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Abstract: This paper deals with energy efficiency examined through an integrated model that links 
energy with environment, technology, and urbanisation as related areas. Our main goal is to dis‐
cover how efficiently developed countries use primary energy and electricity (secondary energy). 
We additionally want to find out how the inclusion of environmental care and renewable energy 
capacity affects efficiency. For that purpose, we set up an output‐oriented BCC data envelopment 
analysis that employs a set of input variables with non‐negative values to calculate the efficiency 
scores on minimising energy use and losses as well as environmental emissions for a sample of 30 
OECD member states during the period from 2001 to 2018. We develop a couple of baseline models 
in which we find that countries have mean inefficiency margins of 16.1% for primary energy and 
from 10.8 to 13.5% for electricity. The results from the extended models show that taking care about 
environment does not affect efficiency in general, while the reliance on energy produced from re‐
newable sources does slightly reduce it. 
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1. Introduction 
Energy in its etymological meaning denotes “activity” and it is properly defined as 

the capacity for taking action or working. The concept occupies an important place as an 
input in virtually every production process, therefore impacting economic activity and 
also contributing to economic development. In this light, efficient energy use means to 
produce at lower cost or of greater value, which implies that energy efficiency is extremely 
relevant in the economic analysis of growth and development. Furthermore, an important 
aspect of economic development is the notion of sustainability that has gained momen‐
tum in the past decade, and in this regard, energy use should be put into function of sus‐
taining the ecosystem services that the economies depend on—that is to say, it is necessary 
to take care of the environment as a related area and make use of the renewable sources 
of energy production. 

The coherent study of energy efficiency and its relationship with the environmental 
issues has recently enjoyed an increasing interest among researchers in the economic cir‐
cles (see Section 2 for details). In addition, the importance of energy use in the sustaina‐
bility framework has been identified with the Sustainability Development Goals (SDGs) 
set by the United Nations in 2015 and expected to be achieved by 2030. In particular, Sus‐
tainable Development Goal 7 (SDG 7) is about “affordable and clean energy” and its mis‐
sion statement has the aim to “ensure access to affordable, reliable, sustainable and mod‐
ern energy for all” [1]. Importantly, this goal has five targets—universal access to modern 
energy; increase global percentage of renewable energy; double the improvement in en‐
ergy efficiency; promote access, technology, and investments in clean energy; and expand 
and upgrade energy services for developing countries—and the progress towards its 
achievement is measured through six indicators—access to electricity, access to clean fuels 
for cooking, renewable energy, energy efficiency, access and investment in clear energy, 
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and expanding energy services for developing countries—which clearly outlines energy 
efficiency with reference to environment and renewable sources [2]. 

Yet despite the rising popularity of the topic, we have identified a lack of economic 
literature dealing with it in a quantitative fashion, which has motivated us to make a step 
forward and contribute to its enrichment. The main goal of this paper is to examine how 
efficiently the developed countries use energy proxied through primary energy and elec‐
tricity (secondary energy). Our secondary goal is to examine how energy efficiency is im‐
pacted when the environmental care and energy production from renewable sources are 
taken into account. Thence, our research interest in this paper aims to provide answers to 
the following four questions. 

Question 1: What is the extent to which developed countries use energy (in)efficiently? 

Question 2: What form of energy do developed countries use more efficiently: primary energy or 
electricity? 

Question 3: Does the environmental care increase or decrease energy efficiency? 

Question 4: Does energy produced through renewable energy capacity increase or decrease energy 
efficiency? 

In order to answer the foregoing questions, we construct a sample of member states 
of the Organisation for Economic Co‐operation and Development (OECD) and choose the 
period 2001–2018. Guided by the targets and indicators from SDG 7, we define a set of 
energy‐related variables alongside a few other indicators as proxies for related and im‐
portant areas, such as technology, urbanisation, and environment, with the aim of devel‐
oping an integrated framework. We set our objective to minimise energy intensity and 
energy loss in view of the levels of other energy indicators as input variables. Based on 
our extensive review of other papers studying efficiency, we opt‐in for the data envelop‐
ment analysis (DEA) framework and construct an output‐oriented model to yield (in)effi‐
ciency scores on energy use. In that context, we explain why the DEA framework is a 
useful method applicable to examining energy efficiency and argue why scholars should 
seriously consider it for similar empirical analyses. 

Our paper contributes to the existing literature in the following ways. Firstly, it sheds 
light on the quantitative side of the energy efficiency analysis with the aim of providing 
evidence for drawing coherent conclusions. Secondly, it makes use of derived variables 
that were specifically defined to capture the essence of energy use. Thirdly, this paper 
further extends the area of applicability of the DEA framework and its formulation can be 
used a starting point for future research. Fourthly, the multi‐country approach allows for 
cross‐country discussion of the results and opens up other possibilities for linking the 
concept of energy efficiency with other relevant areas such as economic development. All 
in all, our research conveys the importance of DEA on energy efficiency and the results 
we arrive at are beneficial from both theoretical and empirical perspectives. 

The rest of the paper is structured as follows. Section 2 reviews the related literature. 
Section 3 discusses the construction of the sample, lists the data sources, and defines the 
variables included in the empirical analysis. Section 4 unfolds the main trends throughout 
the analysed period. The DEA methodology is set up in Section 5, while the results from 
the optimisation are presented and discussed in Section 6. The paper concludes with final 
remarks given in Section 7. 

2. Literature review 
In this section, we review the literature related to the application of the DEA frame‐

work to energy and environmental economics. To that end, we divide the existing litera‐
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ture into two strands—the first one focussing on other literature reviews about the fre‐
quency of matching the DEA methodology with energy economics, and the second one 
reviewing literature with empirical application of the DEA models to yield concrete re‐
sults regarding energy efficiency. 

Of the first strand of literature, the authors of [3] conducted a literature review on 
DEA in energy and environmental economics. They analysed 145 articles from two online 
databases—Scopus and Web of Science—in the period 2000–2018. They provide an exten‐
sive analysis of the implemented DEA model in a tabular format. Besides this, they pre‐
sent a distribution of DEA papers in the analysed areas of the 45 journals and they find 
that the Journal of Cleaner Production has the highest number of publications (17), followed 
by Sustainability (16) and Energy (14). Furthermore, based on the distribution of papers per 
year, they provide a line chart and an appropriate analysis indicating that the interest of 
researchers in these areas has dramatically increased. In 2015, there were only 12, while 
in 2017, there were 14 papers. In addition, they use the papers from Web of Science to 
visualise the co‐occurrence of the keywords. On the co‐occurrent keywords figure, it can 
be seen that the word “efficiency” has the strongest link with the other keywords. The 
keywords are clustered in three clusters of their co‐occurrence. In the green cluster, the 
keywords are efficiency, DEA, input, output, and DEA model; in the red cluster, there are 
China, region, energy, energy efficiency, emission, etc.; while in the blue cluster, there are 
productivity, economy, sustainability, eco‐efficiency, environmental performance, sus‐
tainable development, and sustainability. The authors of [4] make a literature survey on 
the application of data envelopment analysis in sustainability. They focus on articles in 
the Web of Science database and, after excluding papers that are not related to DEA in 
sustainability, their sample consists of 320 papers published in the period 1996 to March 
2016. The distribution of papers in the period 1996–2015 is presented in a visual form, 
which indicates that the interest of DEA in this area has significantly increased in the last 
five years. The first DEA paper in sustainability is by [5]. The authors visualise the distri‐
bution of papers in journals and they point out that, in 20 journals, approximately 48% of 
the papers get published. The journal Energy Economics is in first place, followed by the 
Journal of Cleaner Production and Energy Policy. In this paper, the authors focus on citation 
analysis by applying three citation methods: i) Citation chronological graph, ii) main path 
analysis, and iii) Kamada‐Kawai algorithms. They find that the current key route of data 
envelopment analysis application in sustainability is focused on measuring eco‐efficiency. 

