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Abstract: Certified electric vehicle power converters can inject DC current into the AC grid if they fail.
Verification of DC injection by electric vehicle supply equipment can be a cost-effective extra measure
to ensure power quality from a variety of plugged-in electric vehicles. As electric vehicle supply
equipment typically performs high-accuracy revenue energy metering, we propose that measurement
of AC current and DC injection with a single sensor is the most economically efficient design. This
article presents an integrated shunt current sensing system with separation of AC and DC signals for
concurrent revenue metering and DC injection detection. It also shows how the combined sensor is
integrated into 19.2 kW single-phase electric vehicle supply equipment, and outlines how the design
would be extended to 100 kW three-phase electric vehicle supply equipment. The prototype can
detect DC injection of ≥400 mA in an AC current up to 80 A in accordance with the IEEE 1547-2018
standard. The prototype can also conduct revenue metering within the 1.0 accuracy class. The
prototype does not have high power dissipation at high currents typical for shunt systems. Finally,
the prototype is less costly than common electric vehicle supply equipment revenue metering CT
systems with the addition of the popular Hall-effect sensor.

Keywords: DC injection; current measurements; electric vehicles; bidirectional charging; vehicle to
grid; electric vehicle supply equipment; shunts; sensor systems and applications; power quality

1. Introduction

Today’s power generation systems include a variety of distributed energy resources
(DERs), which are capable of supplying AC to the grid when it is demanded [1]. All DER
must ensure power quality by limiting the DC injection to less than 0.5% of the full rated
output current, according to the “Limitation of DC injection” section in the IEEE 1547-2018
standard [2]. DC injection is when a small portion of DC current is superimposed on an AC
current during power conversion. Significant amounts of DC injection reduces the power
quality by causing a variety of negative effects on other grid equipment [3,4].

Electric Vehicle (EV) batteries can be used as short-term storage for excess energy gen-
erated by renewable sources such as wind and solar. This energy can then be injected back
to the grid during peak hours for rapid response to electricity demand. This technology,
developed at the University of Delaware, is called Vehicle to Grid (V2G) [5].

An important part of a V2G system is the Electric Vehicle Supply Equipment (EVSE).
V2G aware EVSEs are capable of controlling single or three-phase power flow between a
vehicle and the grid in accordance with an appropriate control signal [6]. Because of the
possibility of power injection back to the grid, we propose that EVSE must verify the DC
injection level from whatever EV might be connected. Verification of DC injection by the
EVSE can be a cost-effective extra safety measure, as DC can be injected even from certified
EVs’ power converters if they fail. DC injection is possible with a unidirectional (charge
only) power converter in the EV, but even if only because regulators are more wary of
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bidirectional charging, we consider it especially important to detect DC injection in this
case.

Typical EVSE must conduct high accuracy AC current measurements to meet revenue
metering requirements of utilities and regional transmission operators (RTOs) [7–9]. The
least expensive implementation is to add DC injection detection functionality to revenue
metering and to employ a single sensor for both types of measurements.

As shown in previous research [6], there are several existing methods of DC injection
mitigation that can be implemented by the power electronics of a power converter [10–12].
However, none of them are suitable, to the extent possible, for EVSE as they are a gateway
through which different EVs plug in, with their own power converters. Preventive methods
are implemented by the inverter and integrated into the inverter’s circuitry. An EVSE
must sense, not prevent, DC injection since it is a separate device, protecting the building
equipment and grid from a variety of EVs. As a result, EVSE application requires a new
solution compatible with different types of power converters.

This paper presents the design, prototype and validation of an integrated shunt current
sensing system with concurrent revenue metering and DC injection detection capabilities
for 19.2 kW single-phase EVSE with perspective extension to 100 kW three-phase EVSE.
As a result, the system can be a cost-effective way to connect EV equipment and the grid,
preventing faulty injection currents from going into the AC grid by detecting the dangerous
level of DC injection and interrupting the connection.

