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Abstract: The need to reduce energy consumption in buildings is an urgent task. Increasing the use
of calibrated building energy models (BEM) could accelerate this need. The calibration process of
these models is a highly under-determined problem that normally yields multiple solutions. Among
the uncertainties of calibration, the weather file has a primary position. The objective of this paper
is to provide a methodology for selecting the optimal weather file when an on-site weather station
with local sensors is available and what is the alternative option when it is not and a mathematically
evaluation has to be done with sensors from nearby stations (third-party providers). We provide a
quality assessment of models based on the Coefficient of Variation of the Root Mean Square Error
(CV(RMSE)) and the Square Pearson Correlation Coefficient (R2). The research was developed on a
control experiment conducted by Annex 58 and a previous calibration study. This is based on the
results obtained with the study case based on the data provided by their N2 house.

Keywords: weather data; calibration; sensors; energy simulation; sensors saving; methodology;
Building Energy Models (BEMs)

1. Introduction

The building energy model (BEM) is a key element when speaking about building
analytics and control applications, such as model predictive control (MPC) [1] and fault
detection diagnosis (FDD) [2]. The smart grids to be built in the future will use high-quality
BEMs as an important element. The European Union has funded SABINA [3], which is
an innovation and research project that seeks to generate financial models and create new
technologies to actively manage, connect and control storage and generation to exploit the
connections between the thermal inertia of buildings and electrical flexibility. The European
electricity system has the capacity to introduce an increasing amount of energy generation
from renewable sources into its system. SABINA echoes this demand, as it focuses on one
of the cheapest sources of green energy: thermal inertia inside buildings, also achieving
the coupling between heat and power grids. Using thermal inertia as an energy store is
referred to as a “power to heat” (P2H) solution [4–6].

Energy prediction relies entirely on models, and therefore one of the main pillars of
SABINA is the production of high-quality models (calibrated) that can give reliability to
P2H technology. These models are constructed on the basis on an initial methodology
developed by Ramos et al. [7] and Bandera et al. [8], which has been recently improved and
empirically validated by Gutiérrez et al. [9] based on the work carried out by Annex 58 of
the Committee of the International Energy Agency Energy in Buildings and Communities
program (IEA-EBC) approved in 2011 and completed in 2016. The main objectives of Annex
58 were: to develop common quality procedures for dynamic full-scale testing to come to a
better performance analysis and develop models to characterize and predict the effective
thermal performance of building components and whole buildings [10].

Whole building energy simulation tools allow the detailed calculation to specify build-
ing performance criteria, such as the space temperature and electric energy consumption,
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under the influence of external inputs such as weather [11], occupancy, ground [12] and
infiltration. These calculations are carried out at time series data and EnergyPlus [13] is
among the main tools that perform these calculations based on what is called a white-box
model. These models are founded on physical parameters rather than mathematical or
statistical formulation. The main challenge of these models is how to reduce the gap
between the measured and simulated data as these models are over-parameterized and
under-determined. Despite the potential benefits and the software continuous progress,
a number of problems retract from a more widespread use. The gap undermines the
confidence in the model prediction and curtails the adoption of BEM tools during the
design, commissioning, and operation.

It is necessary that BEM closely represents the actual behavior of the real building.
The calibration process can achieve this. However, the calibration of white-box modeling by
aligning the measured data to a simulation is a highly under-determined, which normally
yields multiple solutions [14]. This under-determined problem carries us to the uncertainty
problem that should be analyzed properly [15,16]. De Wit [17] classified the various sources
of uncertainty as follows:

• Specification uncertainty: Arising from incomplete or inaccurate specification of the
building or systems modeled. This may include any exposed model parameters, such
as the geometry, material properties, Heating Ventilation Air Conditioning (HVAC)
specifications, plant and system schedules, etc.

• Modeling uncertainty: When executing highly complex physical processes, simplifica-
tions or assumptions can be made to obtain results more easily. These simplifications
can be taken by the modeler (stochastic process scheduling and zoning) or internal to
the calculation program (calculation algorithms).

• Numerical uncertainty: Errors introduced in the simulation and discretization of the model.
• Scenario uncertainties: Uncertainties that can be produced by external conditioning

factors such as weather data, occupant behavior, etc.