Likewise, the authors of [6] conducted a literature review on the evaluation of energy 
efficiency using DEA. They focus on recent publications, i.e., the period from 2011 to 2019, 
and analyse 281 papers from the Web of Science database. According to the distribution 
of papers per year, the visualised data in a bar chart demonstrate that there is a gradual 
increase over years and the highest number of papers (61) was in 2019. They present a tree 
map with the number of publications across journals, with Energy Economics assuming the 
leading role with 26 papers, followed by Sustainability with 25 papers and Energy with 22 
papers. In order to visualise the keywords and their context evolution in the analysed 
period, they use Citespace. Accordingly, they present a figure from which it can be seen 
that DEA models are enriched in order to enable a better evaluation of energy efficiency 
and, besides the theory enrichment, there are several DEA applications. Models that are 
used in the analysed papers range from traditional as CCR and BCC to SBM models, from 
using one output to inclusion of output that is undesirable, and from a static to a network 
structure. The data refer to countries, regions, industries, and companies, and most of the 
studies use regions as DMUs. When data envelopment analysis is used to measure the 
total factor energy efficiency (TFEE), energy, capital, and labour are taken as inputs, GDP 
is expected output, and carbon emissions are the undesirable output. 

Another systematic review on studies that assess the performance of renewable en‐
ergy using the DEA framework was done by [7]. They search studies in Science Direct, 
SCOPUS, and Google Scholar, and implement the Preferred Reporting Items for System‐
atic Reviews and Meta‐Analyses (PRISMA) statement. By analysing 72 scholarly articles, 
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they provide visual presentation of the distribution of these studies, from which it can be 
noted that the first study was published in 2001 (Ramanathan, 2001) and the peak (14 
studies) was achieved in 2017. The studies are categorised according to seven technolo‐
gies: Renewable energy, solar energy, wind energy, municipal solid waste, biomass, hy‐
dropower, and other renewable energies (biogas, biofuel, and geothermal). Based on the 
chart of the distribution of studies in the identified areas, the renewable energy has the 
highest percentage (43.06%), followed by solar energy (15.28%), and wind energy and mu‐
nicipal solid waste (both with 13.89%). They provide tabular representation of DEA stud‐
ies for each of the identified renewable energy technologies with focus on authors and 
year, scope, duration, methodology, and references. In addition, they present a distribu‐
tion of the studies according to the employed DEA method from which it can be noted 
that a two‐stage DEA model is applied in 28 studies, a traditional DEA model is applied 
in 18 studies, a three‐stage DEA model in 8 studies, a DEA model with special data in 5 
studies, an extended DEA model in 4 studies, and a Slack‐based model and a Malmquist 
model are applied in 3 studies. 

The DEA class of methods is particularly recommended for in‐depth analysis of en‐
ergy efficiency. [8] provide a comprehensive literature review on DEA models applied to 
energy efficiency. They use the PRISMA statement in order to identify and select the 
proper papers. They identify 144 papers in the period from 2006 to 2015, published in 45 
journals and indexed in the Web of Science database. In the first year of the analysed pe‐
riod, only one paper was identified but the interest of researchers in energy efficiency has 
grown over the years and, from 2013 to 2014, the number of papers has increased from 20 
to 42. In the journal Energy Policy, 17.36% of the articles get published, followed by the 
journals Renewable and Sustainable Energy Review and Energy with 19 and 13 papers, re‐
spectively. According to expert opinions, all papers are classified in 9 areas so that energy 
efficiency issues is the area with highest number of papers (35), followed by the other 
application areas (25 papers) and environmental efficiency as well as renewable and sus‐
tainable energy (each with 23 papers), while the water efficiency is an area that has the 
least number of papers (4). The authors provide detailed tabular format for the distribu‐
tion of the papers in each of the areas that consists of author(s) and year, scope, duration, 
application, purpose of the study, and results and outcome. In addition, they provide dis‐
tribution of papers regarding the nationality of the authors in a tabular format. They have 
identified 29 nationalities and countries, with China on the top in terms of the number of 
published papers on energy efficiency (44 papers), followed by Iran (18 papers), USA (9 
papers), Taiwan, Spain, and Korea (each with 8 papers). Finally, a recent literature review 
made by [9] shows that there are 10,300 DEA‐related publications in journals over the 
period 1978–2016. The authors have listed the top 20 journals where 2974 articles employ‐
ing the DEA framework were published. In the list, Energy Policy ranks in 10th place with 
94 articles followed by The Journal of Cleaner Production in 14th place with 71 articles and 
Energy Economics in 15th place with 69 articles. Additionally, they present the 50 most 
used keywords in a tabular format with “energy efficiency” being in the 18th place (in 286 
articles) and “sustainable development” in the 44th place (in 151 articles). The analysis 
does also reveal that the most popular research keywords that appeared in DEA‐related 
articles in 2015 and 2016 were: Eco‐efficiency, undesirable outputs, directional distance 
function (DDF), environmental efficiency, carbon dioxide emissions, sustainable develop‐
ment, sustainability, and environmental protection. 

Of the second strand of literature, the authors [10] conduct a study that focusses on 
the energy trend in the world and consequently describe how the DEA as a non‐paramet‐
ric approach for measuring efficiency can be applied to the energy industries. The energy 
is categorised as primary and secondary. The primary energy consists of fossil‐fuel energy 
(oil, natural gas, and coal) and non‐fossil energy (renewable and nuclear), while the sec‐
ondary energy refers to electricity. The authors use charts to present the energy trends in 
the world for the main categories of energy and their sub‐categories. They present formu‐
lations for using DEA for the fossil and non‐fossil energy. 
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Furthermore, the authors of [11] evaluate the efficiency of energy consumption in the 
manufacturing as main industrial sector in China with panel data for the period 2004–
2014 by applying the non‐parametric DEA methodology. The DEA model is constructed 
by using piecewise linear utility function. In the DEA model, one output indicator (energy 
consumption intensity) and five input indicators (competition within industries, techno‐
logical Progress, energy consumption structure, opening up, environmental regulations, 
and energy efficiency policy) are used. The energy efficiency policy is an environmental 
indicator and is considered as both quantitative and qualitative indicator, so two DEA 
models are developed accordingly. One model considers only the quantitative environ‐
mental regulations, while the other integrates the quantitative and qualitative environ‐
mental regulations. Based on the comparison of the obtained results (with and without 
energy policy), it was found that low energy policy encourages the development of high 
energy‐consumption industries, while its impact on the development of low or moderate 
energy‐consumption industries is low. 

Wier et al. [12] evaluate the environmental performance of Danish product and 
household types by using the DEA methodology. Based on the overall score for environ‐
mental performance, they find that middle‐income families living in houses, which repre‐
sent a large proportion of all Danish families, are characterised by the least environmen‐
tally friendly consumer basket. In contrast, those families that live in urban flats are char‐
acterised by the most environmentally friendly consumer basket. 

An interesting approach for environmental assessment with focus on corporate sus‐
tainability by employing DEA is proposed by [13]. They use 153 observations on S&P 500 
corporations in 2012 and 2013. The empirical data are from 7 US industries (consumer 
discretionary, consumer staples, energy, healthcare, industrials, information technology 
and materials). The following variables are taken into account: Estimated annual CO2 sav‐
ing and return on assets as desirable outputs; direct and indirect CO2 emissions as unde‐
sirable outputs; and number of employees, working capital and total assets as inputs. 
Their approach provides an answer to the question of which technology innovation 
should be selected to reduce the undesirable output (CO2 emissions). They find that, 
amongst the seven industries, the energy sector is the best one to invest in technology in 
order to achieve corporate sustainability. 