2. Prototype Design
2.1. System Requirements

The current sensing system requirements for bidirectional EVSE are listed in Table 1.

Table 1. Current metering system requirements for single-phase and for three-phase Electric Vehicle
Supply Equipment (EVSE).

Parameters
Requirements

Single-Phase Three-Phase
(19.2 kW) (100 kW)

Voltage (L-N) 120 V, 230 V 230 V, 277 V, 347 V
DC injection limit 0.5% of Irated 0.5% of Irated
DC injection detection accuracy 20% 20%
at the limit value
AC current metering accuracy classes 0.5, 1.0, 2.0 0.5, 1.0, 2.0
Irated 80 A 120 A

First, the system must be suitable as much as possible for global utility voltages. Sec-
ond, after detecting DC injection, the sensing system should disable charging/discharging
if the DC injection level exceeds 400 mA for single-phase units and 600 mA for three-phase
units with respect to the “Limitation of DC injection” section in IEEE 1547-2018 standard
(see Section 1). As DC injection detection accuracy requirements are not specified in the
standard, the authors estimated accuracy of 10–20% to be sufficient for proper detection of
DC injection.

In addition to DC injection detection, the sensing system should allow for AC current
measurements up to Irated with required accuracy (see Table 1). The EVSE metering accuracy
classes, listed in Table 1, are measured at a low and a high current of the EVSE under
test [13]. Low current is defined as 10% of the rated current. High current is defined as
85% of the rated current according to [14]. Accuracy class criteria are defined in [14] with
reference to [9].

Ideally, the sensing system should meet all three accuracy classes to fulfil the revenue
metering requirements of a great variety of North American and European RTOs. At the
same time, the system performance within 1.0 or 2.0 accuracy classes will be sufficient for
North American markets, such as PJM [15].
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Finally, the authors are aiming for low total system costs to facilitate mass production
of EVSE.

2.2. Selecting the Current Sensor

The most economical way to implement the system is to measure AC current along
with DC injection with a single device. Currently, AC current in University of Delaware’s
EVSE is measured by the most common EVSE current sensor: The current transformer
(CT). Unfortunately, due to its incapability of DC current detection, CT cannot serve both
purposes [6].

A great variety of current sensors are presented on the market and as research proto-
types. While they demonstrate outstanding performance results, not all of the sensors are
able to meet all the EVSE system requirements (see Table 1). For instance, the Hall-effect
on-chip sensor, presented in [16], and magnetoresistive sensor, presented in [17], show
promising performance results. However, they have a limited operating current range
much below the range required for the application in question. While the authors that
the current range could be extended in the future, no results are currently presented. In
addition, reference [6] demonstrates that commercially available current sensors such as
Rogowski coils, Hall-effect sensors, anisotropic magnetoresistance (AMR) sensors and
giant magnetoresistance (GMR) sensors are not suitable for the application in question.
For instance, Rogowski coil is not capable of detecting DC current, GMR sensor has lim-
ited operating current range and Hall-effect and AMR sensors lack standards-required
AC accuracy at small currents. Reference [6] also demonstrates that shunt, fluxgate and
tunneling magnetoresistance (TMR) current sensors are the most promising candidates as
they are able to meet all the system’s requirements. Considering the cost of fluxgate, and
the complexity and limited availability of TMR sensors, shunt was selected from the list of
suitable sensors as the simplest and inexpensive solution.

2.3. Shunt Current Sensor Operating Principle

A shunt is one of the simplest current sensing techniques capable of measuring both
AC and DC current. The fundamental operating principle of a shunt is Ohm’s Law of
Resistance. The measured voltage drop across the shunt is proportional to the current
flowing through the sensor [18].

In addition to AC and DC measurement capability and simplicity, shunts are a low cost
current sensing solution with an acceptable level of accuracy. Typical accuracy numbers
for a shunt are ±0.1%, ±0.25%, ±0.5%. Such high precision shunts are made possible
by making them out of low thermal drift alloys, which can have a thermal coefficient of
resistance (TCR) of around <20 ppm/◦C [19].