In this paper, the main focus is on the uncertainty of the scenario based on outdoor
weather conditions. As pointed out by some authors [18–20], one of the key parameters to
produce a calibrated BEM is the weather file. According to Bhandari et al. [21] there are
three existing weather files that can be fed into the energy model: future [22–24], typical
and actual [25]. Typical weather files generate a weather file for a set of years, usually
covering the last 20–30 years. These types of files are used to understand the building
under standard conditions. For this reason, these weather files together with the so-called
future weather files are not suitable for building calibration. For the study presented in
this paper, the focus has been on actual weather files that are constructed from a specific
location and time. The data for the generation of the weather file can be obtained from
those generated by an on-site weather station [26] or by processing data from several
nearby stations [25,27,28]. The latter option is often used by external or third-party data
providers [29].

The calibration of a BEM normally entails the installation of an on-site weather station.
This installation normally implies an extra cost for the project because, on top of the expense
of the station, data handling could be an extra issue. This is one of the main problems that
restrains energy service companies (ESCOs) in promoting option D (calibrated BEM for
measuring energy conservation measurements) of international measurement verification
protocols (IPMVP) [30]. For this reason, the goal of this study is to tackle the following
research questions: First, is it possible to obtain a better weather file than that provided
by the on-site weather station? Secondly, when not having the option of installing a
dedicated weather station or retrieving data from a nearby one, is it still possible to obtain
a calibrated BEM? The research presented in the following sections answers these two
questions positively and provides a methodology for any modeler to quantify the impact
of these decisions on their work.

To answer these questions, the paper is structured as follows. In Section 2, design
of the method, where is explained the study used for weather file selection base on two
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different techniques. First, the weather file selection is performed with a base model
to produce a rank of the best weather files and a selection of the best results is chosen
based on two criteria: the best results at the level of uncertainty indexes and the more
cost-effective solution, which does not reduce the model quality. Secondly a calibration
process is performed based on the four weather files selected. This process will confirm the
rank of the weather files and the initial guess that is not necessary to conduct the calibration,
which is time consuming, in order to choose the most adequate weather file. In Section 3,
we present our analysis of the results and explain how a better model than the on-site was
achieved and a cost-effective solution was provided without greatly reducing the model
quality. The paper finishes with our conclusions, which are discussed in Section 4.

2. Design of the Method

To apply the methodology proposed in this paper, the data provided in annex 58 IEA-
EBC [10,31] have been used both for the generation of the energy model and for obtaining
the calibrated model.

We focused on the N2 house (N2 is the name of the house) in the German town of
Holzkirchen near Munich. The house is situated on a flat area and there are no buildings in
the vicinity to provide shade in the summer season when the annex was tested. The house
has three floors (basement, ground floor, and attic) with a free height of 2.50 m. The test
proposed by the annex focuses on the ground floor spaces: the two bedrooms, the living
room, the entrance, the bathroom, the corridor and the kitchen (Figure 1). This housing
is optimal for the realization of the proposed study because it provides all the necessary
data for the accomplishment of the work. At the same time, these data are of a high quality,
which reduces the uncertainty that they may cause in the final results of the research.

We focus on house N2 (N2 is the name of the house) in the German town of Holzkirchen,
about 35 km south of Munich (47.874 N, 11.728 E). It is a house situated on a flat area
without any buildings that could cast shadows on it in the summer period, which was the
period of analysis. It shares the typical climate of Central Europe: oceanic. The house has
three floors (basement, ground floor and attic) with a clear height of 2.50 m. The study
focused on the ground floor. The study focused on the ground floor, which included a
living room, a kitchen, an entrance, a bathroom, a corridor and two bedrooms (Figure 1).
This dwelling is optimal for the proposed study because it provides all the data necessary
to carry out the work. At the same time, this data is of high quality, which reduces the
uncertainty it may cause in the final results of the research.
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Figure 1. Plan and external views of the N2 house. Holzkirchen, Germany.

The exercise developed in annex 58 consisted of five periods of energization of the
housing, each period with certain characteristics. The energy model then responds to reality,
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both in the energy consumed and in the temperature reached. The offered periods began
with the first (initialization) duration of three days, where a constant interior temperature
was maintained in the house at 30 ◦C. In period number 2 (Period 2, set point 30 ◦C),
seven days in length, a constant temperature was still maintained at 30 ◦C inside the house,
and the calibrated energy model provided the real energy consumed. In the 3rd period that
lasted 14 days (Period 3, ROLBS), energy was introduced through the living room radiator
in aleatory periods with a randomly ordered logarithmic binary sequence (ROLBS).