Lastly, the authors of [14] propose a new approach that deals with the difficulties—
theoretical and empirical—of the DEA framework for environmental assessment. The 
DEA environmental assessment can be applied to measure the performance of decision‐
making units (DMUs) that use inputs and produce desirable but also undesirable outputs. 
For example, desirable output is electricity, while undesirable output is the amount of CO2 
emissions. The authors propose a solution to four difficulties arising from the application 
of the DEA environmental assessment. They are disposability concepts, disposability uni‐
fication, undesirable and desirable congestion, and values that are zero or negative. 

3. Data and variables 
Our sample consists of 30 OECD member states for which we collected annual data 

for the period 2001–2018. Countries were selected on the basis of their OECD membership 
throughout the entire analysed period. Data were collected from multiple sources, includ‐
ing US Energy Information Administration (EIA) database, World Bank’s World Devel‐
opment Indicators (WDI) database, and the OECD database. Since the raw data collected 
are in different metric units, we apply conversion to make them suitable for the empirical 
analysis. 

Considering that energy is a broad concept that may appear in different forms, we 
opt for primary energy and electricity as proxies to study energy efficiency. In that regard, 
we define energy‐related specific variables that are relevant for studying these two forms 
of energy and we also add a few other variables as measures of areas that are closely re‐
lated to and important for energy efficiency. The choice of the energy‐related variables 
relies on the indicators used to measure the progress for achieving SDG 7 on “affordable 
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and clean energy”, whereas the rationale for identifying the related areas and selecting 
their proxies was done upon thorough consultation of relevant literature. 

The variables that we use in the efficiency analysis are the following: 
• Primary energy intensity. Energy intensity is an indicator of the energy efficiency in 

an economy and thus primary energy intensity shows how efficient are countries in 
terms of primary energy. This variable tells how much output the use of energy gen‐
erates, or in other words, what the price of converting energy into output is. It has 
previously been employed in empirical studies on sustainability, such as in [15] where 
the measure is used as a proxy for environment in a study of sustainable economic 
development. We calculate this variable using the formula Primary energy intensity = Primary energy consumptionGDP  (1)

where primary energy consumption is measured in billion kWh and GDP in interna‐
tional US$ using current prices. Therefore, primary energy intensity essentially 
points out to the primary energy use per unit of GDP. Normally, the higher value of 
the measure signifies more energy use needed to produce a unit of GDP and that is 
higher energy inefficiency. 

• Primary energy trade dependence. The mismatch of production and consumption of 
primary energy reveals country’s trade orientation. It stands to reason to assume that 
a country producing more energy than it can consume will export the excess and a 
country needing more energy than it can produce will import to mouth its needs. 
Otherwise, the mismatch will lead to distribution losses or energy deficiency. For the 
sake of measuring how much a country is oriented towards trading primary energy, 
we define an indicator calculated as the ratio Primary energy trade dependence = |Primary energy balance|Primary energy production (2)

where primary energy balance is the difference between the consumed and produced pri‐
mary energy. As our goal is to measure trade dependence without making difference be‐
tween import‐ and export‐orientation, we take the absolute value of the primary energy 
balance. 

• Primary energy from renewables. Sustainable energy is one of the cornerstones 
of energy efficiency and the production of energy of low cost from naturally re‐
plenishing sources is a major efficiency goal. The authors of [16] explain that sus‐
tainability is fundamentally and basically a matter of renewable sources. In the 
same vein, we take the share of primary energy that is produced from renewable 
sources in order to proxy for sustainable energy in our efficiency analysis.  

• Electricity intensity. In a similar way as the primary efficiency intensity, this var‐
iable aims to tell how efficient countries are in consuming electricity to produce 
output. The formula for calculating the electricity is Electricity intensity = Electricity consumptionGDP  (3)

where electricity net consumption is measured in billion kWh. Again, the higher value of 
the measure points out to more electricity needed to produce a unit of GDP and that de‐
notes higher electricity inefficiency. 

• Electricity loss ratio. Electricity losses are the units of electricity that remain un‐
used. In light of this definition, our variable to measure the electricity losses is 
defined as Electricity loss ratio = Electricity lossElectricity production (4)

where electricity loss is the unused electricity yielded after the traded electricity is added 
to the electricity balance, that is 
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Electricityloss = Electricityproduction − Electricityconsumptionᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ୉୪ୣୡ୲୰୧ୡ୧୲୷ ୠୟ୪ୟ୬ୡୣ + Electricitynet import (5)

• Electricity capacity. The installed electricity capacity is an indicator of how effi‐
ciently electricity is generated and it refers to the amount of electricity that can be 
produced from electricity generators under given conditions. In order to better 
suit in our analysis, we calculate the ratio of the electricity installed capacity to 
the electricity production. The higher value of this measure points out to higher 
efficiency in electricity generation. 

• Electricity from renewables. As for primary energy, we use the share of electric‐
ity produced from renewable sources as a measure of sustainable electricity. 

• Renewable electricity capacity. In a similar way as the electricity capacity ratio, 
this variable measures the efficiency of electricity generation from renewable 
sources. 

• R&D expenditure. Technology fosters innovations and it can lead to production 
at lower cost and more efficient consumption. The amount of R&D expenditure 
is commonly used as a measure of technology. In the context of the energy sector, 
[17] studies the impact of public R&D expenditures on the innovation process in 
the energy sector, while [18] examine the effect of energy R&D expenditures on 
CO2 emissions reduction. Given the close connection of the research area in these 
two papers with ours, we accept R&D expenditure of GDP as a convenient proxy 
for technology. 

• CO2 emissions. Energy efficiency does not only mean producing at minimum cost 
and consuming to generate maximum output. There are numerous papers that 
make use of CO2 emissions as an environment‐related target variable in the en‐
ergy analyses [18–21]. Ciupăgeanu et al., [21] find that CO2 emissions are strongly 
affected by the share of renewable energy in the total generated energy. In light 
of this literature, we consider the level of CO2 emissions measured in metric kg 
relative to GDP a suitable indicator for the environmental issues. 

• Urbanisation rate. The demand for and consumption of energy are significantly 
higher in the urban compared to the rural areas. For instance, [22] have found that 
the process of urbanisation leads to substantial increases in both the actual and 
the optimal energy consumption but to a decrease in efficiency of energy use. We 
are concurrent that the level of urbanisation can be properly considered a useful 
variable in the analysis of electricity efficiency and we therefore calculate it as 
urban population relative to total population. 

The intensity variables and the CO2 emissions are the only used as output variables, 
while the rest are included as input variables in the empirical analysis. 

A detailed review of the variables used in the empirical analysis is given in Table A1 
of Appendix A. 

4. Main trends 
4.1. Descriptive Statistics 

Descriptive statistics are reported in Appendix B where Table A2 reports the sum‐
mary statistics for all countries over the entire period and Tables A3–A4 contain the coun‐
try means over the entire period. Given that the values of the energy‐related variables 
differ significantly from one to another country and yield outlying results, we calculate 
weighted means as well as weighted standard deviations for these indicators. The time 
evolution of the variables can be discerned from Figures A1–A2 in Appendix C. 

