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Abstract: This study aims to overview the U.S. sustainable development by measuring the environ-
mental performance of 50 states over the period of 2009–2018. To attain the objective, we employ data
envelopment analysis for environmental assessment where we prioritize the minimization of CO2

emissions first and the maximization of gross state product later under the concept of managerial dis-
posability (i.e., an environment-based performance measure). Then, we examine how the state-level
environmental performance measures are associated with their political and spatial contexts. For the
purpose, we conduct the Kruskal-Wallis rank sum test across groups of states characterized by their
political transitions in the presidential and gubernatorial elections and defined by the regions of the
U.S. Economic Development Administration and Environmental Protection Agency. Based on our
empirical results, we find that (a) overall environmental performance has gradually enhanced over
time, (b) there are statistically significant differences in the environmental performance measures
along with the political transitions, and (c) states on both coasts have outperformed those of the
middle in the measurement.

Keywords: data envelopment analysis; environmental assessment; sustainable development

1. Introduction

The United Nations Conference on Environment and Development (or the Rio de
Janeiro Earth Summit) in 1992 and ensuing pacts, such as the Kyoto Protocol in 1997
and the Paris Agreement in 2016, have impacted the public’s awareness of and attitude
toward sustainable development around the world. It was true for the United States but
it has had different impacts on different groups depending on the contexts in which they
were situated. A spatial context is one of them. More environmentally friendly states,
such as California and Massachusetts, have aggressively formulated and implemented
environmental policies (particularly, climate policy programs that seek to mitigate and
adapt themselves to climate change and its adverse consequences) while their counterparts,
such as Montana and North Dakota, have played a passive role (for instance, they are still
relying on the production or use of fossil fuels or are reluctant to address environmental or
climate issues). A political context also matters. There have been historically many debates
over environmental or climate issues (e.g., the establishment of the U.S. Environmental
Protection Agency in 1970 and the more recent withdrawal from the Paris Accord) drawing
on partisan identification and political ideology. Democrats or liberals tend to place more
value on the environment (e.g., environmental protection or spending) than Republicans
or conservatives do [1].

Such divergence in environmental awareness and attitude, however, did not date back
to a long time ago. As Baldassarri and Gelman [2] argued, the degree of issue partisanship
over environmental concern was low and environmental protection or spending was not a
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contentious issue among different voters prior to the late 1970s. Since then (particularly,
after the Rio Summit in 1992), however, it has not been the case anymore [3]. As environ-
mental issues emerge as a politically important agenda, public opinion and politicians’
preferences over the environment have diverged across geographic regions and political be-
liefs [4]. For instance, Democrats tend to be more aware of environmental issues and more
supportive of environmental spending than Republicans do [5]. From the establishment of
the U.S. Environmental Protection Agency (EPA) to a series of environment/climate-related
pacts, environmental awareness and attitude became one of the litmus tests that identify
people’s geographic location and political partisanship.

Polarization on environmental/climate concern culminates in the Trump Administra-
tion’s withdrawal from the Paris Agreement and the to-be-soon Biden Administration’s
resolve to return to the Agreement. Since each administration relies on voters who have
different preferences over the environment/climate, their decisions show stark contrast
against each other. The U.S. withdrawal from the Agreement threatened its (or federal)
leadership on the environmental issues on one hand, but it offered sub-national entities
(e.g., states or cities) an opportunity to exert their environmental leadership [6]. While the
EPA (a federal environmental agency) is staffed by climate deniers rather than environ-
mental activists, some states (alone or consortium) have taken pivotal environmental
measures. States on both coasts, for instance, have made decarbonization efforts such as the
“West Coast Electric Highway” initiative and the establishment of the “Northeast States for
Coordinated Air Use Management.” In the electricity sector, particularly, some states have
transitioned from fossil fuels to renewables [7,8]. In the transportation sector, additionally,
they have deployed low- or zero-emission vehicles [9].

In this vein, this study aims to measure the environmental performance of 50 states
in the United States (U.S.) over the past decade (from 2009 to 2018) and explore how
political and spatial contexts influence states’ environmental performance. To that end,
we employ data envelopment analysis for environmental assessment (DEA-EA) to evaluate
state-level environmental performance and then conduct a series of the Kruskal-Wallis
tests to examine whether there are statistical differences in the environmental performance
across states with different partisan identification and political ideology and with different
regional environment.

The remaining sections are organized as follows: Section 2 conducts a literature survey
on the DEA applications to the state-level performance evaluation. Sections 3 and 4 describe
the underlying concepts of DEA-EA and elucidate our proposed DEA-EA as an approach
to evaluate the performance of U.S. states. Section 5 summarizes our empirical results
obtained from the analysis. Section 6 concludes this study along with future extensions.

All abbreviations used in this study are summarized as follows: BTU: British thermal
unit, D: Democratic, DEA: Data Envelopment Analysis, DMU: Decision Making Unit, DTS:
Damages to Scale, EA: Environmental Assessment, EDA: Economic Development Admin-
istration, EPA: Environmental Protection Agency, GSP: Gross State Product, NESCAUM:
Northeast States for Coordinated Air Use Management, MMT: Million Metric Tons, R:
Republican, R&D: Research and Development, URS: Unrestricted and U.S.: United States.

2. Previous Studies
2.1. State-Level Performance Measurement

Table 1 lists previous studies of measuring various types of performance assessment in
the U.S. The. institutions are based on federalism where the federal and state governments
split power. Except for interstate concerns (e.g., national security), state governments
have the authority to collect taxes, and formulate and implement policy programs that
reflect on the needs and desires of their own constituents. Since state governments’ policy
programs affect all entities in their jurisdictions, states can be regarded as a decision
making unit (DMU) in this study and the assessment of their performance can attract the
public’s attention. It is particularly true from the perspective of constituents who want to
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maximize their utilities in various ways (e.g., voting for their economic interests and/or
political preferences).

Table 1. Previous Assessments on Performance of U.S. States.

Author(s) Method Summary Input Output

Yilmaz & Dinc [10] Conventional DEA

This study explored
48 states’
telecommunications
infrastructure use
performance over the
period of 1984–1997.

Private, public,
and telecommunications
capital stocks and labor

Total value added of states’
private industries

Lee & Joo [11] Conventional DEA

This study examined
50 states’ operational
performance of
correctional facilities
in 2005.

Capacity and expenditure Number of inmates
and recidivism

Khan & Murova [12] Conventional DEA

This study looked into
50 states’ operational
performance over the
period of 1992–2012.

State expenditure,
employment,
and population

Gross state product

Thomas et al. [13] Efficiency ratio

This study shed light on
changes of 50 states’ R&D
efficiency ratios between
2004 and 2008.