Within the EC COMPASS project [32], this sequence was developed. Its objective
is to ensure that all relevant frequencies that can occur in a given time have the same
weight. To achieve this, the on and off periods are chosen in logarithmically equal intervals
and mixed in a quasi-random order. With this sequence, it can be ensured that there
is no connection between solar gains and heat input through the HVAC systems. The
energy model must be able to reproduce the internal temperature that this energy produces.
In period 4 (Period 4, set point 25 ◦C), a constant temperature was again introduced into
the house, but this time at 25 ◦C and the energy model reproduced the energy produced
by that indoor temperature. The last period is the 5th (Period 5, free oscillation), where
the house was left in free oscillation, i.e., without any energy contribution. The calibrated
model, then, reproduced the interior temperatures.

For the weather files used in this exercise, a climate file offered by third parties was
selected, located about 440 m in a straight line from the selected house (47.87 N, 11.73 E)
and together with the data from the weather station placed on the site, a composition
of the sensors was made (Table 1). Using the sensors of the on-site station as a basis,
the sensors will be replaced by those of third parties, generating a total of 64 climate files.
The sensors used were the outside temperature (T), global horizontal irradiation (GHI),
diffuse horizontal irradiation (DHI), wind speed (WS), wind direction (WD), and relative
humidity (RH).

Once the energy model of the house was created (baseline model), and having already
generated the weather files that will be used in the test, we proceeded to simulate the
energy model in all periods and with all the climate files, to obtain a list with the behavior
of the weather files and, thereby, obtain which one is the best suited to reality.

The next step was to check that the simulations performed with all the weather files
and the base model conformed to a fitting process, i.e., to subject the model to a calibration
process. This process was conducted with 4 of the 64 climate archives generated. The four
that were considered to be the most relevant were selected. These were:

• The weather file produced by the weather station placed on site (on-site weather
file). This climate file was chosen because it allegedly best represents the weather of
the area.

• Third-party weather file (third-party weather file). This file was selected as the
alternative to the site’s weather station.

• The weather file composed of the third-party, but replacing the outside temperature
sensor with that of the site’s weather station (third-party weather file + on-site temper-
ature sensor). This climate file was selected for being one of the most cost-effective.

• The weather file that provided the best results in the simulations with the base model
(weather file combination). This was chosen for being the one with the best results of
adjustment with reality.
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Table 1. All possible combinations of weather files. The sensors used were the outside temperature (T), global horizontal
irradiation (GHI), diffuse horizontal irradiation (DHI), wind speed (WS), wind direction (WD), and relative humidity (RH).

Weather Combination Weather Combination
Weather File On-Site + Third-Party Weather File On-Site + Third-Party

Name Weather Sensors Weather Sensors Name Weather Sensors Weather Sensors

Third-party — + WS; WD; RH; GHI;
DHI; T Weather 33 WS + WD; RH; GHI;

DHI; T
Weather 02 DHI + WS; WD; RH; GHI; T Weather 34 WS; DHI + WD; RH; GHI; T
Weather 03 DHI; T + WS; WD; RH; GHI Weather 35 WS; DHI; T + WD; RH; GHI
Weather 04 GHI + WS; WD; RH; DHI; T Weather 36 WS; GHI + WD; RH; DHI; T
Weather 05 GHI; DHI + WS; WD; RH; T Weather 37 WS; GHI; DHI + WD; RH; T
Weather 06 GHI; DHI; T + WS; WD; RH Combination WS; GHI; DHI; T + WD; RH
Weather 07 GHI; T + WS; WD; RH; DHI Weather 39 WS; GHI; T + WD; RH; DHI

Weather 08 RH + WS; WD; GHI; DHI;
T Weather 40 WS; RH + WD; GHI; DHI; T

Weather 09 RH; DHI + WS; WD; GHI; T Weather 41 WS; RH; DHI + WD; GHI; T
Weather 10 RH; DHI; T + WS; WD; GHI Weather 42 WS; RH; DHI; T + WD; GHI; T
Weather 11 RH; GHI + WS; WD; DHI; T Weather 43 WS; RH; GHI + WD; DHI; T

Weather 12 RH; GHI; DHI + WS; WD; T Weather 44 WS; RH; GHI;
DHI + WD; T

Weather 13 RH; GHI; DHI; T + WS; WD Weather 45 WS; RH; GHI;
DHI; T + WD

Weather 14 RH; GHI; T + WS; WD; DHI Weather 46 WS; RH; GHI; T + WD; DHI
Weather 15 RH; T + WS; WD; GHI; DHI Weather 47 WS; RH; T + WD; GHI; DHI