The mean value for primary energy intensity is 1.643, meaning that 1.643 kWh are 
needed to generate an output of 1 US$ across the analysed countries on average. Czech 
Republic, Slovakia, Iceland, Poland, and Canada are countries with the highest intensities, 
in all above 3, while Switzerland, Ireland, and Denmark record the lowest intensities, in 



Energies 2021, 14, 1185 8 of 21 
 

 

all below 1 on average. The general trend is that the inefficiency measured through this 
variable is steadily decreasing over time—namely, from 3.331 in 2001 to 1.421 in 2018. The 
mean electricity intensity is several times lower and equals 0.222. All countries have aver‐
age intensities below 0.5, except for Iceland, which stands out with 0.866 and is the only 
country that has attained intensity above 1 in some years. Again, the inefficiency meas‐
ured through this variable follows a downward trend and it went down from 0.433 in 
2001 to 0.215 in 2018. In regard to the electricity loss ratio, the quantity of energy that 
remains unused is around 6.4% on average across countries. Only Turkey, Mexico, Lux‐
embourg, and Hungary have mean amount of unused energy above 10%. Unlike the pre‐
vious two measures of inefficiency, this one has remained fairly constant around 7% on 
average throughout the entire period. 

Trade dependence has a moderate weighted mean index value of 0.405, indicating 
that countries need to trade primary energy of about 40.5% of the produced amount in 
order to fill the production‐consumption gap. Countries that are the most independent of 
trading primary energy are Denmark (18.2%), Mexico (20.4%), and United States (27.3%), 
while countries that depend the most on the trade are Luxembourg and Ireland whose 
traded amounts of primary energy are 62 and 10 times the quantity they produce, respec‐
tively. The evidence is conclusive that the trade dependence across countries reduces over 
time, being more than two times lower in 2018 than the peak achieved in 2003. 

Primary energy produced from renewable sources accounts for 13.9% on average 
across countries with a standard deviation of 13.1%. Iceland, Luxembourg, and Portugal 
are countries with full production from renewables, while Australia, Mexico, and Poland 
generate less than 5% of their primary energy from these sources. Likewise, the share of 
electricity generated from renewables amounts to 20.1% with higher standard deviation 
of 18.8%. The only country that fully produces electricity from renewables throughout the 
entire period is Iceland and Norway follows closely with about 98.8%. However, it is 
worth noting that Luxembourg has had full electricity generation from renewables since 
2016 but because of the lower share in the previous years, its average share is only 32.4%. 
The shares of both primary energy and electricity produced from renewable sources tend 
to move upwards as time goes by and have ramped up from less than 30% in the early 
2000s to more than 40% in the 2010s. 

The installed electricity capacity averages around 25.7% of the total electricity pro‐
duction, ranging from 16.5% in Iceland to 170.4% in Luxembourg. Yet this large difference 
between the two countries, most countries have fairly equal installed capacity in the in‐
terval from 20 to 30%, which can be further confirmed by the standard deviation of only 
4.6%. With respect to the installed capacity for generating electricity from renewables, it 
averages around 30.3% and is highest in Greece with 56.3% and South Korea with 48.4%. 
Both capacity measures follow upward movements from year to year. 

Of the variables proxying for the related areas, it is worth noting that countries spend 
about 1.8% of GDP on research and development on average, being slightly higher in the 
end years compared to the start years of the analysed period. The share ranges from 0.7% 
in Greece, Slovakia, and Turkey to 3.3% in Finland, South Korea, and Sweden. Next, the 
mean carbon dioxide emissions amount to 0.342 Mkg per 1US$, with lowest average emis‐
sions of 0.088 Mkg/US$ in Switzerland and highest of 0.837 Mkg/US$ in Poland. CO2 emis‐
sions had a downward‐sloping curve in the 2000s, but it eventually flattened out in the 
2010s. Finally, the average level of urbanisation across the sampled countries equals 0.774, 
indicating that 77.4 of the total population inhabits urban areas, and it tends to go slightly 
up over time. 

4.2. Energy Use and Economic Development 
In this section, we study energy use across countries as measured through the energy 

output variables with respect to their economic development as proxied by the nominal 
GDP per capita (see Figures A3–A5 of Appendix D). 
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The correlation coefficients for all three output variables—primary energy intensity, 
electricity intensity, and electricity loss ratio—with the nominal GDP per capita are nega‐
tive, which indicates that, in general, countries with higher economic development tend 
to use energy in a more efficient manner. 

Primary energy intensity has a moderate to strong negative correlation coefficient of 
−0.53. Most countries with average GDP per capita between 20,000 to 50,000 US$ are clus‐
tered with intensity values between 1.0 and 2.0, while the intensity of all six countries with 
GDP per capita lower than 20,000 US$ exceeds 2.0. Countries that stand out and, at the 
same time, record high GDP per capita and high intensity above 3.0 are Iceland and Can‐
ada. 

Electricity intensity and nominal GDP per capita have weak negative correlation co‐
efficient of −0.27. Almost all countries are scattered in a cluster with intensity values be‐
tween 0.1 and 0.4. Countries standing out of the cluster and hinting to a negative direction 
are Luxembourg, Norway, Switzerland, and Iceland. The last one, albeit with a very high 
GDP per capita, has electricity intensity that is more than two times that of the next coun‐
try. 

Electricity loss ratio has very weak negative correlation coefficient of −0.10. Countries 
are scattered with no visible direction and similar loss ratios in the interval from about 3 
to 9% are associated with different levels of GDP per capita. Hungary, Turkey, and Mexico 
point out to a negative direction with loss ratios above 10% but this tendency is well off‐
set by Luxembourg as a country with the highest GDP per capita and second highest loss 
ratio. 

At first glance, these findings seem to somewhat contradict the popular view that 
countries with higher energy intensity are economically more developed with high‐inten‐
sity industrial production, while those with lower energy intensity are developing coun‐
tries with labour‐intensive economies. Nonetheless, it has to be to noted that even though 
countries differ significantly in terms of economic development, OECD consists of rela‐
tively well‐developed economies where countries with the least GDP per capita have still 
much more advanced economies than the developing world. Thence, it can properly be 
concluded that the negative direction does not imply that the industrialised economies 
attain more efficient energy use than the labour‐intensive ones but that, amongst the in‐
dustrialised ones, those with higher GDP per capita usually perform better. 

5. Methodology 
The main goal of our empirical analysis is to get efficiency scores with regards to the 

energy efficiency indicators for each country over the analysed period. Since we aim to 
employ energy‐related indicators as both output and input variables and enrich the anal‐
ysis with other variables capturing technology and urbanisation as input variables, we 
find it convenient to follow the efficiency literature [23] and implement the data envelop‐
ment analysis (DEA) using DMUs. 

DEA was introduced in empirical economics by [24] and [25]. It is a non‐parametric 
technique that, through linear programming, approximates the true but unknown tech‐
nology without imposing any restriction on the sample distribution. Its main advantage 
over the parametric methodologies is that it does not require functional assumptions for 
efficiency assessment [26]. The authors of [27] also identify the following technical ad‐
vantages compared to the parametric methods: i) It is not necessary to find out the con‐
crete form of production function and is with less restrictions; ii) it is easier to deal with 
the case with multiple inputs and multiple outputs; iii) the technological efficiency analy‐
sis enables the enterprises to find out which input is not efficiently utilised and to look for 
the best way to improve efficiency in addition to knowing the input efficiency of the eval‐
uated structure in question compared to the most outstanding enterprises; and iv) the 
non‐parameter approach allows not only to arrive at a conclusion about the technological 
efficiency but also to calculate the economic efficiency, allocation efficiency, and pure 
technology efficiency, which makes it possible to conduct an inclusive evaluation and 
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should be regarded as a comprehensive assessment index of achievements. In fact, DEA 
is a complex benchmarking technique that yields production possibilities where efficient 
multi‐criteria DMUs positioned on this surface shape the frontier [28]. The identified 
benchmarks for each inefficient unit should serve as a “soft target” because some of them 
may have an advantage that the inefficient one could not replicate [29]. 

