allows the distribution of the drag coefficient to be obtained at lower positions.
Figure 6b shows the average drag coefficient for profiles B to G; the results reported by
Martilli and Santiago [21] are also presented. In Figure 6b, it is worth noting that the drag
coefficients obtained with the proposed model at positions above 0.8 times the cube height,
i.e., 0.8H, agree well with Martilli’s results. However, at heights of 0.4H to 0.8H, the drag
coefficients deviate from Martilli’s results. In particular, at positions below 0.4 times the
cube height, no results were provided by Martilli. The drag coefficient along the height can
be fitted as polynomial functions as follows:

cd(z) = 12.87z2 − 25.25z + 12.92, 0 < z < 0.4 (16)

cd(z) = −81.58z3 + 188.56z2 − 144.4z + 38.1, 0.4 < z < 1.2 (17)

where z = Z/H, 0 < z < 1.2. It should be noted that when z is greater than 1.2, the drag
effects are very small and cd can be considered as equal to 0.
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The drag coefficient distribution given by Equation (16) can also be influenced by λp
in the actual urban canopy layer. To address this problem, different cube densities obtained
by Santiago et al. [23] are fitted as polynomial functions to define parameter γ, as shown in
Figure 7. The fitted parameter, γ, is expressed as follows:

γ = −8.9λp
2 + 2.42λp + 1.229, 0.5 < λp < 0.45 (18)
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The drag coefficient for the urban canopy considering the height and density of cubes
can be finally expressed as follows:

cd(z, λ) = γ ∗ cd(z), 0 < z < 1.2 (19)

3. Case Study

The Meixi Lake International Community [31] was considered as a case study. The
Meixi Lake community is in the west of Changsha, China, and is referred to as the “National
Green Low-Carbon Demonstration New Zone” and “Changsha New City Center”. The
planned population of this community is approximately 4,000,000, thereby forming a
densely populated area. Therefore, selecting the Meixi Lake community as a case study is
of practical importance for assessment of the wind environment.

3.1. Calculation Models and Meshes

The terrain data in the CFD simulations were obtained using the Geospatial Data
Cloud and further processed using Global Mapper [32]. The elevation information of the
mountain terrain model was processed through the format transformation of the geospatial
data. The building model information was from the Arc map. The size of the computational
domain was 10 km (length) × 9 km (width) × 3 km (height), as shown in Figure 8.

Tetrahedral and polyhedron meshes were employed for the numerical simulation. The
grids near the ground and the buildings were refined, and the total number of tetrahedral
meshes for the entire computation domain was 2,565,4861, while the number of polyhe-
dral meshes of the same size was 1,416,5854. Considering the computing efficiency and
computing resources, the polyhedral meshes were arranged in the computational domain
as shown in Figure 9. All calculations were performed on a workstation with an Intel (R)
Xeon (R) Gold 6226R processor, 32 cores, and 128 GB memory, the time step was 0.001 s,
simulate 10 s, and the calculation time of single simulation was about 20 h. The SGS model
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provided by the dynamic Smagorinsky-Lilly Equation [33] was used to account for the
turbulence. The discretization schemes and solution techniques were the same as those
presented in Table 1.
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3.2. Mesoscale Coupling Wind Profile and Wind Velocity Profile Parameters

A multi-scale coupling technique [32] combining weather research forecasting (WRF)
and computational fluid dynamics (CFD) was used to obtain the wind inlet boundary.
Figure 10 shows the coupling flow chart, the detailed set-up of the WRF-CFD coupling is
shown in Appendix B.

The average wind velocity for the numerical simulation of the urban canopy can
be obtained through the coupling of the WRF and CFD approaches. However, the first
WRF layer was 25 m in height, and velocity values below 25 m could not be captured.
However, in the CFD model, a surface with a height of 25 m was important in the UABL. A
logarithmic wind profile equation was used to describe the wind field near the ground, as
follows: z0

u =
u∗

K
ln
(

z− d
z0

)
(20)

where u is the average wind velocity, u∗ is the surface friction velocity, K is the von Karman
constant (K = 0.4), z0 is the surface roughness height, and d is the height of the zero plane.
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According to the Macdonald equation [34], the displacement height, d, of the actual
urban canopy can be expressed as follows:

d
Hmax

= c0X2 +
(

a0λb0
p − c0

)
X (21)

X =
σH + Have

Hmax
, 0 ≤ X ≤ 1.0 (22)

where a0, b0, and c0 are regression parameters with values of 1.29, 0.36, and −0.17, respec-
tively; σH Standard deviation of the building height. X is defined as the ratio of the part
above the average height (Have + σH) to the maximum height (Hmax).

In accordance with the Macdonald equation, the correction equation for z0 (the rough-
ness height of the urban canopy) can be expressed as follows:

z0

z0(mac)
= b1Y2 + c1Y + a1 (23)

where Y = λPσH
Have

, and b1, c1, and a1 are regression parameters with values of 0.71, 20.21,
and −0.77, respectively; z0(mac) is the roughness height calculated using the Macdonald
equation [34].