Third-party +
T + WS; WD; RH GHI; DHI Weather 48 WS; T + WD; RH; GHI; DHIOn-site temp.

sensor
Weather 17 WD + WS; RH; GHI; DHI; T Weather 49 WS; WD + RH; GHI; DHI; T
Weather 18 WD; DHI + WS; RH; GHI; T Weather 50 WS; WD; DHI + RH; GHI; T
Weather 19 WD; DHI; T + WS; RH; GHI Weather 51 WS; WD; DHI; T + RH; GHI
Weather 20 WD; GHI + WS; RH; DHI; T Weather 52 WS; WD; GHI + RH; DHI; T

Weather 21 WD; GHI; DHI + WS; RH; T Weather 53 WS; WD; GHI;
DHI + RH; T

Weather 22 WD; GHI; DHI; T + WS; RH Weather 54 WS; WD; GHI;
DHI; T + RH

Weather 23 WD; GHI; T + WS; RH; DHI Weather 55 WS; WD; GHI; T + RH; DHI
Weather 24 WD; RH + WS; DHI; GHI; T Weather 56 WS; WD; RH + GHI; DHI; T

Weather 25 WD; RH; DHI + WS; GHI; T Weather 57 WS; WD; RH;
DHI + GHI; T

Weather 26 WD; RH; DHI; T + WS; GHI Weather 58 WS; WD; RH;
DHI; T + GHI

Weather 27 WD; RH; GHI + WS; DHI; T Weather 59 WS; WD; RH;
GHI + DHI; T

Weather 28 WD; RH; GHI;
DHI + WS; T Weather 60 WS; WD; RH;

GHI; DHI + T

Weather 29 WD; RH; GHI;
DHI; T + WS On-site WS; WD; RH;

GHI; DHI; T + —

Weather 30 WD; RH; GHI; T + WS; DHI Weather 62 WS; WD; RH;
GHI; T + DHI

Weather 31 WD; RH; T + WS; GHI; DHI Weather 63 WS; WD; RH; T + GHI; DHI
Weather 32 WD; T + WS; RH; GHI; DHI Weather 64 WS; WD; T + RH; GHI; DHI

The research method used started with the selection of the weather files. Once they
had been selected, the process of calibrating the base model began [9]. The objective of
this procedure was to justify the impact that the weather files had on the calibrated model,
thus checking which was the energy model that together with its weather file best fit reality
and to verify that the ranking generated in the simulations of the base model with all the
weather files was fulfilled (Figure 2).



Energies 2021, 14, 1187 6 of 16

Period 2 Period 3 Period 4 Period 5

Periods.

Weather �le i.

Calibration process.

Weather �le n.

Unique Model CUi.

- Parametric analysis (genetic algorithm)

-Results of parametric analysis (best 
models for each periods)

- Union of the results of the calibration 
process.

Te
mp

.
En

er
gy

hours

hours

Period 2 Period 3 Period 4 Period 5

Periods.

Calibration process.

Unique Model CUn.

- Parametric analysis (genetic algorithm)

-Results of parametric analysis (best 
models for each periods)

- Union of the results of the calibration 
process.

Te
mp

.
En

er
gy

hours

hours

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Figure 2. Generic process diagram for achieving calibration mode.

The calibration process, tested in previous studies with different buildings and with
satisfactory results, will generate the model that best fits in temperature and energy to all
the periods proposed by the exercise in the annex (periods 2 to 5) . To achieve this, several
scripts were programmed in the EnergyPlus [33] run-time language. These commands
transfer the measured temperature or energy to the model. The periods described in the
previous paragraphs were also subjected to the calibration process shown in Figure 3.
Although the methodology may resemble an optimization process, the objective function
links the fit between the values provided by the model and the real data. In this case, the co-
efficient of variation of the root mean square error (CV(RMSE)) and the square Pearson
correlation coefficient (R2) were used [16]. To find the best solution, the non-dominant
sorting genetic algorithm (NSGA-II) [34] was chosen as the search engine. The possible
combinations of the parameters are those that will determine the search space, these are:
thermal bridges, thermal mass, infiltrations and capacitances.

CV(RMSE), r²

CV(RMSE), r²

Temp. and Energy
file

Figure 3. Calibration environment with a genetic algorithm. The coefficient of variation of the root
mean square error (CV(RMSE)) and the genetic algorithm non-dominated sorting genetic algorithm
(NSGA-II) [9].
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Once all the periods were calibrated according to this methodology, the model that
best suited all of them was obtained. This calibration operation was then repeated with the
proposed weather files.