R&D expenditure Patents granted and
scientific publications

Drivas et al. [14] SFA

This study measured
50 states’ output and
knowledge production
efficiencies over the period
of 1993–2006.

Gross capital stock,
the number of workers,
business R&D stock,
and the number of
scientists and engineers

Gross state product
and patents

Gearhart [15] Hyperbolic order-α
estimator

This study analyzed
50 states’ health care
efficiency over the period
of 2002–2008.

Vaccine, citizens/hospital,
inpatient days, hospital
beds, cost, etc.

Infant/teen survival rate
and life expectancy

Gearhart & Michieka [16] Conditional order-m
estimator

This study analyzed
50 states’ health care
efficiency over the period
of 2014–2017.

Healthcare costs and the
fraction of individuals
with some college

Years of life gained and
the fraction of infants born
normal birthweight

Park et al. [17] Non-radial SBM-DEA

This study evaluated
50 states’ environmental
performance in the
transportation sector over
the period of 2004–2012.

Capital expense, energy
consumption and labor in
the transportation sector

Transportation value
added and CO2 emissions

Halkos & Polemis [18] Window DEA

This study assessed
50 states’ environmental
efficiency in the power
generation sector over the
period of 2000–2012.

Total energy transmission
and total operating cost

Use of net capacity, CO2,
SO2 and NOx emissions

Despite its eligibility for the DMU, surprisingly, there is a paucity of studies on as-
sessing the state-level performance. A majority of studies use macroscopic (e.g., nations)
or microscopic (e.g., companies, hospitals, and schools) entities as DMUs. As a meso-
scopic entity, states have some advantages over or differences from other government units
(e.g., counties or cities) when used as a DMU. Some of them are as follows: First, states
have some degree of latitude to decide how to expend their budgets, which leads to hetero-
geneous policy sets and make some states stand out from others. While each state’s budget
items are almost homogeneous (e.g., education, public health, corrections, etc.), the mix of
budget items are somewhat different across states. Second, the various policy sets stem
from political elites or leaders that need to listen to their constituents’ voices. Presidential
or gubernatorial candidates should reflect their policy agenda on the interests of voters
to win the elections. Third, states are nested in their regions (agglomerates of multiple
states) that often characterize states’ sociocultural, industrial, economic, environmental,
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and political contexts. Thus, states in the same regions tend to share similar identities
and sometimes facilitate them to cooperate or form an alliance to attain the same goals.
Lastly, state-level data tend to be more accessible than county or city-level data. Public or
private sources in the U.S. offer at least state-level data so that data availability issues can
be addressed.

As summarized in Table 1, many previous studies are mainly concerned with the
state level. For instance, Lee and Joo [11], Thomas et al. [13], and Gearhart [15] assessed
states’ performance in the fields of corrections, research and development, and health care,
respectively. Of the studies in Table 1, Park et al. [17] and Halkos and Polemis [18] evalu-
ated environmental performance in the transportation and electricity sectors, respectively.
While both studies focused on the environmental performance of 50 states, they were
sector-specific and their data were relatively outdated (up to 2012) so that the studies
could not capture more recent focusing events, such as the political transition from Obama
Administration to Trump Administration, which lead to significant policy changes.

2.2. Political and Spatial Contexts on Climate/Environmental Policy

A political context can influence the formulation and implementation of climate/
environmental policy. A clear example is partisan sorting where elite cues impact mass
opinion on climate/environmental issues and the public opinion becomes more diver-
gent so that Democrats move left (i.e., to the pro-environment) and Republicans do right
(i.e., to the anti-environment) [19]. Such polarization of both politicians and the public has
been substantial, particularly since the 1990s [3]. While there were pivotal global events
such as the Rio Earth Summit and the Kyoto Protocol at that time, the Republican took
over Congress from the Democratic in the U.S. so that policy hegemony was shifted to the
conservatives [1]. The disharmony between the external pro-environmental movement
and internal anti-environmental movement rendered Democrats and Republicans move
in the opposite direction, which created the polarization over environmental protection
and spending.

Based on the small-government doctrine oriented toward laissez-faire or marketized
and privatized economy, which restricts government interventions such as environmental
regulations, the Republican elites have placed more value on economic development rather
than environmental protection. Such positions have been maintained particularly under
the Republican presidents and in the Republican-ruling states. With the inauguration of the
Obama Administration in 2009, however, the Democratic leaders recognized science-based
climate risks and embraced climate actions such as mitigation and adaptation measures.
For instance, clean energy innovation and transportation decarbonization became an
important political agenda and they were placed in the front burner, which previously
was in the back burner. While the Trump Administration has filled environment-related
positions with climate deniers, it would be dramatically changed with the start of the Biden
Administration in 2021.

To take such political transition into account, we explore each state’s partisans that
have won presidential and gubernatorial elections over the past decade and categorize
states into four groups: D to D (the Democratic to the Democratic), R to D (the Republican
to the Democratic), D to R (the Democratic to the Republican), and R to R (the Republican
to the Republican). Table 2 summarizes the election results and political transition in
50 states. Considering the role of the political context in the climate/environmental policy,
we construct the first hypothesis as follows:

Hypothesis 1. Political context influences the states’ environmental performance.

Hypothesis 1a (H1a). States’ environmental performance varies significantly by political transi-
tion by presidential elections.

Hypothesis 1b (H1b). States’ environmental performance varies significantly by political transi-
tion by gubernatorial elections.
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A spatial context also matters in the climate/environmental policy. In the U.S. that
boasts its vast territory, particularly, geographic conditions vary by region and residents are
impacted by their different regional situations. With the emerging role of state governments
in managing climate risks, they have played a key role in the formulation and implementa-
tion of climate policy [20]. In the clean energy policy area, for instance, state governments
have created many policy innovations [21]. However, climate actions were not limited
to each state’s independent measures. States have interacted with their neighboring
states/regions [22] and state initiatives have gradually evolved into regional collabora-
tions [23]. The Northeast States for Coordinated Air Use Management (NESCAUM) and
the Regional Electric Vehicle Plan for the West are examples of state/regional efforts to
deploy electric vehicles as a means to address climate issues.

Table 2. States by Results of Presidential and Gubernatorial Elections.