Based on the above equations, parameters d and z0(mac) can be quantified as having
values of 8.8 and 1.53 m, respectively, by considering the amended nonlinear regression
method. Based on the logarithmic interpolation method, the wind velocity profile can be
expressed as follows:

u =
u∗

K
ln
(

z− 8.8
1.53

)
(24)

where u∗ = 0.23 m/s.
The wind velocity field above 25 m was provided by the WRF, while the polynomial

interpolation method [33] was adopted for the wind field below 25 m. By combining these
two wind fields, the inlet wind velocity boundary could thus be determined.

3.3. Drag Model Parameters

According to the planning map of Meixi Lake community and the urban database pro-
posed by Kanda [24] (http://www.ide.titech.ac.jp/~kandalab/download/LES_URBAN/
index.html), it was found that the average height of the study area was approximately
25 m, and the maximum height of the buildings was 240 m. Therefore, σH is 15 m, λ f and
λp are taken as 0.34 and 0.17, respectively, and cd can be expressed as follows:

cd(z) = γ ∗
(

12.87z2 − 25.25z+12.92
)

(25)

http://www.ide.titech.ac.jp/~kandalab/download/LES_URBAN/index.html
http://www.ide.titech.ac.jp/~kandalab/download/LES_URBAN/index.html
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γ = −5.6λp
2 + 1.31λp + 1.01 (26)

Lc =
2 ∗ 40(1− 0.17)

0.34 ∗ Cd(z)
=

195.3
cd(z)

(27)

Thus, the expression for the drag force is Di =
cd(z)∗|U|Ui

195.3 . The source terms of the N–S
equation are modified using the UDF script, and the drag force was then assigned to the
governing equations for the LES, the input flow chart of UDF is shown in Figure 11.
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3.4. Results and Discussion

Three cases were considered in the numerical simulation to verify the accuracy of the
proposed canopy resistance model. In Cases 1 and 2, the drag effect was considered in the
N–S equation by adding corresponding source terms; the proposed method was utilized in
Case 1, while in Case 2, a constant drag coefficient of 3.0 was employed according to the
method described in Belcher et al. [35]. However, in Case 3, no drag effect was considered.
Except for the source terms, the other boundary conditions and calculation parameters
were identical for Cases 1 to 3. The acceleration factor contour of Case 1 is shown in
Figure 12.
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Four handheld anemometers (XM-AS8336) were installed at the Meixi Lake com-
munity to monitor the real-time wind field data on the day selected for the numerical
simulation. The accuracy of the anemometers was 0.1 m/s, and their positions are shown
in Figure 13.
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Figure 13. Overview of the wind speed monitoring stations.

The time-history of the wind velocity at the four stations was obtained from the
anemometers, and the wind velocity data were averaged hourly. Station 1 was a sightseeing
park, Station 2 was an events plaza, Station 3 was a business mall, and Station 4 was a
middle school. Figure 14 shows comparisons between the field measurement and numerical
simulation results. It is noteworthy that the simulation results for the wind velocity
time-history obtained using the proposed drag model (Case 1) agree well with the field
measurement values, whereas the case without consideration of the drag coefficient (Case 3)
results in large discrepancies with the field measurements.
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Figure 14. Comparison of the wind data time-histories for different stations: (a) Station 1, (b) Station 2, (c) Station 3, and 
(d) Station 4. 

Based on the mean wind velocity, the performance of the different methods can be 
evaluated at a macro level. Table 2 summarizes the comparison of the time-averaged mean 
velocities (from 10:00–17:00) between the field measurements and numerical simulations. 
The mean velocities obtained using the proposed method (Case 1) were close to the field-
measured values for Stations 1–4. However, the mean velocity values obtained using the 
other two methods were greater than the measured values. 

Table 2. Mean velocities for different cases. 

Locations 
Measured 

(m/s) 
Proposed Method, Case 1 

(m/s) 
Constant Drag Coefficient, Case 2 

(m/s) 
Without Drag Coefficient, Case 3 
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Based on the mean wind velocity, the performance of the different methods can be
evaluated at a macro level. Table 2 summarizes the comparison of the time-averaged mean
velocities (from 10:00–17:00) between the field measurements and numerical simulations.
The mean velocities obtained using the proposed method (Case 1) were close to the field-
measured values for Stations 1–4. However, the mean velocity values obtained using the
other two methods were greater than the measured values.

Table 2. Mean velocities for different cases.