When the calibrated models (CUi, . . ., CUn) were obtained, the adjustment they
achieved with respect to the real temperature and energy were studied, thus discovering
which was the weather file that after a calibration process of the energy model, was the
closest to reality. In addition, we checked whether the adjustment classification of the base
model with all the weather files had similarity with the results obtained in the calibrated
models. The evaluation of the models was proposed to be performed with two types of
indexes, the same ones that the genetic algorithm used in the calibration process: First,
the CV(RMSE) (Equation (1)) which is the coefficient of variation of the root mean square
error. The CV(RMSE) is achieved by weighting the Root Mean Square Error (RMSE) by the
mean of the actual data. The measured variability is considered to be error variance by this
index and therefore the American Society of Heating, Refrigerating, and Air Conditioning
Engineers (ASHRAE) Guideline 14, the Federal Energy Management Program (FEMP) and
the International Performance Maintenance and Verification Protocol (IPMVP) recommend
its use [30,35–42]. Secondly, the coefficient of determination R2 (Equation (2)) which is the
percentage of variation of the response variable that explains its relationship with one or
more predictor variables. Generally, the higher the R2, the better the fit of the model to its
data. The R2 is always between 0 and 100%.

CV(RMSE) =
1
ȳ

[
∑n

i=1(yi − ŷi)
2

n − p

] 1
2

(1)

R2 = (

n
∑

i=1
(yi − ȳ)(ŷi − ¯̂y)√(

n
∑

i=1
(yi − ȳ)2

)(
n
∑

i=1
(ŷi − ¯̂y)2

) )2. (2)

3. Analysis of the Results and Discussion

The first exercise that was performed for the demonstration of the methodology was
the simulation of the base model with all the proposed weather file combinations. This
was an attempt to discover which climate file, by simulating it with a baseline model, best
fit reality. The results can be seen in Figures 4 and 5. Through the box plots, the results
obtained in this phase of the methodology are shown. In both figures are highlighted the
results of:

• The weather file that best fit the real data, created from the combination of sensors from
the weather station placed on site and the one obtained from third parties: “Weather
file combination”. This configuration was: the wind speed, global, and diffuse
horizontal irradiation and temperature sensors of the weather station placed on site
and the wind direction and relative humidity sensors of the third-party. This is
highlighted by a green circle in the figures.

• The “third-party weather file + on-site temperature sensor”, created by adding, to the
third-party climate file, the temperature sensor data from the site’s weather station.
This is highlighted in the figures by a red circle. This weather file is one of the
most cost-effective.

• The weather file resulting from the sensors of the weather station placed at the site,
“on-site weather file”. This is highlighted with an orange circle on the figures.

• The meteorological file created with the third-party sensors “third-party weather file”.
This is marked in blue in the figures.
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Figure 4. The simulation result of the base model with all the proposed weather files. CV(RMSE) Index.

Figure 4 shows the sum of the CV(RMSE) index of the thermal zones that come into
play in the simulation (living room, bedroom, kitchen, and children’s room). This index
has a range from 0 to ∞, where 0 represents the model with the best adjustment. This
was obtained by comparing the temperature and energy data (depending on the period)
generated by the base energy model and the different weather files with those of reality.
Each period has its own box plot. On the left of the figure are the periods where the
model is asked for temperature, and on the right are the periods where the model is asked
for energy:

The required temperature periods for the energy model:

• Period 3: During the 2 weeks that period 3 lasts, the house underwent an injection
of energy through a ROLBS sequence, and the model was used to discover the
temperature that this energy produces. Once the model with the different weather
files was subjected to this period, we see that the weather file that behaved best was
the “on-site weather file” and, almost in the same position, was the “weather file
combination” both in quartile 1. The “third-party weather file + on-site temp. sensor”
was at the limit of quartile 2 and 3, worsening the results with respect to period 2.
Finally, the “third-party weather file” was still the worst performer at the upper limit
of quartile 4.

• Period 5: In this period, the house was in free oscillation and the model represented
the temperatures that were obtained when no energy was injected into the house.
The behavior of the weather files in this period had a similarity with the results
obtained in period 3. Quartile 1 contained both the “weather file combination” and
the “on-site weather file”. The latter was placed in the first position. Between quartile
2 and 3, there was the “third-party weather file + on-site temp. sensor”, which was
almost at the average of the results. Finally, as in all other periods, the “third-party
weather file” was placed on the upper edge of quartile 4.