The potential drawbacks of shunt-based current sensors include: The absence of
galvanic isolation, power dissipation in the shunt itself producing heat and a need for
signal amplification due to a voltage drop of only a few micro-volts [20,21].

2.4. Prototype System Components

The single-phase system block diagram is presented in Figure 1. The current moni-
toring system is integrated into the EVSE hardware and consists of two major blocks: The
current sensor hardware block and the micro controller signal processing block.

The sensor part is comprised of a shunt resistor integrated into a latching relay
manufactured by KG Technology, Inc. The relay’s primary function is to de-energize the
EV’s connection point when a vehicle is not actively charging or providing grid services.
It is also used as the disconnection element in the EVSE’s integrated residual current
device (RCD, not shown; also known in North America as a ground-fault circuit interrupter
(GFCI)). It can also be used to disconnect the circuit in the event of a DC injection fault if
the vehicle fails to comply with a request to stop charging/discharging.
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Figure 1. Current sensing single-phase system block diagram.

There are two readout circuits for the single shunt sensor. In the first, the AC com-
ponent is extracted via a signal isolation transformer (TTC-5036). This signal is passed
directly to the one of the current inputs of a Vango 9003 metrology chip. This chip was
designed primarily for use in smart energy meters.

In the second circuit the shunt signal is captured by a unity gain difference amplifier
(AD8479). This amplifier is designed for high-voltage high-side sensing applications and,
therefore, has a high input common mode voltage range and a high CMRR. The AD8479
requires a ±15 VDC power supply. In the proposed design this dual 15 VDC power supply
is provided by a dual boost power converter (LT1945EMS) powered by the same AC-DC
LPF-16-12 power supply that powers the rest of the EVSE.

While the DC injection detection circuit fails to block all of the AC common-mode
signal, only the DC component is of interest. The Vango 9003 is capable of isolating AC and
DC components of its analog inputs and, therefore, the parasitic common-mode voltage at
the output of the amplifier does not impact the measurements. A first-order RC low pass
filter with cut-off frequency of 1 Hz is included to decrease the AC signal component to
prevent saturation of the 9003’s inputs if the particular amplifier has relatively low CMRR.
The filter has a gain of −17.5 dB at 60 Hz frequency.

The signal is then processed by the Vango 9003 metrology chip. As mentioned above,
the signal is split into AC and DC components by a decimation filter. As a result, the DC
injection value can be detected and compared with the threshold for further actions like
error message generation, requests for the vehicle to stop charging and/or opening the
relay. Vango 9003 updates AC and DC measurements once per 20 ms and stabilizes in
80 ms.

All the elements are intended to be integrated into a printed circuit board (PCB) which
also provides residual current detection and activates the safety relay. However, due to
the timing and cost of the board fabrication constrains, the proof-of-concept prototype
presented in this paper is designed on a separate small PCB board attached to the main
one in several connection points.

This single-phase design can be extended to three phases by installing shunt sensors
and signal extraction circuitry for each of the three phases. The Vango 9003 is capable of
single and three-phase metering so there is no need to change the metering chip or to add
more of them (Figure 1 shows utilization of two separate Vango 9003 microcontrollers for
AC measurements and DC detection. We believe, however, that only one 9003 is required
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if DC detection is performed with the microcontroller’s auxiliary analog input with each
phase being measured in turn. This solution will reduce the total cost of the system, which
is critical for mass production of EVSE.)

Specifications for the primary components of both the single and three-phase systems
can be found in Table 2.

Table 2. Main design parts specification.