State
Presidential

Elections
Gubernatorial

Elections State
Presidential

Elections
Gubernatorial

Elections

Winners Transition Winners Transition Winners Transition Winners Transition

Alabama RRR R to R RRRR R to R Montana RRR R to R DDD D to D
Alaska RRR R to R RRIR R to R Nebraska RRR R to R RRRR R to R
Arizona RRR R to R DRRR D to R Nevada DDD D to D RRRD R to D
Arkansas RRR R to R DDRR D to R New Hampshire DDD D to D DDRR D to R
California DDD D to D RDDD R to D New Jersey DDD D to D DRRD D to D
Colorado DDD D to D DDDD D to D New Mexico DDD D to D DRRD D to D
Connecticut DDD D to D RDD R to D New York DDD D to D DDDD D to D
Delaware DDD D to D DDD D to D N. Carolina DRR D to R DRD D to D
Florida DDR D to R RRRR R to R N. Dakota RRR R to R RRR R to R
Georgia RRR R to R RRRR R to R Ohio DDR D to R DRRR D to R
Hawaii DDD D to D RDDD R to D Oklahoma RRR R to R DRRR D to R
Idaho RRR R to R RRRR R to R Oregon DDD D to D DDDD D to D
Illinois DDD D to D DDRD D to D Pennsylvania DDR D to R DRDD D to D
Indiana DRR D to R RRR R to R Rhode Island DDD D to D RIDD R to D
Iowa DDR D to R DRRR D to R S. Carolina RRR R to R RRRR R to R
Kansas RRR R to R DRRD D to D S. Dakota RRR R to R RRRR R to R
Kentucky RRR R to R DDR D to R Tennessee RRR R to R DRRR D to R
Louisiana RRR R to R RRD R to D Texas RRR R to R RRRR R to R
Maine DDD D to D DRRD D to D Utah RRR R to R RRR R to R
Maryland DDD D to D DDRR D to R Vermont DDD D to D RDDDRR R to R
Massachusetts DDD D to D DDRR D to R Virginia DDD D to D DRDD D to D
Michigan DDR D to R DRRD D to D Washington DDD D to D DDD D to D
Minnesota DDD D to D RDDD R to D W. Virginia RRR R to R DDD D to D
Mississippi RRR R to R RRR R to R Wisconsin DDR D to R DRRD D to D
Missouri RRR R to R DDR D to R Wyoming RRR R to R DRRR D to R

Note: D = Democratic, R = Republican, and I = Independent. For instance, DDD or DDDD means Democratic candidates have won three
or four elections in a row over the past decade (e.g., Colorado and New York). RRR or RRRR means Republican candidates have won
three or four elections in a row (e.g., Alabama and South Dakota). DDR or DRRR represents the political transition from the Democratic to
Republican Party (e.g., Florida in the Presidential elections and Wyoming in the Gubernatorial elections). RDDD or RRRD presents the
political transition from the Republican to Democratic Party (e.g., California and Nevada in the Gubernatorial elections).

In this regard, there is a great body of studies that focused on regional variations in
climate/environmental policy. For instance, regional assessments have been conducted in
the fields of watershed management [24], environmental inequality (particularly, industrial
air toxics exposure) [25], perceptions about climate change [26], and public opinion on cli-
mate change [27]. However, few studies shed light on regional variations in environmental
performance. To address this issue, we use the regional schemes proposed by EDA and EPA
in that two federal agencies deal with two important outputs (economic development and
environmental protection) in evaluating state-level performance. Table 3 shows the EDA
and EPA regions and their member states. Drawing on the regional schemes, we construct
the second hypothesis as follows:

Hypotheses 2. Spatial context influences states’ environmental performance.

Hypotheses 2a (H2a). States’ environmental performance varies significantly by EDA regions.

Hypotheses 2b (H2b). States’ environmental performance varies significantly by EPA regions.
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Table 3. States by EDA and EPA Regions.

EDA Region EPA Region State

Philadelphia
Regional Office

Region 1

Connecticut
Maine
Massachusetts
New Hampshire
Rhode Island
Vermont

Region 2 New Jersey
New York

Region 3

Delaware
Maryland
Pennsylvania
Virginia
West Virginia

Atlanta
Regional Office

Region 4

Alabama
Florida
Georgia
Kentucky

Mississippi
North Carolina
South Carolina
Tennessee

Chicago Regional Office Region 5

Illinois
Indiana
Michigan
Minnesota
Ohio
Wisconsin

Austin
Regional Office Region 6 Arkansas

Louisiana
New Mexico
Oklahoma
Texas

Region 7 Iowa
Kansas
Missouri
Nebraska

Denver
Regional Office Region 8 Colorado

Montana
North Dakota
South Dakota
Utah
Wyoming

Region 9 Arizona
California
Hawaii
Nevada

Seattle
Regional Office Region 10 Alaska

Idaho
Oregon
Washington

Note: EDA = Economic Development Administration and EPA = Environmental Protection Agency.
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3. Underlying Concepts

We apply DEA-EA to the prepared data set, which contains not only a column vector
(X) of m inputs and that of G of s desirable outputs but also a column vector (B) of h undesir-
able outputs. Please note that a conventional use of DEA excludes the existence of B in the
computational process although the environmental assessment needs a unification process
between G and B. The unification process is classified under two (natural and managerial)
disposability concepts. We focus upon the concept of “managerial disposability” because
we are interested in environmental assessment. See the study [28] that provides a use of
DEA for natural disposability. This research is an extension of the work by shifting natural
to managerial disposability.

Natural Disposability: This research starts the concept of sustainability from a descrip-
tion of “natural disposability” in which the first priority is economic prosperity and the
second one is pollution prevention. This type of disposability implies the elimination of
inefficiency within the framework of performance assessment. In the concept, an inefficient
DMU decreases some components of X or maintains them at their current level. The X
decrease occurs with increasing some components of G. The decrease of X naturally reduces
B. The previous DEA studies did not consider an existence of B.

Managerial disposability: The concept discussed in this study is the opposite of
natural disposability. For example, a coal-fired power plant increases the amount of coal
combustion to increase the amount of electricity generation. Here, even if the power
plant increases the amount of coal combustion, the increase can reduce the amount of
CO2 emission by a managerial effort such as a use of high-quality coal with less CO2
emission and/or an engineering effort to use new generation technology (e.g., clean coal
technology) that can reduce the amount of CO2 emission. Management of the power
company considers such a change as a business opportunity to adjust them to a change
of environmental regulation. Under the managerial disposability, the investment in green
technology may provide firms with an opportunity to enhance not only environmental
protection but also economic success. Thus, both economic prosperity and green technology
are not mutually exclusive in modern business. Rather, we need to consider that both
are necessary conditions toward sustainable development. This type of disposability was
never considered in the previous DEA studies.