There are several assumptions that we find it necessary to establish before moving 
on to the optimisation problem that we are going to solve. They are presented in turn. 

Assumption 1 (Linearity): The objective function in the optimisation using DEA is linear. 

This assumption implies that the optimisation is done using a linear programming 
technique. However, this may be problematic in practice because the objective function 
and the constraints are expressed as fractions and they are thus non‐linear, which requires 
the optimisation problem to be formulated in a linear form. 

Assumption 2 (Non‐negativity): The values of the inputs 𝑥௜,௡ and outputs 𝑦௜,௠ as well as the 
weights 𝜆௜ are non‐negative, i.e., 𝑥௜,௡, 𝑦௜,௠, 𝜆௜ ≥ 0. 

Non‐negativity means that the selected variables as inputs and outputs cannot take 
any negative values or, alternatively, need to undergo a procedure that will allow them 
to be included in the analysis with non‐negative values. 

Assumption 3 (Convexity constraint): The weights 𝜆௜ sum up to 1, i.e., ∑ 𝜆௜஼௜ୀଵ = 1. 

The convexity constraint is the main feature that distinguishes the BCC DEA from 
the CCR DEA and assumes that the model accounts for variable returns to scale (VRS) 
instead of constant returns to scale (CRS). 

As lower values of the energy indicators that we use as outputs indicate efficiency, 
we set up a minimisation output‐oriented model with an objective function f(x, y) = min θ୧ (6)

s. t. ෍ λ୧y୧,୫େ୧ୀଵ ≥  θ୧y୧,୫,   m (7)

෍ λ୧x୧,୬େ୧ୀଵ ≤ x୧,୬,   n = 1, … , N (8)

෍ λ୧େ୧ୀଵ = 1 (9)

x୧,୬, y୧,୫ ≥ 0 (10)λ୧ ≥ 0 (11)

where x = (xଵ, … , x୬) ∈ Rା୒  is the set of N inputs, y = (yଵ, … , y୬) ∈ Rା୑  is the set of M 
outputs, λ୧ are the intensity weights for the linear combination of the sampled countries 
and θ୧ = ∑ λ୧y୧,୫େ୧ୀଵ / ∑ λ୧x୧,୬େ୧ୀଵ  denotes the efficiency score. The constraint in (4) results 
directly from Assumption 3, while the constraints in (5) and (6) illustrate Assumption 2. 

At the end, we consult [27] and introduce two definitions as necessary pre‐conditions 
to achieve relative DEA‐efficiency. 

Definition 1: If the optimal program satisfies 𝑓(𝑥, 𝑦) = 𝑚𝑖𝑛𝜃௜, then 𝐷𝑀𝑈௜ is weakly DEA‐effi‐
cient. 
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This definition states that θ୧ = 1 is the efficient score that can be obtained from the 
optimisation. In other words, this means that a weakly DEA‐efficient DMU୧ when θ୧ = 1 
lies on the DEA frontier. In case θ୧ < 1, then the 1 − θ୧ is an inefficiency margin, which 
reveals by how much the output level should be improved at the given inputs to reach 
efficiency. 

Definition 2: If the optimal program satisfies Definition 1 and Assumption 2 holds, then 𝐷𝑀𝑈௜ 
is relatively DEA‐efficient. 

The importance of Definition 2 is that it gives conditions that should be satisfied in 
order to reach a stronger form of DEA‐efficiency. 

6. Results and Discussion 
This section reports and discuss the results obtained in the empirical analysis. 

6.1. Baseline Models 
We develop separate models for primary energy and electricity as the two forms of 

energy that are subject to examination in our empirical analysis. In the baseline DEA 
model for primary energy, we employ primary energy trade dependence, primary energy 
from renewables, R&D expenditure, and urbanisation rate as input variables and primary 
energy intensity as the only output variable. In the case for electricity, our baseline DEA 
model includes electricity from renewables, electricity installed capacity ratio, R&D ex‐
penditure, and urbanisation rate as input variables, and electricity intensity as well as 
electricity loss ratio as output variables. We run two versions of this model—the first one 
with the electricity installed capacity ratio and the second one with the renewable electric‐
ity installed capacity ratio. Given the discrepancies in the values of the variables from year 
to year as well as the missing values for R&D expenditure, we calibrate the model with 
the country averages over the entire period. The inefficiency margins from the baseline 
models are presented in Columns 1, 3 and 5 of Table A5 in Appendix E. 

The average inefficiency margin minimising primary energy intensity is 16.1%, indi‐
cating that there is room for further reduction while keeping all inputs unchanged. Seven 
of the sampled countries, namely Australia, Canada, Czech Republic, Denmark, Mexico, 
Poland, and Slovakia, are relatively DEA‐efficient with DMUs on the frontier, whereas 
Belgium, Japan, Luxembourg, Finland, and Spain are farthest from the frontier with inef‐
ficiency scores above 30%. It is tempting to conclude that the first group of countries per‐
forms better than the second group where a mismatch of the inputs to produce optimal 
output has been established but the results unfold an opportunity for the countries from 
the second group to make new decisions with little effort to yield better output. Literally 
speaking, being on the DEA frontier means that all possibilities to use the current inputs 
to produce better output have been exploited and the only way to make an improvement 
is to better the input levels. For example, the finding that Canada is on the frontier means 
that it has already absorbed all possibilities to reduce primary energy intensity as a target 
output given the values of its input variables and no re‐allocation with constant inputs 
would make any change. This implies that the country has to make improvements in the 
areas measured through its inputs in order to further reduce primary energy intensity. On 
the other hand, the inefficiency score of 37.8% for Luxembourg indicates that the country 
could reduce primary energy intensity by this rate through re‐allocation efforts under 
constant inputs. Nevertheless, the re‐allocation efforts that could increase efficiency are 
usually met by constraints of other nature, thus posing practical difficulties to achieving 
higher efficiency level. 

In the model where the objective is to minimise electricity intensity and electricity 
capacity is used as an input, the average inefficiency score is lower and equals to 10.8%. 
This finding reveals that countries make more efficient decisions regarding electricity use, 
which can be explained through the fact that primary energy is a complex grouping of 
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various forms of energy that is much more difficult to deal with than electricity. In total, 
eight countries lie on the frontier in this set‐up, whereas Denmark and Luxembourg score 
the highest inefficiency margins, both above 30%. Though Mexico, Poland, and Slovakia 
are again on the DEA frontier, it is worth noting that there are significant differences 
across countries compared to the case with primary energy, which further supports the 
notion that managing primary energy is very different from managing electricity. For in‐
stance, Belgium, which had an inefficiency of 39.8%, now scores an inefficiency of 12.2% 
and South Korea, whose inefficiency margin was 22.3%, is on the frontier in this set‐up. 
However, there are also examples with change in the opposite direction. United States 
scored an inefficiency of 7.6% while optimising primary energy intensity and its ineffi‐
ciency with respect to the electricity intensity has almost doubled to 14.2%. 

The results obtained from the model for electricity intensity and renewable electricity 
capacity as an input are only partially consistent with the model using electricity capacity. 
Countries have a slightly higher mean inefficiency of 13.5% and, although Austria and 
Switzerland bring the number of countries on the DEA frontier up to 10, there is a general 
trend of increased inefficiency compared to the other version of this model. A more thor‐
ough examination of the differences reveals that the inefficiency margins go up for coun‐
tries whose renewable electricity capacity is greater than the electricity capacity. 