Part Name Part Number Specifications

Relay with K237X-S006P Max current rating: 100 A
shunt integrated -2AT-C946 Shunt resistance: 280 µΩ

(single-phase) Shunt tolerance: ±5%
Shunt Temperature Coefficient

of Resistance (TCR): 0–15·10−6 (◦C)−1 (10–80 ◦C)

Relay with K316X-S006P Max current rating: 120 A
shunt integrated -3BT-C1047 Shunt resistance: 280 µΩ

(three-phase) Shunt tolerance: ±5%
Shunt Temperature Coefficient

of Resistance (TCR): 0–15·10−6 (◦C)−1 (10–80 ◦C)

Signal transformer TTC-5036 Frequency range: 200 Hz–4 kHz
Voltage isolation: 1875 Vrms@1 s

Difference AD8479 VCM = 600 V
amplifier Vs = ±15 V

CMRR = 80 dB–90 dB
Gain = 1

Signal processing Vango9003 Three-phase multi-functional
microcontroller energy meter

2.5. Design Challenges
2.5.1. Single Sensor for AC and DC Measurements

As was discussed in Section 2.2, the solution should employ a single sensor for both
AC and DC measurements. The challenge in this approach is that the AC signal to be
measured is two orders of magnitude larger than the expected DC signal (see Table 1), and,
therefore, it is complicated to measure them effectively simultaneously.

2.5.2. High-Side Current Sensing

Due to the structure of the U.S. utility system and the EVSE, the only way to measure
current with a shunt is high-side current sensing. This implies the presence of extremely
high input common-mode voltage (Table 1) relative to the signal of interest, which makes
it impossible to measure the AC current with the required precision with the typical high-
side current sensing approach of an amplifier designed for this purpose. This is due to
the presence of parasitic common-mode voltage at the output of the difference ampli-
fier, which is significantly greater than the allowable error of AC current measurements.
Based on the required AC current metering accuracy, the minimum AC current to be
measured (Section 2.1) and the shunt resistance R = 280 µΩ, the allowable voltage error
is Verror = 11.2 µV ± 5% due to the shunt tolerance. The ten AD8479 unity gain difference
amplifier’s output voltages were measured in the presence of 120 V common-mode voltage
with no current flowing through the shunt. Test results show the parasitic voltage Vp to
be equal to 3.36 mV to 12 mV depending on the common-mode rejection ratio (CMRR) of
the particular amplifier being tested (Table 2). These results are in line with the theoretical
calculations below:

Vp = Ad(V+ − V−) +
1
2

Acm(V+ + V−) (1)

where differential gain Ad = 1 and input voltages V+ = V− = 120 V (current through the
shunt I = 0 A).
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Common-mode gain Acm can be obtained from the equation:

CMRR = 20 log10(
Ad

Acm
) dB (2)

where CMRR is between 80 dB and 90 dB.
After calculating Acm, we can obtain the value of Vp from (1), so that Vp equals 3.8 mV

to 12 mV. The measured minimum Vp is lower than the calculated value. The difference
could possibly be a result of the exceptional performance of one particular amplifier with
CMRR above data sheet specification. Alternatively, it could be a result of a measurement
error due to a difficulty in measuring very low signals accurately. Nevertheless, the
difference does not affect the overall conclusion.

2.5.3. Power Dissipation and Energy Losses

Due to the shunt being installed into the conductive path, power dissipation and
associated energy losses occur. This needs to be considered in the design.

2.6. Power and Energy Losses due to the Shunt

As discussed in Section 2.5.3, the shunt power dissipation must be considered as a
potential problem due to excessive heat generation and energy/financial losses. In order to
estimate the problem, the following calculations are considered:

Ploss = I2R (3)

where Ploss is continuous power loss across the shunt, I = 60 A (typical operation),
R = 280 µΩ. We assume an EV performs a regulation service (20% duty cycle, dura-
tion treg = 22 h and duration of charging tch = 1 h/day). Therefore energy loss Eloss can be
calculated:

Eloss = Ploss(tch + treg · 0.2) = 5.44 Wh/day (4)

or ∼2 kWh/year.
Typical energy cost in the U.S. is approximately 12 cents/kWh [22]. Consequently the

losses due to the shunt would be approximately ∼30 cents/year, this is inconsequential
relative to the cost-savings over the incumbent solution (approximately $3 compared to
$14 for the BCT-013-200 CT ) [23].