Null-Joint Hypothesis: An important concept to be thought of is the null-joint relation-
ship between G and B. The hypothesis implies that components of B are “by-products” of
G. In other words, B cannot exist without G. The concept is straight forward in discussing
the relationship between G and B if we do not consider technology advancement and gov-
ernmental regulation on B. Thus, it is necessary for us to consider the assumption between
G and B when examining a unified efficiency measure under managerial disposability.

4. Method

This subsection describes mathematical formulations to measure the degree of unified
efficiency (operational and environmental) using a forecasted data set. The nomenclatures
are specified in the following manner:

X: A column vector of m inputs,
xijt: The i th input of the j th DMU at the t th period,
G: A column vector of s desirable outputs,
grjt: The r th desirable output of the j th DMU at the t th period,
B: A column vector of h undesirable outputs,
b f jt: The f th undesirable output of the j th DMU at the t th period,
ξkt: An inefficiency score of the k th DMU at the t th period,
dx

i : A slack variable of the i th input,
dg

r : A slack variable of the r th desirable output,
db

f : A slack variable of the f th undesirable output,

λjt: A vector of intensity variables on the j th DMU at the z th period,
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εs: A prescribed very small number,
Rx

i : A data range related to the i th input
Rb

f : A data range related to the f th undesirable output,

t: The observed t th period (t = 1,.., T).

This study specifies the following two types of data ranges (R) according to the upper
and lower bounds of production factors:

Rx
i = (m + s + h)−1

(
max

j

{
xijt
∣∣j = 1, . . . , n & t = 1, .., T

}
− min

j

{
xijt
∣∣j = 1, . . . , n & t = 1, .., T

})−1
&

Rb
f = (m + s + h)−1

(
max

j

{
b f jt

∣∣∣j = 1, . . . , n & t = 1, .., T
}
− min

j

{
b f jt

∣∣∣j = 1, . . . , n & z = 1, .., T
})−1

.

The purpose of these ranges is that DEA results can avoid an occurrence of zero in
multipliers. Such an occurrence implies that corresponding production factors (X, G and B)
are not fully used in the evaluation.

Unified Efficiency: This research assumes that there are n DMUs at the t th period
to be examined and all of their production factors are strictly positive even if they are
imprecise. All DMUs are specified by j = 1, . . . , n in the proposed formulations. This study
uses the following formulation to compute the unified efficiency of the specific k th DMU
under managerial disposability at the specific t th period:
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we modify Model (1) as follows: 

(1)

Model (1) has eight unique features to be noted. First, the period (t = 1, . . . , T)
is used for observed periods. All the periods (t) are together and used in the form of a
cross-sectional structure. Second, the unknown vector λjt = (λ1t, . . . , λnt)

Tr is referred
to as “structural” or “intensity” variables in the DEA terminology. They connect all the
production factors (X, G and B). Third, the production and pollution possibility set of Model
(1) assumes constant Damages to Scale (DTS) because ∑n

j=1 λjt= 1 does not exist from (1).
See [29] for a detailed description on DTS. Fourth, Model (1) considers only single-sided
input deviations (dx+

i = ∑T
t=1 ∑n

j=1 xijtλjt − xikt ≥ 0) on all input factors to attain the status
of managerial disposability. Fifth, a scalar value (ξkt) stands for a unified inefficiency
score that measures a distance between two efficiency frontiers and an observed vector
of G and B of the k th DMU at the t th period. Sixth, a small scalar value (e.g., εs = 0.001)
indicates the relative importance between the inefficiency measure and the total sum of
slacks. The value (εs) is not a non-Archimedean small number that has been used for
mathematical convenience in standard DEA. The small number should be prescribed
by a use(s) in the range that the efficiency measure of all DMUs locates between zero
(standing for full efficiency) and unity (standing for full inefficiency). Seventh, this type
of measurement belongs to the “Debreu-Farrell” criterion. The reference [29] provides a
detailed description on the criterion. Finally, the equations, ∑T

t=1 ∑n
j=1 grjtλjt − ξktgrkt = grkt

on desirable outputs, drop slacks related to G to incorporate a possible occurrence of
green technology.
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A unified efficiency measure (UEM) of the k th DMU at the t th period is measured by

UEM∗
kt = 1 − [ξ∗kt + εs(

m

∑
i=1

Rx
i dx+∗

ikt +
h

∑
f=1

Rb
f db∗

f kt)]. (2)

Here, the inefficiency measure and all slack variables are determined on the optimality
of Model (1). The degree of unified efficiency is obtained by subtracting the level of
inefficiency from unity as specified in Equation (2).

An important feature of Model (1) is that it specifies the upper bound of inputs by
increasing X and reducing B as specified by ∑T

t=1 ∑n
j=1 xijtλ

∗
jt = xikt + dx+∗

ikt (i = 1, . . . , m)

and ∑T
t=1 ∑n

j=1 b f jtλ
∗
jt = bfkt − db∗

f − ξ∗ktbfkt (f = 1, . . . , h) on optimality. The model also
considers that the components of G do not have any slack in the formulation.

Unified Index: To extend the efficiency measure to its corresponding index measure,
we modify Model (1) as follows:
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(3)

The index measures the performance of the k th DMU at the t th period by comparing
itself with the efficiency frontier of the t − 1 period. Therefore, Model (3) considers only
observations in t − 1 th period (for making an efficiency frontier) and those of t th periods
whose efficiencies are examined by Model (3).

A unified index measure (UIM) of the k th DMU at the t th period is measured by

UIM∗
kt = 1 − [ξ∗kt + εs(

m

∑
i=1

Rx
i dx+∗

ikt +
h

∑
f=1

Rb
f db∗

f kt)]. (4)

Here, the inefficiency measure and all slack variables are determined on the optimality
of Model (3). The degree of unified index is obtained by subtracting the level of inefficiency
from unity as specified in Equation (4). In contrast to the efficiency measure (2), the index
measure (4) produces the unfired index that may be larger than unity, so showing a
technological progress on pollution prevention.

At the end of this section, this study needs to note the three computational concerns
on the proposed two approaches. First, we assume constant DTS to avoid computational in-
feasibility. Second, we understand that the proposed approaches suffer from an occurrence
of multiple solutions (e.g., multiple reference sets and multiple supporting hyperplanes).
Finally, there is a possibility that an observed data set (e.g., including an outlier) does
not fit with the assumption of the null-joint hypothesis incorporated into the two mod-
els. In the case, a computer code may produce an infeasible solution. This indicates that
the data set does not satisfy the hypothesis, not the ordinary infeasibility on computing
linear programming.
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5. An Illustrative Example
5.1. Data

For the analytic framework of inputs, desirable outputs, and undesirable outputs,
we collected state-level data during the period of 2009 to 2018 from four different sources:
(1) population data from the U.S. Census, (2) government expenditure data from the
National Association of State Budget Officers, (3) energy consumption data from the U.S.
Energy Information Administration, (4) patent data from the U.S. Patent and Trademark
Office, (5) gross domestic product data from the U.S. Bureau of Economic Analysis, and (6)
carbon dioxide data from the U.S. Environmental Protection Agency.