6.2. Extended Models 
We extend the baseline models by adding the environment component proxied by 

the CO2 emissions as an output variable in each of them. The inefficiency margins from 
the extended models are reported in Columns 2, 4 and 6 of Table A5 in Appendix E, while 
Figures A6–A8 in Appendix F make a comparison between the margins obtained from the 
baseline and extended models. 

The inefficiency scores yielded in the extended models for optimising primary en‐
ergy intensity and electricity intensity when electricity capacity is included are fully con‐
sistent with those in the baseline models. The steady scores amidst the addition of CO2 
emissions means that countries face a split‐off of the improvement across the output var‐
iables that they could achieve with a better match of the inputs at its current levels. Slight 
differences are noticeable in the extended model for electricity with renewable electricity 
capacity as an input and all of them point to a decreased inefficiency. As a result, the mean 
inefficiency margin amounts to 12.6%, which is 0.9 percentage points lower to that in the 
baseline model. Czech Republic is the country with most significant change from an inef‐
ficiency of 12.0% in the baseline model to DEA efficiency on the frontier in the extended 
model. 

7. Conclusion 
Our study of energy use and economic development reveals that OECD member 

states with higher nominal GDP per capita, in general, use primary energy and electricity 
more efficiently. The findings that we arrive at in the empirical analysis offer answers to 
our research questions. Firstly, we find that the sampled countries on average have an 
inefficiency margin of 16.1% for primary energy use and from 10.8 to 13.5% for electricity 
use. Secondly, based on the results, we conclude that the sampled countries use electricity 
more efficiently than primary energy by a slight margin. Thirdly, the inclusion of the en‐
vironmental care does not affect efficiency, except for the case with electricity produced 
from renewable sources where the inefficiency margin with environment decreased from 
13.5 to 12.6%, indicating that the efficiency has increased. Fourthly, the inclusion of elec‐
tricity production through renewable electricity capacity moved the inefficiency margin 
up from 10.8 to 13.5%, indicating that the efficiency has decreased. These results imply 
that countries have the opportunity to improve their energy management that could in‐
crease the efficient use of primary energy and electricity by the calculated margins under 
constant inputs. In other words, although the (in)efficiency margins point out to a mis‐
match in the utilisation of inputs, they also uncover a hidden potential to increase the 
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efficient use of energy through re‐allocation without the necessity to change the input val‐
ues. The approach we develop to study energy efficiency primarily using energy‐related 
variables with several other indicators that proxy for other related and important concepts 
is not ideal though, and it has some limitations that need to be addressed in future re‐
search papers on the topic. Firstly, the right choice of variables as inputs is oftentimes 
difficult and may lead to omission of important concepts. In first place, this applies to the 
geographic and climate factors that can impact the way a country manages its energy re‐
sources. Secondly, another related problem is the lack of data for specific variables that 
could calibrate the model in a proper way. Thirdly, the DEA framework assumes linearity 
and employs techniques of linear programming, which may not always be true and can 
produce results that lead up to conclusions that do not reflect reality. Fourthly, although 
the approach is sound to study efficiency and it can very well support important decisions 
regarding energy use, it does not explicitly tell what should be done to make a re‐alloca‐
tion that will bring closer to the frontier or how should the inputs be changed to free some 
room for improvement. 

We acknowledge that any future research on this topic should start off from the pos‐
sibility to solve the foregoing limitations and produce a more coherent and all‐embracing 
empirical analysis. A major next step to consider is expanding the sample size by bringing 
in more countries with varying levels of economic development. 
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Appendix A. Definition of Variables 
Table A1 contains details about the variables used in the empirical analysis, including 

both the variables used in the baseline analysis and those additionally used to check the 
robustness of the baseline results. Variables are classified into two groups—input and out‐
put—in order to indicate their purpose in the analysis. 

Table A1. Definition of variables. 

Variable Abb. Unit Source 
Input variables 

Primary energy trade dependence 
Primary energy from renewables 

Electricity capacity 
Electricity from renewables 

Renewable electricity capacity 
R&D expenditure rate 

Urbanisation rate 
Output variables 

 
PED 
PEr 
ELC 
ELr 

ELCr 
R&D 
URB 

 

 
index value greater than 0 

share of primary energy production 
share of electricity production 
share of electricity production 
share of electricity production 

share of GDP 
share of total population 

 

 
EIA* 
EIA* 
EIA* 
EIA* 
EIA* 

OECD 
WDI 
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Primary energy intensity 
Electricity intensity 
Electricity loss ratio 

CO2 emissions 

PEI 
ELI 
ELR 
CO2 

kWh/international US$ 
kWh/international US$ 

share of electricity production 
Mkg/international US$ 

EIA, WDI* 
EIA, WDI* 

EIA* 
EIA, WDI* 

Notes: The symbol * denotes own calculations based on data from the given sources. 

Appendix B. Descriptive Statistics 
Table A2 presents the summary statistics for the defined variables for all countries 

over the entire period. Variables are classified into two groups—input and output—in 
order to indicate their purpose in the analysis. Tables A3–A4 report the country means for 
the input and output variables, respectively, over the entire period. 

Table A2. Summary statistics for all countries over the entire period. 

Variable Obs. Mean Min. Max. St. Dev. 
Input variables 

Primary energy trade dependence 
Primary energy from renewables 

Electricity capacity 
Electricity from renewables 

Renewable electricity capacity 
R&D expenditure rate 

Urbanisation rate 
Output variables 

Primary energy intensity 
Electricity intensity 
Electricity loss ratio 

CO2 emissions 

 
540 
540 
540 
540 
540 
502 
540 

 
540 
540 
540 
540 

 
0.405 
0.139 
0.257 
0.201 
0.303 
0.018 
0.774 

 
1.643 
0.222 
0.064 
0.342 

 
0.009 
0.007 
0.149 
0.008 
0.093 
0.003 
0.537 

 
0.496 
0.071 
0.014 
0.056 

 
104.322 
1.000 
7.323 
1.000 
0.894 
0.045 
0.980 

 
8.026 
1.231 
0.677 
1.812 

 
1.187 
0.131 
0.046 
0.188 
0.097 
0.009 
0.106 

 
0.613 
0.078 
0.024 
0.232 

Notes: The sample consists of 30 countries with data for 18 time periods. 

Table A3. Country means of the input variables over the entire period. 

Country 
Input variable 

PED PEr ELC ELr ELCr R&D URB 
Australia 
Austria 
Belgium 
Canada 

Czech Republic 
Denmark 
Finland 
France 

Germany 
Greece 

Hungary 
Iceland 
Ireland 

Italy 
Japan 

Luxembourg 
Mexico 

Netherlands 
New Zealand 

Norway 
Poland 

Portugal 
Slovakia 

0.548 
1.759 
4.245 
0.285 
0.419 
0.182 
1.642 
1.099 
1.721 
2.499 
1.728 
0.310 
10.084 
4.665 
6.258 
62.019 
0.204 
0.648 
0.289 
0.807 
0.468 
4.977 
1.917 

0.020 
0.811 
0.176 
0.194 
0.053 
0.162 
0.529 
0.164 
0.254 
0.250 
0.082 
1.000 
0.605 
0.572 
0.521 
1.000 
0.047 
0.062 
0.455 
0.128 
0.049 
1.000 
0.211 

0.254 
0.359 
0.241 
0.213 
0.243 
0.395 
0.229 
0.229 
0.275 
0.291 
0.267 
0.165 
0.302 
0.369 
0.276 
1.704 
0.232 
0.268 
0.219 
0.240 
0.233 
0.348 
0.289 