An additional concern related to the heat generation at high currents is the thermal
effect on the accuracy of the shunt. However, considering the TCR of the shunt and the
temperature rise in EVSE operating at 60 A (11 ◦C) [24], the shunt can operate within the
accuracy specification up to extreme high ambient temperatures (40–50 ◦C).

3. Prototype Validation

We tested the prototype against three major requirements: The accuracy of bidirec-
tional (EV charging/discharging) AC current measurement, the DC injection detection
accuracy at the limit value of 400 mA and the potential effect of a large AC current on DC
injection detection.

3.1. Accuracy of AC Current Measurements

Table 3 shows bidirectional AC current measurements from the Vango 9003 AC RMS
channel using the prototype after the initial coarse hand calibration.
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Table 3. AC current measurements for charging and discharging.

Charging

Ire f (A) Im (A) S(Im) (A) Bias error (%) Precision error (%)

6 6.15 0.055 2.5 0.89
10 10.14 0.052 1.38 0.52
15 15.09 0.041 0.57 0.37
20 20.09 0.041 0.43 0.20
35 35.2 0.000 0.57 0.00

Discharging

Ire f (A) Im (A) S(Im) (A) Bias (%) Precision error (%)

6 5.93 0.052 1.1 0.87
10 9.96 0.052 0.38 0.52
15 15.95 0.055 0.33 0.37
20 19.99 0.041 0.07 0.20
35 35.06 0.052 0.18 0.15

The reference AC current Ire f was provided by a Calmet C300B three-phase power
calibrator and tester with a rated accuracy of 0.05%. Reference currents of 6 A, 10 A, 15 A,
20 A and 35 A were applied across the shunt in a presence of a common mode voltage
Vcm = 120 V (L-N single-phase). (The system was tested for linearity up to 80 A. These
measurements are not shown in Table 3 and were not considered for the accuracy class
estimation). The mean Im, standard deviation S(Im), bias error and precision error were
calculated for each value of a reference current [25]. Presumably assuming that bias error
can be calibrated to near 0 value after careful fine calibration, the precision error is reported
as accurate.

Note that only currents of maximum and minimum current test conditions were
considered for the system’s accuracy class estimation (see Section 2.1). Other measurements
are provided only for a reference. The measurements demonstrate that for charging and
for discharging, the sensing system meets 0.5 accuracy class requirements for maximum
current of 35 A, but the system does not meet the same class requirements for a minimum
current of 6 A. Note that the sensor satisfies the requirements for 1.0 class accuracy for
both test conditions.

In addition, we believe, that when the prototype circuit is integrated into the RCD
board, it will improve errors resulting from the current prototype’s imperfect connec-
tions. Therefore, for further calibration and error reduction, the prototype circuit must be
integrated into the main board (see Section 2.4).

3.2. DC Injection Detection
3.2.1. Accuracy of DC Injection Detection

In order to determine DC injection detection accuracy for positive and for negative
DC injection, a Keithley 2410 SourceMeter was used to supply high precision DC current
(0.034% source accuracy) of −1 A to 1 A through the shunt sensor, and the Vango 9003 DC
channel’s response was recorded.

These data are illustrated in Figure 2, which on the y-axis shows supplied DC cur-
rent and on the x-axis shows linear function of DC current as measured by the current
measuring system.
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Figure 2. Setting the DC injection alarm threshold for positive (right line) and negative (left line) DC
injection.

Each unit on the x-axis represents 33 mA. The small horizontal lines show the mean
and a standard deviation of each 20 measurements at 100 mA intervals. The DC injection
alarm threshold settings for positive (+400 mA) and negative (−400 mA) injections are
depicted by red vertical lines. These thresholds are set at one standard deviation below
400 mA (or above −400 mA) to ensure that in 84% of the cases, DC injection will not exceed
the limit of 400 mA. Specifically, σ = 33 mA (8.25% accuracy) for positive DC injection and
σ = 66 mA (16.5% accuracy) for negative DC injection (the distribution around the positive
threshhold is larger; it is a coincidence that sigma is twice the negative value). Setting the
threshold at one standard deviation implies that the probability of a single non-compliant
measurement failing to producing an alarm is 16%. Figure 2 shows the red threshholds
already adjusted by one sigma closer to 0 mA.