Required energy periods to the energy model:

• Period 2: In this period, the house was subjected to a constant temperature at 30 ◦C,
and the energy model was required to be able to reproduce the energy needed to
reach that temperature. The weather file that produced the best fit with reality was
the “weather file combination” followed very closely by the on-site weather file,
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both located in the first quartile. Already in the second quartile, but above average,
the “third-party weather file + on-site temp. sensor” was placed. The weather file that
was the worst suited to reality is that of third parties, which is in the fourth quartile.

• Period 4: The house was heated to 25 ◦C and the energy model was able to reproduce
the energy necessary to obtain that temperature. The best weather file was again the
“weather combination”, this time making more of a difference to the “weather on-site”,
although both files were in the first quartile. In the 3rd, below the average, we find the
“third-party weather file + on-site temp. sensor” and, as in the other periods, located
at a great distance from the rest. In the 4th quartile was the “third-party weather file”.
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Figure 5. The simulation result of the base model with all the proposed weather files. R2 Index.

Figure 5 shows the sum of the index R2 of the thermal zones that enter the simulation
process: living room, bedroom, kitchen, and children’s room. This index measures how
much the shapes of the two curves resemble each other. In this case, the temperature
and energy curves produced by the simulated model and the different weather files were
compared with reality. The range was from 0 to 4 (4 because this is the sum of the four
thermal zones that are analyzed in the energy model) with 4 being the model with the
best adjustment. Each period is shown in a box plot. As in Figure 4, on the left are the
periods where the model is asked for temperature, and on the right are the periods where
the model is asked for energy.

The required temperature periods for the energy model:

• Period 3: In this period, all the weather archives were much closer to each other. Even
so, the one that best fit the reality was the “on-site weather file” in quartile 2, followed
very closely by the “weather file combination”. Both files were above average. In third
position was the “third-party weather file + on-site temperature sensor” located in
quartile 3 below the average. The last position was the “third-party weather file” on
the border between quartile 3 and 4.

• Period 5: In this period, the difference in the results of the different weather data
archives was greater. In quartile 1, the “weather file combination” was the best suited
to reality. Next was the “on-site weather file”. In quartile 2 and above, but at a
considerable distance, was the “third-party weather file + on-site temperature sensor”.
In the last position, but in quartile 3, was the “third-party weather file”.

The required energy periods for the energy model:

• Period 2: The “weather file combination” achieved the first position; this was the one
that best fit the real data of the studied meteorological archives. This was in the first
quartile followed very closely by the “on-site weather file”. In the third one was the
“third-party weather file + on-site temp sensor” located a little behind the average.
At the bottom of the fourth quartile, we find the “third-party weather file”.
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• Period 4: The weather file that best matched reality was the “weather file combination”
located in quartile 1, as well as the “on-site weather file” that followed it very narrowly.
The “third-party weather file + on-site temperature sensor” was in the third lower
quartile. Finally, at the bottom edge of quartile 4 is the “third-party weather file”.

As a summary of the comments on the results of this analysis, the weather file that
best fit the real data was the “weather file combination” followed at a very short distance
by the “on-site weather file”. Thirdly, the “third-party weather file + on-site temperature
sensor” was clearly positioned most of the time in the third quartile, but above average.
For the “third-party weather file”, there is no doubt that it was the weather file that fit the
worst to reality, placing itself, in most periods, in the lower limit of the last quartile.

Once this check was performed, the combination of sensors between those placed
on site and those obtained from a third-party weather file were known to produce better
adjustment results. This is the wind speed (WS), global (GHI) and diffuse (DHI) horizontal
irradiation, and temperature (T) sensors of the weather station placed on the site and the
wind direction (WD) and relative humidity (RH) sensors of the third-party.

The next step, as explained in the description of the methodology, is to justify the
selection of the four weather files with which the calibration process was performed. They were:

• The weather file that produced the best adjustment to real data when simulated with
the base energy model: “weather file combination”.

• The climate file with the best ratio between cost and effectiveness: “third-party
weather file + on-site temperature sensor”.

• The weather file created from sensor data from the on-site weather station: “On -site
weather file”.

• The weather file generated from sensor data gathered from third parties: “third-party
weather file”.

The energy model with each type of weather file was subjected to a fitting process
(explained in Section 2), with the aim of verifying whether the same results are obtained as
in the classification made with the simulations of the baseline model and all the weather
files (Figure 6).
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Figure 6. The process diagram for achieving the calibrated model.