0.112 
0.739 
0.112 
0.633 
0.075 
0.416 
0.362 
0.149 
0.208 
0.173 
0.074 
1.000 
0.170 
0.287 
0.146 
0.324 
0.161 
0.117 
0.735 
0.988 
0.077 
0.424 
0.197 

0.441 
0.266 
0.359 
0.212 
0.441 
0.396 
0.212 
0.346 
0.461 
0.563 
0.304 
0.154 
0.392 
0.378 
0.260 
0.450 
0.349 
0.338 
0.213 
0.226 
0.226 
0.399 
0.385 

0.020 
0.026 
0.021 
0.018 
0.015 
0.028 
0.033 
0.022 
0.027 
0.007 
0.011 
0.024 
0.013 
0.012 
0.032 
0.015 
0.004 
0.018 
0.012 
0.017 
0.008 
0.012 
0.007 

0.851 
0.582 
0.976 
0.807 
0.735 
0.866 
0.839 
0.783 
0.766 
0.761 
0.683 
0.934 
0.614 
0.685 
0.884 
0.882 
0.776 
0.860 
0.863 
0.792 
0.609 
0.602 
0.548 
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South Korea 
Spain 

Sweden 
Switzerland 

Turkey 
United Kingdom 

United States 

5.845 
2.958 
0.547 
1.023 
2.678 
0.410 
0.273 

0.060 
0.492 
0.561 
0.594 
0.411 
0.076 
0.103 

0.192 
0.341 
0.242 
0.295 
0.262 
0.262 
0.252 

0.019 
0.285 
0.554 
0.607 
0.267 
0.133 
0.118 

0.484 
0.463 
0.278 
0.126 
0.384 
0.314 
0.297 

0.033 
0.012 
0.033 
0.030 
0.007 
0.016 
0.027 

0.814 
0.783 
0.853 
0.736 
0.704 
0.811 
0.807 

Notes: Variables are labelled using the abbreviations introduced in Appendix A. 

Table A4. Country means of the output variables over the entire period. 

Country 
Output variable 

PEI ELI ELR CO2 
Australia 
Austria 
Belgium 
Canada 

Czech Republic 
Denmark 
Finland 
France 

Germany 
Greece 

Hungary 
Iceland 
Ireland 

Italy 
Japan 

Luxembourg 
Mexico 

Netherlands 
New Zealand 

Norway 
Poland 

Portugal 
Slovakia 

South Korea 
Spain 

Sweden 
Switzerland 

Turkey 
United Kingdom 

United States 

1.871 
1.264 
1.889 
3.088 
3.324 
0.843 
1.677 
1.380 
1.327 
1.636 
2.675 
3.296 
0.837 
1.166 
1.281 
1.229 
2.152 
1.629 
1.980 
1.635 
3.094 
1.560 
3.302 
2.824 
1.507 
1.503 
0.747 
2.237 
1.073 
1.957 

0.251 
0.177 
0.197 
0.413 
0.380 
0.118 
0.373 
0.192 
0.173 
0.236 
0.323 
0.866 
0.110 
0.160 
0.201 
0.140 
0.212 
0.147 
0.309 
0.336 
0.349 
0.228 
0.367 
0.381 
0.202 
0.305 
0.115 
0.276 
0.132 
0.259 

0.065 
0.057 
0.051 
0.051 
0.058 
0.059 
0.040 
0.064 
0.046 
0.077 
0.118 
0.036 
0.081 
0.073 
0.046 
0.133 
0.154 
0.048 
0.071 
0.069 
0.082 
0.091 
0.044 
0.037 
0.093 
0.069 
0.069 
0.154 
0.082 
0.062 

0.458 
0.210 
0.349 
0.448 
0.756 
0.174 
0.247 
0.177 
0.280 
0.395 
0.486 
0.192 
0.184 
0.230 
0.271 
0.255 
0.444 
0.346 
0.300 
0.125 
0.837 
0.304 
0.566 
0.628 
0.286 
0.133 
0.088 
0.491 
0.213 
0.384 

Notes: Variables are labelled using the abbreviations introduced in Appendix A. 

Appendix C. Time evolution of variables 
Figures A1–A2 show the evolution of the variables over the analysed period. 
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(a) Primary energy trade dependence (b) Primary energy and electricity from 
renewables 

  

(c) Electricity and renewable electricity in‐
stalled capacity ratios 

(d) R&D expenditure rate 

 

(e) Urbanisation rate 

Figure A1. Time evolution of the input variables.  

  

(a) Primary energy and electricity intensities (b) Electricity loss ratio 



Energies 2021, 14, 1185 17 of 21 
 

 

 

(c) CO2 emissions 

Figure A2. Time evolution of the output variables. 

Appendix D Charts on Energy Use and Nominal GDP per Capita 
The figures below plot the average values of the energy‐related output variables and 

nominal GDP per capita over the analysed period for all countries in the sample. 

 
Figure A3. Primary energy intensity and nominal GDP per capita. 
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Figure A4. Electricity intensity and nominal GDP per capita. 

 
Figure A5. Electricity loss ratio and nominal GDP per capita. 

Appendix E. Inefficiency Margins from the DEA Models 
Table A5 reports the inefficiency margins calculated as 1 − θ୧ per Definition 1. Col‐

umns 1, 2 report the results from the models studying primary energy, whereas Columns 
3–6 the results from the models including electricity. Columns 3, 4 contain the results from 
the models with electricity capacity, while Columns 5, 6 those with renewable electricity 
capacity as an input. Columns 1, 3 and 5 present the baseline results, while the others 
those from the extended models. 
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Table A5. Inefficiency margins across countries calculated in the DEA models. 

Country 

Specification 

Primary energy 
Electricity 

With electricity capacity With renewable electricity 
capacity 

Baseline 
model 

(1) 

Including 
emissions 

(2) 

Baseline 
model 

(3) 

Including 
emissions 

(4) 

Baseline 
model 

(5) 

Including 
emissions 

(6) 
Australia 
Austria 
Belgium 
Canada 

Czech Republic 
Denmark 
Finland 
France 

Germany 
Greece 

Hungary 
Iceland 
Ireland 

Italy 
Japan 

Luxembourg 
Mexico 

Netherlands 
New Zealand 

Norway 
Poland 

Portugal 
Slovakia 

South Korea 
Spain 

Sweden 
Switzerland 

Turkey 
United King‐

dom 
United States 

0.000 
0.042 
0.398 
0.000 
0.000 
0.000 
0.308 
0.241 
0.250 
0.195 
0.121 
0.150 
0.107 
0.200 
0.380 
0.378 
0.000 
0.258 
0.134 
0.238 
0.000 
0.090 
0.000 
0.223 
0.300 
0.245 
0.193 
0.160 
0.155 
0.076 

0.000 
0.042 
0.398 
0.000 
0.000 
0.000 
0.308 
0.241 
0.250 
0.194 
0.121 
0.150 
0.107 
0.200 
0.380 
0.378 
0.000 
0.258 
0.134 
0.238 
0.000 
0.090 
0.000 
0.223 
0.300 
0.245 
0.193 
0.160 
0.155 
0.076 

0.151 
0.036 
0.122 
0.057 
0.083 
0.334 
0.109 
0.081 
0.173 
0.151 
0.000 
0.000 
0.023 
0.169 
0.217 
0.302 
0.000 
0.183 
0.049 
0.111 
0.000 
0.000 
0.000 
0.000 
0.248 
0.145 
0.184 
0.000 
0.158 
0.142 