There were four inputs: (1) population, (2) government expenditure, (3) energy con-
sumption, and (4) patent grants. The first two inputs represent labor and capital while the
last two account for material (or resource) and technological feedstock to the production.
The population was measured by thousands of people. Government expenditure was
measured by U.S. million dollars. The amount of energy consumption was measured by
billion BTU. The number of patents was measured at grants. There were one desirable
and one undesirable outputs: gross state product (GSP) and carbon emissions. The former
represents economic vitality while the latter takes environmental sustainability into account
as a byproduct of production. GSP was measured by U.S. $ million. The amount of carbon
emissions was measured in million metric tons of CO2.

Table 4 exhibits data sets: part (a) lists 25 blue states where Biden won and part (b) does
25 red states where Trump won in the 2020 presidential election. Coincidentally, the election
result is half and half by states. The data includes input and output production factors
by states. Instead of enumerating all data from 2009 to 2018, we present 2018 data and
descriptive statistics over the past 10 years. States are listed in the alphabetical order of their
names. There are 25 blue states in part (a) and 25 red states in part (b). As of 2018, blue states
have more populations, government expenditures, patent grants, and economic production
than red states do. In contrast, red states use more energy and emit more carbon dioxide.
On average, blue states have approximately 7.5 million people, spend $51 billion of the
budget, use 1.9 quadrillion BTU of energy, receive 5 thousand patents, generate $511 billion
of GSP, and emit 93 million tons of CO2. Meanwhile, red states have approximately
5.6 million people, spend $28 billion of the budget, use 2.2 quadrillion BTU of energy,
receive 1.6 thousand patents, generate $303 billion of GSP, and emit 128 million tons
of CO2.

Table 4. Production Factors Data of (a) 25 Blue States and (b) 25 Red States in 2018.

State
Input Desirable

Output
Undesirable

Output

Population
(Thousands)

Expenditure
($ Million)

Energy Consump.
(Billion BTU)

Patent
(Grants)

GSP
($ Million)

CO2
(MMT)

(a)

Arizona 7158 35,147 1,487,797 2812 350,718 91
California 39,462 269,668 7,966,578 43,960 2,975,083 376
Colorado 5691 39,814 1,513,286 3259 372,453 90
Connecticut 3572 33,149 753,010 2977 279,782 38
Delaware 957 10,847 290,283 285 74,187 14
Georgia 10,511 49,509 2,876,097 3064 602,024 135
Hawaii 1421 15,199 292,895 136 93,101 20
Illinois 12,723 72,783 4,011,952 5655 863,040 215
Maine 1335 8412 395,251 228 64,557 15
Maryland 6036 43,796 1,361,165 2042 411,619 60
Massachusetts 6883 57,124 1,458,647 7687 570,464 65
Michigan 9984 56,613 2,894,187 7293 521,803 164
Minnesota 5606 39,819 1,913,919 4513 371,930 94
Nevada 3027 14,843 727,227 745 169,180 39
New Hampshire 1349 6131 324,693 998 84,584 15
New Jersey 8886 60,775 2,240,709 4682 612,979 111
New Mexico 2093 20,402 702,827 535 100,080 47
New York 19,530 163,744 3,854,184 9780 1,705,010 172
Oregon 4182 40,619 1,012,242 3522 241,978 40
Pennsylvania 12,801 84,908 3,961,566 4456 778,375 227
Rhode Island 1058 9262 197,377 415 59,925 12
Vermont 624 5675 139,153 388 32,981 6
Virginia 8501 52,078 2,401,238 2542 533,510 105
Washington 7524 46,021 2,078,665 7445 575,417 82
Wisconsin 5807 48,199 1,885,868 2702 337,553 103

Average 7469 51,381 1,869,633 4885 511,293 93
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Table 4. Cont.

State
Input Desirable

Output
Undesirable

Output

Population
(Thousands)

Expenditure
($ Million)

Energy Consump.
(Billion BTU)

Patent
(Grants)

GSP
($ Million)

CO2
(MMT)

(b)

Alabama 4888 27,475 1,954,823 510 221,031 114
Alaska 735 10,291 609,786 57 54,293 36
Arkansas 3010 25,506 1,119,701 403 127,761 72
Florida 21,244 78,523 4,281,336 4893 1,050,298 233
Idaho 1751 7963 553,287 843 79,091 19
Indiana 6695 33,621 2,837,602 2265 368,425 192
Iowa 3149 23,382 1,616,101 1056 190,147 85
Kansas 2911 15,911 1,134,492 894 171,719 63
Kentucky 4461 34,053 1,743,944 745 207,849 123
Louisiana 4660 31,253 4,403,154 490 253,236 258
Mississippi 2989 19,118 1,192,670 208 113,579 71
Missouri 6122 26,038 1,847,810 1406 317,949 124
Montana 1061 6952 435,230 172 50,692 32
Nebraska 1916 12,141 914,565 314 124,705 53
N. Carolina 10,382 47,795 2,616,133 3781 567,452 122
N. Dakota 758 5889 660,959 123 56,287 55
Ohio 11,676 69,682 3,755,870 4608 675,030 211
Oklahoma 3940 22,669 1,706,535 614 198,596 100
S. Carolina 5084 25,257 1,671,781 1142 235,287 75
S. Dakota 879 4457 396,837 157 53,239 16
Tennessee 6772 33,562 2,255,868 1289 362,737 97
Texas 28,629 114,592 14,258,824 11,359 1,795,635 823
Utah 3154 14,789 835,121 1795 181,623 61
W. Virginia 1804 16,857 832,914 152 77,633 89
Wyoming 578 4425 558,594 118 39,703 64

Average 5570 28,488 2,167,757 1576 302,960 128

Table 5 shows the data statistics of two outputs: GSP and CO2. States’ mean values
over 10 years are presented along with standard deviation values in the parenthesis.
The descriptive statistics of blue states are presented first and that of red states later.
Although some blue and red states have similar sizes of their economies, they emit different
levels of CO2. For instance, New York (a blue state) and Texas (a red state) produce
$1406 billion and $1480 billion of GSP whereas they emit 170 MMT and 766 MMT of CO2.

Table 5. Descriptive Statistics of 50 States’ Production Factors Data from 2009–2018.