The model with the four selected weather files was calibrated in each of the periods
proposed in annex 58. The four calibrated models obtained for each period were joined
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into one, creating the model that best fits the reality in all periods. Thus, we obtained four
calibrated models, one for each selected weather file:

• CU1 model obtained with the “on -site weather file”.
• CU2 model obtained with the “third-party weather file”.
• CU3 model obtained with the “third-party weather file + on-site temperature sensor”.
• CU4 model obtained with the “weather file combination”.

To present the results obtained, Table 2 was created to show the uncertainty indexes
CV(RMSE) and R2 attained by the models in the different calibration periods. For the
periods where the temperature generated by the energy model was compared with the real
temperature, the area-weighted average of each thermal zone analyzed was considered
to produce the index result. However, in the periods where the energy consumed is the
comparison, the sum of the energy spent per thermal zone was carried out to achieve the
uncertainty index.

To combine the effects on the weather file in all calibration periods in a unique
result, the value of the temperature and energy indices obtained (normalized indices) was
normalized, so that they have the same basis to be able to add them up and thus obtain a
unified value (sum indices).

Table 2. The normalized results in the checking periods with the different weather files. Randomly ordered logarithmic
binary sequence (ROLBS).

Weather Model Checking Index Normalized Indices
Period Indices Sum

Average house
temperatures

Period 3 (ROLBS) CV(RMSE) 1.23% 0.000
R2 99.07% 0.000

Period 5 (Free oscillation) CV(RMSE) 1.63% 0.109
R2 98.66% 0.021

On-site Model
CU1 Sum of

housing energy

Period 2 (Set point 30 C) CV(RMSE) 9.65% 0.049
R2 91.80% 0.091

Period 4 (Set point 25 C) CV(RMSE) 14.46% 0.200
R2 92.77% 0.072 0.544

Average house
temperatures

Period 3 (ROLBS) CV(RMSE) 4.87% 1.000
R2 90.26% 0.453

Period 5 (Free oscillation) CV(RMSE) 4.70% 0.953
R2 79.62% 1.000

Third-
party Model

CU2 Sum of
housing energy

Period 2 (Set point 30 C) CV(RMSE) 17.84% 0.307
R2 69.66% 0.532

Period 4 (Set point 25 C) CV(RMSE) 39.93% 1.000
R2 46.20% 1.000 6.245

Average house
temperatures

Period 3 (ROLBS) CV(RMSE) 1.33% 0.026
R2 98.75% 0.017

Period 5 (Free oscillation) CV(RMSE) 1.45% 0.059
R2 98.55% 0.027

Third-party
+ Model

Temp. CU3 Sum of
housing energy

Period 2 (Set point 30 C) CV(RMSE) 12.53% 0.140
R2 88.47% 0.157

Period 4 (Set point 25 C) CV(RMSE) 20.60% 0.393
R2 88.09% 0.165 0.985
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Table 2. Cont.

Weather Model Checking Index Normalized Indices
Period Indices Sum

Average house
temperatures

Period 3 (ROLBS) CV(RMSE) 1.37% 0.039
R2 98.87% 0.011

Period 5 (Free oscillation) CV(RMSE) 1.68% 0.123
R2 98.21% 0.044

Combination Model
CU4 Sum of

housing energy

Period 2 (Set point 30 C) CV(RMSE) 11.16% 0.097
R2 91.22% 0.103

Period 4 (Set point 25 C) CV(RMSE) 8.08% 0.000
R2 96.37% 0.000 0.416

When studying the results obtained, the weather file that obtained the best results
was the “weather file combination”, with an index sum value of 0.416, exceeding, by a
very small margin, the “on-site weather file” (0.544). In third position was the “third-party
weather file + on-site temperature sensor” with a normalized index sum value of 0.985.
In addition, the “third-party weather file” obtained a normalized index sum value of 6.245,
which was well behind the other weather files. As can be seen in the table, we confirmed
that the ranking the weather files produced with the base model was repeated in the
calibration process.

When analyzed in more detail, we concluded that in the periods where the result
sought was temperature (period 3 and 5), both the “weather file combination”, “on-site
weather file” and “third-party weather file + on-site temperature sensor”, had very similar
results, all obtaining very good values. The biggest differences occurred when we examined
the energy periods (periods 2 and 4). Here, the “weather file combination” and the “on-site
weather file” produced a difference compared with the other files.

In addition, in period 4, the “weather file combination” was much better adjusted to
the expected result of 8.08% CV(RMSE) compared to the 14.46% obtained by the “on-site
weather file”.