0.151 
0.036 
0.122 
0.057 
0.083 
0.334 
0.109 
0.081 
0.173 
0.151 
0.000 
0.000 
0.023 
0.169 
0.217 
0.302 
0.000 
0.183 
0.049 
0.111 
0.000 
0.000 
0.000 
0.000 
0.248 
0.145 
0.184 
0.000 
0.158 
0.142 

0.286 
0.000 
0.339 
0.115 
0.120 
0.320 
0.105 
0.240 
0.256 
0.161 
0.000 
0.000 
0.023 
0.160 
0.165 
0.302 
0.000 
0.294 
0.022 
0.138 
0.000 
0.000 
0.000 
0.000 
0.255 
0.257 
0.000 
0.000 
0.253 
0.243 

0.286 
0.000 
0.339 
0.114 
0.000 
0.320 
0.088 
0.240 
0.256 
0.161 
0.000 
0.000 
0.019 
0.142 
0.165 
0.235 
0.000 
0.294 
0.022 
0.138 
0.000 
0.000 
0.000 
0.000 
0.213 
0.257 
0.000 
0.000 
0.250 
0.243 

Appendix F. Charts of the (in)Efficiency Scores from the DEA Models 
The figures below plot the (in)efficiency scores from the baseline and extended mod‐

els. 
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Figure A6. (In)efficiency scores for primary energy. 

 
Figure A7. (In)efficiency scores for electricity. 

 
Figure A8. (In)efficiency scores for electricity with renewable electricity capacity. 

References 
1. United Nations Resolution adopted by the General Assembly on 25 September 2015, Available online: Transforming our world: 

the 2030 Agenda for Sustainable Development. (accessed on: 20 February 2021). 
2. Ritchie, R.; Mispy, O.‐O. Measuring progress towards the Sustainable Development Goals. (SDG 7) Available online: Ensure 

access to affordable, reliable, sustainable and modern energy for all (accessed on: 20 February 2021). 
3. Mardani, A.; Streimikiene, D.; Balezentis, T.; Saman, M.Z.M.; Nor, K.M.; Khoshnava, S.M. Data Envelopment Analysis in Energy 

and Environmental Economics: An Overview of the State‐of‐the‐Art and Recent Development Trends. Energies 2018, 11, 2002. 



Energies 2021, 14, 1185 21 of 21 
 

 

4. Zhou, H.; Yang, Y.; Chen, Y.; Zhu, J. Data envelopment analysis application in sustainability: The origins, development and 
future directions. Eur. J. Oper. Res. 2018, 264, 1–16. 

5. Färe, R.; Grosskopf, S.; Tyteca, D. An activity analysis model of the environmental performance of firms—Application to fossil‐
fuel‐fired electric utilities. Ecol. Econ., 1996, 18, 161–175. 

6. Xu, T.; You, J.; Li, H.; Shao, L. Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review. Energies 
2020, 13, 3548. 

7. Chachuli, F. S. M.; Ludin, N. A.; Mat, S.; Sopian, K. Renewable energy performance evaluation studies using the data envelop‐
ment analysis (DEA): A systematic review. J. Renew. Sustain. Energy, 2020, 12, 062701. 

8. Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. A comprehensive review of data envelopment anal‐
ysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 2017, 70, 1298–1322. 

9. Emrouznejad, A.; Yang, G.‐L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio‐Economic 
Plan. Sci. 2018, 61, 4–8. 

10. Sueyoshi, T.; Goto, M. World trend in energy: an extension to DEA applied to energy and environment. J. Econ. Struct. 2017, 6, 
13. 

11. Chen, X.; Gong, Z. DEA Efficiency of Energy Consumption in China’s Manufacturing Sectors with Environmental Regulation 
Policy Constraints. Sustainability 2017, 9, 210. 

12. Wier, M.; Christoffersen, L.B.; Jensen, T.S.; Pedersen, O.G.; Keiding, H.; Munksgaard, J. Evaluating sustainability of household 
consumption—Using DEA to assess environmental performance. Econ. Syst. Res. 2005, 17, 425–447. 

13. Wang, D.; Li, S.; Sueyoshi, T. DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in opera‐
tional and environmental performance to attain corporate sustainability. Energy Econ., 2014, 45, 254–267. 

14. Sueyoshi, T.; Goto, M. Difficulties and remedies on DEA environmental assessment. J. Econ. Struct. 2018, 7, 7–37. 
15. Ziolo, M.; Fidanoski, F.; Simeonovski, K.; Filipovski, V.; Jovanovska, K. Sustainable Finance Role in Creating Conditions for 

Sustainable Economic Growth and Development. In Sustainable Economic Development Green Economy and Green Growth; Filho 
W.L., Pociovalisteanu,D.‐M.,Al‐Amin, A.Q., Eds.; Springer, Cham, Swizterland, 2016, 187–211. 

16. Ziolo, M.; Fidanoski, F.; Simeonovski, K.; Filipovski, V.; Jovanovska, K. Business and Sustainability: Key Drivers for Business 
Success and Business Failure From the Perspective of Sustainable Development. In Value of Failure: The Spectrum of Challenges 
for the Economy; Markiewicz, J., Gracz, J., Eds.;Union Bridge Books, London, UK, 2017, 55–74. 

17. Bointner, R. Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries. 
Energy Policy 2014, 73, 733–747. 

18. Koçak, E.; Ulucak, Z. Şentürk The effect of energy R&D expenditures on CO2 emission reduction: estimation of the STIRPAT 
model for OECD countries. Environ. Sci. Pollut. Res. 2019, 26, 14328–14338. 

19. Iftikhar, Y.; He, W.; Wang, Z. Energy and CO2 emissions efficiency of major economies: A non‐parametric analysis. J. Clean. 
Prod. 2016, 139, 779–787. 

20. Iftikhar, Y.; Wang, Z.; Zhang, B.; Wang, B. Energy and CO2 emissions efficiency of major economies: A network DEA approach, 
Energy, 2018, 147, 197–207. 

21. Ciupăgeanu, D.; Lăzăroiu, G.; Tîrşu, M. Carbon dioxide emissions reduction by renewable energy employment in Romania. In 
Proceedings of the 2017 International Conference on Electromechanical and Power Systems (SIELMEN), Iasi, Romania, Chisinau, Rep. 
Moldova 11–13 October 2017, Dumitru, D., Chirac, G., Fosalau, C., Plopa, O., Eds.; IEEE, Danvers, MA, USA, 281–285. 

22. Sheng, P.; He, Y.; Guo, X. The impact of urbanization on energy consumption and efficiency. Energy Environ. 2017, 28, 673–686 
23. Cooper, W.W.; Seiford, L.M.; Zhu, J., (Ed.); Handbook on data envelopment analysis, 2nd ed.; Springer: New York, NY, USA, 2011; 

pp.1–497. 
24. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res., 1978, 2, 429–444. 
25. Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment 

Analysis. Manag. Sci. 1984, 30, 1078–1092. 
26. Data envelopment analysis: Theory, methodology and Applications, 1st. ed.; Charnes, A., Cooper, W.W., Lewin, A.Y., Seiford, L.M. 

Eds.; Springer: Dordrecht, Netherlands, 1994. 
27. Deng, C.G.; Liu, T.; Wu, J. Efficiency Analysis of China’s Commercial Banks Based on DEA: Negative Output Investigation. 

China‐USA Bus. Rev., 2007, 6, 50–56. 
28. Lafuente, E.; Szerb, L.; Acs, Z.J. Country level efficiency and national systems of entrepreneurship: a data envelopment analysis 

approach. J. Technol. Transf. 2016, 41, 1260–1283. 
29. Cooper, W.W. Origin and Development of Data Envelopment Analysis: Challenges and Opportunities. Data Envel. Anal. J. 2014, 

1, 3–10. 