State
Output

State
Output

State
Output

GSP
($ Million)

CO2
(MMT)

GSP
($ Million)

CO2
(MMT)

GSP
($ Million)

CO2
(MMT)

Arizona 287,023 93 New York 1,405,735 170 Louisiana 230,649 253
(35,701) (3) (181,537) (5) (11,677) (8)

California 2,378,366 371 Oregon 192,397 40 Mississippi 102,472 66
(369,901) (6) (28,022) (1) (6464) (4)

Colorado 300,269 92 Pennsylvania 675,190 241 Missouri 281,455 129
(41,370) (3) (66,497) (13) (22,228) (6)

Connecticut 253,028 36 Rhode Island 53,838 11 Montana 43,513 33
(15,974) (1) (4087) (1) (4480) (1)

Delaware 65,142 14 Vermont 29,578 6 Nebraska 107,755 51
(6038) (1) (2236) (0) (12,431) (2)

Georgia 486,445 145 Virginia 465,731 105
N. Carolina

475,184 127
(67,949) (14) (40,253) (3) (55,673) (7)

Hawaii 78,317 19 Washington 443,099 78
N. Dakota

48,816 53
(9248) (0) (73,307) (4) (9093) (3)

Illinois 750,271 225 Wisconsin 289,261 100 Ohio 574,078 226
(72,389) (11) (30,245) (3) (64,807) (15)

Maine 56,007 17 Alabama 193,687 121 Oklahoma 175,884 104
(4738) (1) (16,091) (7) (16,887) (4)
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Table 5. Cont.

State
Output

State
Output

State
Output

GSP
($ Million)

CO2
(MMT)

GSP
($ Million)

CO2
(MMT)

GSP
($ Million)

CO2
(MMT)

Maryland 354,469 63 Alaska 53,554 38
S. Carolina

192,027 76
(36,743) (5) (3003) (2) (26,110) (5)

Massachusetts 473,342 67 Arkansas 112,736 66
S. Dakota

45,056 15
(58,661) (3) (9882) (4) (5378) (0)

Michigan 444,015 161 Florida 850,014 230 Tennessee 302,121 103
(51,995) (5) (114,589) (6) (38,863) (4)

Minnesota 314,641 93 Idaho 63,577 18 Texas 1,480,361 766
(36,274) (2) (8347) (1) (195,335) (41)

Nevada 138,583 37 Indiana 314,810 199 Utah 141,672 63
(16,208) (2) (33,301) (13) (22,173) (3)

New Hampshire 72,073 15 Iowa 165,018 84 W. Virginia 70,020 93
(7637) (1) (18,500) (5) (4009) (4)

New Jersey 543,682 113 Kansas 146,999 68 Wyoming 38,029 65
(43,957) (4) (15,432) (5) (1407) (2)

New Mexico 89,857 53 Kentucky 183,293 137
(5267) (4) (16,538) (12)

Note: Standard deviation in the parenthesis.

5.2. Efficiency/Index Measures

Figure 1 maps states’ mean UEM scores over the past decade. Greener states indicate
higher environmental performance while redder ones point out lower performance. States
on both coasts tend to outperform those in the middle. Figures 2 and 3 depict mean UEM
and UIM scores of blue and red states over time. The mean UEM and UIM scores gaps
between blue and red states are obvious but they become slightly wider in the mean UEM
(the environmental performance of blue states has improved more than that of red states
has) while becoming narrower in the mean UIM (the environmental performance of blue
states has stagnated whereas that of red states has enhanced). One notable thing is that
mean UEM and UIM scores both tend to increase since 2009 but they started to decrease
or level off from 2017. Although it requires more data (in 2019 and 2020) to confirm,
the possible reason may be the political change from the Obama Administration to the
Trump Administration.
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Tables 6 and 7 summarize UEM and UIM scores and ranks of blue and red states over
time. They are results of Models (1) and (3) estimations for efficiency measures. As of 2018,
the UEM and UIM scores of blue states (0.819 and 0.836) are higher than those of red states
(0.642 and 0.700). The top five states include California, Massachusetts, New York, Oregon,
and Washington, all of which are located on both coasts and are politically liberal. Over the
past decade, the UEM score of blue states has increased by 13.75% while that of red states
has increased by 8.08%. However, the UIM score of blue states has slightly decreased
(−0.36%) whereas that of red states has increased by 16.47%. It implies that (a) overall blue
states outperform red states, (b) blue states’ environmental performance has improved
more than red states has, and (c) red states’ technological progress has been made faster
than blue states’ has. Both environmental performance and technological progress declined
between 2017 and 2018: from 0.822 to 0.819 and from 0.860 to 0.836 in blue states and from
0.644 to 0.642 and from 0.723 to 0.700 in red states, respectively.
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Table 6. Unified Efficiency Scores of (a) Blue States and (b) Red States from 2009–2018.

UEM 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

(a)