3.2.2. Effect of Large AC Current on DC Injection Detection

An important factor potentially affecting the accuracy of DC injection detection is the
presence of a large AC signal on the same line. In order to determine the effect of a large
AC current on a DC injection reading, AC currents of 0.001 A and 80 A (Irated for 19.2 kW
single-phase EVSE) were applied across the shunt. The test current was provided by a
Calmet C300B three-phase power calibrator and tester with a rated accuracy of 0.05%. The
output of the DC injection channel was recorded at two AC current values. Assuming that
each population is normally distributed, a two-sample t-test of two populations without
assuming equal variances (Welch’s t-test) was applied. The t-test result confirms the null
hypothesis at the 5% significance level. Therefore, we conclude that DC injection can be
detected in the presence of large AC currents without any significant distortion of the DC
injection readings.

3.3. Prototype System Cost-Effectiveness

A comparison of the approximate cost of the system currently in use on single-phase
EVSE units vs. that of the prototype is provided in Table 4. Cost estimate does not include
parts with price below $0.5.
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Table 4. Systems cost comparison for single-phase Electric Vehicle Supply Equipment (EVSE).

CT + Hall Effect Sensor Shunt Prototype System

Part No Qty Price Part No Qty Price

BCT-013-200 CT 1 $14 Shunt 1 $3
Vango 9003 1 $3.15 Vango 9003 1 $3.15

LEM LA-150P 1 $19.04 AD8479ARZ-RL 1 $4.25
TTC-5036 1 $2.52

LT1945EMS 1 $2.60

Approximate total cost $36.19 $15.52

For the system in use (the left section) prices are listed for the major components: CT
BCT-013-200 and Vango 9003 metrology chip. The Hall-effect sensor LA-150P with current
range up to 150 A was added to the cost comparison to represent an additional cost for DC
injection detection. (Note that LEM LA-150P was not tested for the ability to detect a small
DC injection and is presented only for a cost comparison.) For our prototype shunt system
(the right section) prices are listed for a shunt, Vango 9003, difference amplifier AD8479ARZ-
RL, isolation transformer TTC-5036 and a boost converter LT1945EMS. The prototype
system’s approximate total cost is less than half that of the CT and Hall-effect sensor.

3.4. Future Work

Going forward, the shunt sensor readout circuitry and the 15VDC dual boost converter
PCBs should be integrated into the RCD board in the existing EVSE design.

Next, fine calibration of the sensing system for bidirectional AC current measurements
must be performed to reduce bias error to near 0 value. The software would also be updated
to respond appropriately to the DC injection information by issuing an error message and
opening the safety relay.

Finally, these designs and concepts should be extended to three-phase EVSE.

4. Conclusions

A shunt-based AC and DC current sensing system for single-phase EVSE has been
designed, prototyped and tested. This prototype has a potential to replace the CT based
system currently in use in mass production EVSE. The new system is independent of the
type of inverter used in any EV and thus is capable of interconnection with all types of EVs.

The prototype can simultaneously conduct high precision revenue metering and detect
DC injection into the grid by EVs’ on-board equipment in case of a fault. This prototype is
cost-effective relative to the system in use with added DC sensor.

Assuming fine calibration, the systems meets 1.0 accuracy class requirements for
revenue metering.

The prototype can detect DC injection of 400 mA or more in AC signals up to 80 A.
DC injection detection resolution is 33 mA. The accuracy of DC injection detection meets
the accuracy requirements stated in Table 1. Due to extremely low shunt resistance, the
prototype does not exhibit significant power losses at high currents, in contrast with other
shunt systems.
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