Another analysis made to the weather archives was to determine if they complied
with the objectives proposed by the international standards: The International Performance
Measurement and Verification Protocol (IPMVP) determines that a model achieves best
fit values when it manages to obtain a CV(RMSE) of less than ±20% on an hourly scale.
On the other hand, ASHRAE and the Federal Energy Management Program (FEMP) state
that a model can be considered to be fit when it obtains a CV(RMSE) index of less than
±30% on the same scale (Table 3). As for the R2 index, ASHRAE recommends that models
should not have an index of less than 75% to be considered calibrated.

Table 3. The calibration criteria of Federal Energy Management Program (FEMP), American Society
of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE), and international performance
measurement and verification protocol (IPMVP).

Data Type Index FEMP 3.0
Criteria

ASHRAE
G14-2002 IPMVP

Calibration Criteria
Monthly Criteria % CV(RMSE) ±15 ±15 -
Hourly Criteria % CV(RMSE) ±30 ±30 ±20

In Table 2, the results that are not colored comply with international standards, the re-
sults that comply with ASHRAE and FEMP have been colored in orange, while the periods
that do not comply with any standard have been marked in red. Both the “weather file
combination” and the “on-site weather file” met the standard expectations in all the periods
analyzed. The “third-party weather file + on-site temperature sensor” achieved very good
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rates, although, in period 4, it did not manage to comply with the IPMVP standard in the
CV(RMSE) rate value where it stayed with 20.60% being the limit to be able to comply with
20.00%. The “third-party weather file” failed to respond satisfactorily in period 2, where
it did not meet the value of R2, and in period 4 where it did not reach a good value for
either index.

4. Conclusions

Based on the results obtained with the study conducted in this paper, a new method
is proposed to establish the degree to which the sensors that generate the climate file were
affected in the process of adjusting the energy models of the building. Thus, we were able
to select the best composition of sensors depending on the needs of the project.

Different types of sensors come into play in the process of creating the weather
file: the wind speed and direction, global and diffuse horizontal irradiation, the outdoor
temperature, and the relative humidity. Data from these sensors can be obtained from
weather stations placed at the experiment site or can be acquired from third parties.

A weather station placed on the site requires a strong economic investment not only
when buying or renting the group of sensors needed, as well as when processing and
validating the data generated. Although weather data acquired from third parties are much
cheaper, they have the disadvantage of being less accurate.

In this article, a new fast methodology was developed to determine the degree of
adjustment of the different weather files composed of site data and third-party data. To this
end, the sensors of the on-site weather station and those of third parties were combined with
the aim of creating as many climate files as possible, resulting in a total of sixty-four files.

The results obtained in the experiment confirmed that there was a combination of
sensors that offered a better degree of adjustment between the simulated temperatures and
energies and reality than those offered by the site’s weather station. Using these sensors to
compose the weather file allowed the energy model to represent reality more accurately.
This combination used the wind speed (WS), global and diffuse solar radiation (GHI),
and temperature (T) sensors from the weather station placed at the site and the wind
direction (WD) and relative humidity (RH) sensors from the data provided by third parties
(weather file combination).

Good results were obtained by the climate file composed of the third-party data plus
the temperature sensor of the site’s weather station (third-party + on-site temp. sensor).
With a very low economic cost, as it was simply necessary to place a temperature sensor
outside the building, very positive adjustment results were achieved. The model behaved
with excellent performance in all periods, complying with the parameters proposed by
ASHRAE both in the CV(RMSE) and in R2 index. This model obtained a normalized index
sum of 0.985 compared to 0.544 as obtained by the model calibrated with the site’s climate
file. This is a difference to be considered, but is far from the one that occurs with the model
adjusted with the climate file composed of third-party data, which obtained an index sum
of 6.245. Depending on the degree of precision that must be obtained in the energy model,
this option can be a good way to deal with the adjustment process. The weather file had
the best cost-effectiveness ratio.

One of the most relevant conclusions obtained when developing the proposed method-
ology was the fact that it was not necessary to go through a process of adjustment of the
model to be able to indicate the effect of the weather file in the final result. The results
obtained when simulating all the proposed climate archives with the base model were
the same as those obtained when executing an adjustment process. Even the positions in
which the files were placed, as well as the distance between them, were met.

With the methodology proposed here, in a swift and simple way, we opened the
option of being able to choose the composition of the meteorological file for use in the
energy model adjustment process. This decision can be considered for economic, precision,
and effectiveness factors, among others.
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