Arizona 0.611 (27) 0.602 (29) 0.619 (28) 0.637 (27) 0.617 (29) 0.638 (27) 0.660 (28) 0.698 (27) 0.711 (26) 0.686 (27)
California 0.876 (7) 0.920 (6) 0.958 (6) 0.961 (7) 0.972 (2) 1.000 (1) 0.990 (3) 0.995 (2) 1.000 (1) 0.987 (4)
Colorado 0.572 (31) 0.573 (31) 0.591 (32) 0.595 (30) 0.606 (30) 0.614 (30) 0.630 (31) 0.646 (31) 0.658 (30) 0.670 (29)
Connecticut 0.852 (9) 0.848 (9) 0.863 (7) 0.886 (8) 0.876 (9) 0.880 (8) 0.873 (10) 0.932 (9) 0.959 (8) 0.911 (9)
Delaware 0.830 (10) 0.813 (11) 0.776 (16) 0.740 (18) 0.763 (18) 0.794 (15) 0.800 (16) 0.770 (19) 0.813 (16) 0.850 (14)
Georgia 0.620 (26) 0.621 (26) 0.662 (24) 0.715 (21) 0.732 (21) 0.731 (19) 0.750 (21) 0.754 (21) 0.766 (22) 0.792 (21)
Hawaii 0.637 (23) 0.617 (27) 0.610 (30) 0.633 (28) 0.648 (25) 0.685 (24) 0.695 (26) 0.745 (22) 0.783 (20) 0.786 (22)
Illinois 0.607 (29) 0.611 (28) 0.618 (29) 0.644 (26) 0.627 (27) 0.635 (28) 0.667 (27) 0.700 (26) 0.707 (27) 0.710 (26)
Maine 0.746 (18) 0.770 (16) 0.790 (15) 0.838 (12) 0.823 (12) 0.828 (13) 0.829 (13) 0.813 (15) 0.852 (13) 0.898 (11)
Maryland 0.754 (17) 0.779 (14) 0.813 (13) 0.856 (10) 0.876 (10) 0.854 (10) 0.883 (9) 0.901 (11) 0.984 (5) 0.904 (10)
Massachusetts 0.796 (13) 0.810 (12) 0.858 (9) 0.976 (6) 0.935 (6) 0.977 (4) 0.955 (6) 0.978 (3) 1.000 (1) 1.000 (1)
Michigan 0.567 (32) 0.582 (30) 0.609 (31) 0.622 (29) 0.619 (28) 0.629 (29) 0.622 (33) 0.657 (30) 0.657 (31) 0.650 (32)
Minnesota 0.658 (22) 0.684 (20) 0.692 (22) 0.720 (20) 0.721 (23) 0.710 (23) 0.726 (24) 0.724 (24) 0.747 (24) 0.746 (24)
Nevada 0.609 (28) 0.639 (23) 0.705 (21) 0.700 (23) 0.676 (24) 0.670 (25) 0.711 (25) 0.701 (25) 0.729 (25) 0.732 (25)
New Hampshire 0.678 (21) 0.698 (19) 0.712 (19) 0.789 (17) 0.822 (13) 0.791 (17) 0.790 (17) 0.867 (12) 0.891 (12) 0.872 (12)
New Jersey 0.769 (15) 0.768 (17) 0.765 (18) 0.802 (14) 0.803 (17) 0.781 (18) 0.783 (18) 0.780 (17) 0.813 (17) 0.808 (18)
New Mexico 0.395 (47) 0.428 (45) 0.417 (46) 0.431 (46) 0.438 (45) 0.475 (44) 0.477 (45) 0.496 (45) 0.499 (45) 0.552 (42)
New York 0.939 (3) 0.934 (4) 0.996 (4) 1.000 (1) 1.000 (1) 0.954 (7) 0.958 (5) 0.971 (4) 1.000 (1) 1.000 (1)
Oregon 0.876 (8) 0.898 (7) 1.000 (1) 0.990 (5) 0.934 (7) 0.981 (3) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1)
Pennsylvania 0.533 (36) 0.530 (37) 0.546 (37) 0.560 (35) 0.566 (34) 0.583 (33) 0.613 (34) 0.635 (33) 0.642 (32) 0.656 (30)
Rhode Island 0.812 (11) 0.818 (10) 0.824 (11) 0.858 (9) 0.893 (8) 0.861 (9) 0.820 (15) 0.943 (7) 0.905 (11) 0.812 (16)
Vermont 0.930 (4) 1.000 (1) 0.975 (5) 1.000 (1) 0.963 (4) 0.966 (6) 0.891 (8) 0.934 (8) 0.940 (10) 0.945 (6)
Virginia 0.799 (12) 0.796 (13) 0.834 (10) 0.844 (11) 0.817 (14) 0.831 (12) 0.828 (14) 0.816 (14) 0.850 (15) 0.850 (13)
Washington 0.899 (6) 0.924 (5) 0.999 (3) 1.000 (1) 0.971 (3) 1.000 (1) 0.968 (4) 0.953 (5) 0.976 (6) 0.986 (5)
Wisconsin 0.630 (24) 0.631 (25) 0.639 (27) 0.671 (25) 0.635 (26) 0.654 (26) 0.650 (29) 0.673 (28) 0.663 (28) 0.674 (28)

Avg. 0.720 (19) 0.732 (19) 0.755 (19) 0.779 (17) 0.773 (17) 0.781 (17) 0.783 (18) 0.803 (18) 0.822 (17) 0.819 (17)
Max. 0.939 (47) 1.000 (45) 1.000 (46) 1.000 (46) 1.000 (45) 1.000 (44) 1.000 (45) 1.000 (45) 1.000 (45) 1.000 (42)
Min. 0.395 (3) 0.428 (1) 0.417 (1) 0.431 (1) 0.438 (1) 0.475 (1) 0.477 (1) 0.496 (1) 0.499 (1) 0.552 (1)
S.D. 0.141 (11) 0.147 (11) 0.158 (12) 0.159 (12) 0.153 (11) 0.149 (11) 0.138 (11) 0.138 (11) 0.142 (12) 0.131 (11)

(b)

Alabama 0.493 (41) 0.479 (42) 0.486 (42) 0.507 (40) 0.528 (40) 0.528 (41) 0.532 (42) 0.556 (39) 0.580 (36) 0.579 (38)
Alaska 0.907 (5) 0.528 (38) 0.808 (14) 0.546 (38) 0.556 (36) 0.555 (38) 1.000 (1) 0.556 (38) 0.549 (41) 0.555 (39)
Arkansas 0.554 (33) 0.557 (33) 0.547 (36) 0.540 (39) 0.538 (39) 0.544 (39) 0.609 (35) 0.573 (36) 0.563 (39) 0.539 (44)
Florida 0.771 (14) 0.717 (18) 0.769 (17) 0.799 (15) 0.810 (15) 0.794 (16) 0.783 (19) 0.802 (16) 0.812 (18) 0.806 (19)
Idaho 1.000 (1) 1.000 (1) 1.000 (1) 0.999 (4) 0.956 (5) 0.976 (5) 0.932 (7) 0.932 (10) 0.949 (9) 0.944 (7)
Indiana 0.433 (43) 0.437 (43) 0.452 (44) 0.474 (43) 0.484 (43) 0.481 (43) 0.513 (43) 0.522 (44) 0.526 (43) 0.514 (45)
Iowa 0.540 (35) 0.535 (35) 0.555 (35) 0.572 (33) 0.594 (32) 0.602 (31) 0.633 (30) 0.667 (29) 0.661 (29) 0.639 (33)
Kansas 0.503 (39) 0.513 (39) 0.530 (39) 0.556 (36) 0.542 (38) 0.557 (37) 0.592 (36) 0.609 (35) 0.640 (33) 0.634 (34)
Kentucky 0.427 (44) 0.425 (46) 0.420 (45) 0.444 (45) 0.437 (46) 0.426 (46) 0.448 (46) 0.457 (46) 0.490 (46) 0.486 (46)
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Table 6. Cont.