Locations Measured
(m/s)

Proposed Method, Case 1
(m/s)

Constant Drag Coefficient, Case 2
(m/s)

Without Drag Coefficient, Case 3
(m/s)

Station 1 2.91 3.01 3.47 3.90
Station 2 3.66 3.59 4.23 4.61
Station 3 2.91 2.98 3.47 3.93
Station 4 2.57 3.00 3.83 4.40

In Figure 15, histograms showing the measured values and different case simulation
values are analyzed. The mean value and the standard deviation in Figure 15 can represent
the speed deviation and discrete for each case. Using the measured wind speed as the
reference value (vertical line in Figure 15), it is clear that the mean velocity values of the
proposed method were in better agreement with the field-measured values than the mean
values obtained with the other two methods, indicating the superiority of the proposed
method. Stations 1 and 3 were located in the lake, where the wind field was not blocked by
buildings or mountains; hence, the standard deviation for the different cases maintained
the same level. However, because the wind fields at Stations 2 and 4 were affected by
buildings and obstacles, the standard deviations of Cases 2 and 3 exhibited some deviations
from the measured values.
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4. Conclusions

Previous studies about the drag coefficient on the fluid in urban canopy usually
consider the mean wind. The drag coefficient models are not sufficiently straightforward
for application in practical engineering. Drag coefficient models that do not consider the
turbulence component cannot be adapted for simulating the wind field features near the
ground surface. However, the drag coefficient near the ground has an essential impact
on the pedestrian level wind environment. In this study, a novel canopy drag model was
proposed to amend the drag coefficient for a typical urban canopy at various heights based
on the LES. The effects of factors in the LES, such as the AKE, TKE, SGS dissipation, and
SGS TKE, were considered to amend the drag coefficient variations with building height,
and drag coefficient equations for the urban canopy were presented considering the height
and density of buildings. Meanwhile, the multi-scale coupling wind velocity boundary
was utilized to obtain the inlet boundary and obtained the detailed wind field distribution
of the Meixi Lake community. The findings are summarized as follows:

(1) The mean velocity profiles near the ground demonstrate significant fluctuations.
When the height is more than twice that of the buildings, the wind profile is consistent
with the inlet profile. The maximum value of TKE usually appears near the height
of 1.2H. High-precision numerical simulations should consider the effects of the SGS
TKE and SGS dissipation on the numerical simulation.

(2) Compared with the current studies, the drag coefficient at positions below 0.4 times of
building height was obtained. The result shows that the drag coefficient is relatively
large near the ground and decreases with the increase in height. The decay rate of
drag coefficient below 0.4H is significantly higher than the height greater than 0.4H.

(3) The numerical simulation considered three types of drag models (e.g., the proposed
method, Belcher’s method, and no drag effect), comparing the mean values and
standard deviations with the measured velocities. It found that the proposed model
simulation results were in good agreement with the measured values. Belcher’s
method’s accuracy was second-best, while that of the model with no drag effect was
the worst.

In the present study, the drag coefficient distribution varied with the height and the
isotropic surface condition was employed in the wind environment simulation. However,
the actual urban canopy is anisotropic due to the complex earth surface. Thus, future
research will consider the anisotropic parameters of complex surfaces and further improve
the simulation accuracy of the urban canopy wind field.
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Abbreviations

U(z) mean wind velocity at the height of z
U0 mean wind velocity at the height of h
h0 reference height
α power law exponent
u∗ shear velocity of the flow
z0 roughness height
∆t time step
AKE average kinetic energy
SGS sub-grid scale
TKE turbulent kinetic energy
K Von Kármán constant
d size of grids near the ground
εSGS sub-grid scale dissipation
qSGS sub-grid scale turbulent kinetic energy
ure f reference average wind
zre f the reference height
H height of the building model
Di drag force
Lc canopy drag length scale
cd(z) drag coefficient drag at the height of z
A f average frontal area
β fractional volume
P pressure
W outer surface area of the buildings
W(i, j) first surface area of cube (i, j)
ni the scalar for the i direction
Pis,j,k the pressures at the corners of the cubes
js, je the corners of cubes in the Y direction
is, ie the corners in the X direction
αk cube density
Ncube number of grid points divided by the cubes
λp building density
λ f frontal area density
γ fitted parameters
X the ratio of average height to the maximum height
Hmax the maximum building height
a, b, c regression parameters
z0(mac) Macdonald roughness height
σH standard deviation of the building height

Appendix A
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The combined velocity profile of A-Dare shown in Figure A1. It shows that the wind
velocity near the ground was lower than the inlet velocity, indicating that the buildings
have an obvious blocking effect on the wind field. It also found that the wind velocity
at points A to D changed very little. It shows that the wind field tends to be stable after
several buildings. Meanwhile, both profiles were fitted by a logarithmic form of Equation
(18), and the fitted values are shown in Table A1. The results show the Zref and α increased
with the distance and then tends to be stable after passing several buildings.

Table A1. Fitted values.

Location zref α Adj. R-Square

Inlet 0.15 0.16 100%
Point A 0.28 0.34 0.897
Point B 0.38 0.67 0.75
Point C 0.38 0.68 0.73
Point D 0.39 0.662 0.77

Appendix B

Table A2. Nesting information of the five grids/domains.

Domain Grid Numbers Grid Span
(km) Size (km × km) Time Step (s) Layer

Numbers

1 50 40.5 2025 × 2025 243 50
2 91 13.5 1228.5 × 1228.5 81 50
3 161 4.5 724.5 × 724.5 27 50
4 181 1.5 271.5 × 271.5 9 50
5 101 0.5 50 × 50 3 50

Note: Grid numbers, grid span, and size are the parameters for horizon direction meshes; layer numbers represent
the vertical direction meshes.
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