UEM 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

(b)

Louisiana 1.000 (1) 0.888 (8) 0.862 (8) 0.835 (13) 0.843 (11) 0.835 (11) 0.858 (12) 0.948 (6) 0.970 (7) 0.930 (8)
Mississippi 0.585 (30) 1.000 (1) 0.647 (26) 0.585 (32) 0.604 (31) 0.583 (34) 0.565 (38) 0.545 (42) 0.558 (40) 0.554 (40)
Missouri 0.493 (40) 0.498 (40) 0.487 (41) 0.502 (41) 0.501 (42) 0.516 (42) 0.537 (41) 0.551 (41) 0.525 (44) 0.552 (41)
Montana 0.412 (46) 0.379 (47) 0.412 (47) 0.425 (47) 0.420 (47) 0.416 (47) 0.419 (47) 0.437 (47) 0.452 (47) 0.469 (47)
Nebraska 0.550 (34) 0.571 (32) 0.556 (34) 0.570 (34) 0.555 (37) 0.572 (35) 0.583 (37) 0.615 (34) 0.629 (35) 0.602 (35)
N. Carolina 0.691 (19) 0.664 (22) 0.710 (20) 0.737 (19) 0.728 (22) 0.730 (20) 0.765 (20) 0.771 (18) 0.791 (19) 0.802 (20)
N. Dakota 0.291 (49) 0.314 (48) 0.337 (48) 0.347 (48) 0.360 (48) 0.378 (48) 0.370 (48) 0.373 (48) 0.390 (48) 0.393 (48)
Ohio 0.531 (38) 0.532 (36) 0.558 (33) 0.591 (31) 0.573 (33) 0.588 (32) 0.625 (32) 0.637 (32) 0.639 (34) 0.653 (31)
Oklahoma 0.461 (42) 0.487 (41) 0.488 (40) 0.497 (42) 0.522 (41) 0.539 (40) 0.538 (40) 0.555 (40) 0.579 (37) 0.579 (37)
S. Carolina 0.624 (25) 0.633 (24) 0.656 (25) 0.695 (24) 0.742 (19) 0.723 (21) 0.744 (23) 0.757 (20) 0.781 (21) 0.759 (23)
S. Dakota 0.764 (16) 0.774 (15) 0.817 (12) 0.791 (16) 0.807 (16) 0.815 (14) 0.866 (11) 0.833 (13) 0.851 (14) 0.834 (15)
Tennessee 0.678 (20) 0.677 (21) 0.688 (23) 0.708 (22) 0.734 (20) 0.721 (22) 0.746 (22) 0.738 (23) 0.759 (23) 0.810 (17)
Texas 0.532 (37) 0.538 (34) 0.540 (38) 0.549 (37) 0.556 (35) 0.560 (36) 0.562 (39) 0.569 (37) 0.573 (38) 0.593 (36)
Utah 0.422 (45) 0.436 (44) 0.453 (43) 0.473 (44) 0.460 (44) 0.464 (45) 0.482 (44) 0.527 (43) 0.543 (42) 0.547 (43)
W. Virginia 0.310 (48) 0.275 (49) 0.276 (50) 0.294 (49) 0.295 (49) 0.269 (49) 0.287 (49) 0.278 (49) 0.290 (49) 0.320 (49)
Wyoming 0.262 (50) 0.265 (50) 0.277 (49) 0.264 (50) 0.256 (50) 0.263 (50) 0.257 (50) 0.266 (50) 0.274 (50) 0.281 (50)

Avg. 0.594 (30) 0.591 (31) 0.599 (31) 0.597 (32) 0.602 (32) 0.604 (32) 0.639 (31) 0.632 (32) 0.644 (32) 0.642 (32)
Max. 1.000 (49) 1.000 (48) 1.000 (48) 0.999 (48) 0.956 (48) 0.976 (48) 1.000 (48) 0.948 (48) 0.970 (48) 0.944 (48)
Min. 0.291 (1) 0.314 (1) 0.337 (1) 0.347 (4) 0.360 (5) 0.378 (5) 0.370 (1) 0.373 (6) 0.390 (7) 0.393 (7)
S.D. 0.188 (15) 0.183 (14) 0.166 (14) 0.154 (12) 0.153 (13) 0.150 (13) 0.168 (14) 0.151 (13) 0.154 (12) 0.150 (13)

Note: Rank in the parenthesis.

Table 7. Unified Index Scores of (a) Blue States and (b) Red States from 2009–2018.

UIM 2010 2011 2012 2013 2014 2015 2016 2017 2018

(a)

Arizona 0.628 (31) 0.655 (32) 0.647 (28) 0.618 (33) 0.663 (30) 0.701 (29) 0.743 (27) 0.750 (28) 0.719 (29)
California 1.108 (1) 1.036 (6) 1.102 (2) 1.025 (3) 1.034 (3) 1.008 (4) 1.019 (4) 1.028 (3) 0.991 (8)
Colorado 0.646 (29) 0.662 (31) 0.637 (30) 0.637 (31) 0.654 (32) 0.665 (32) 0.683 (32) 0.693 (34) 0.681 (31)
Connecticut 1.055 (5) 1.023 (7) 1.021 (6) 0.952 (11) 0.964 (10) 0.966 (8) 1.023 (3) 1.018 (5) 0.918 (11)
Delaware 1.005 (7) 0.880 (13) 0.803 (16) 0.825 (19) 0.891 (13) 0.861 (16) 0.814 (20) 0.846 (20) 0.855 (17)
Georgia 0.670 (27) 0.716 (25) 0.732 (22) 0.746 (23) 0.768 (23) 0.775 (24) 0.798 (23) 0.811 (24) 0.815 (22)
Hawaii 0.807 (17) 0.763 (22) 0.740 (20) 0.707 (27) 0.830 (19) 0.795 (22) 0.811 (21) 0.828 (23) 0.787 (24)
Illinois 0.683 (26) 0.688 (28) 0.683 (27) 0.653 (30) 0.673 (29) 0.699 (30) 0.739 (28) 0.747 (29) 0.728 (28)
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Table 7. Cont.

UIM 2010 2011 2012 2013 2014 2015 2016 2017 2018

(a)

Maine 0.833 (15) 0.842 (17) 0.854 (14) 0.851 (15) 0.900 (12) 0.863 (15) 0.871 (14) 0.908 (16) 0.935 (10)
Maryland 0.880 (12) 0.910 (11) 0.909 (10) 0.920 (12) 0.909 (11) 0.940 (10) 0.957 (11) 1.017 (7) 0.917 (12)
Massachusetts 1.082 (2) 1.078 (2) 1.156 (1) 1.122 (1) 1.133 (2) 1.015 (3) 1.034 (2) 1.106 (1) 1.030 (1)
Michigan 0.636 (30) 0.663 (30) 0.642 (29) 0.629 (32) 0.661 (31) 0.643 (35) 0.694 (31) 0.700 (32) 0.675 (32)
Minnesota 0.752 (19) 0.753 (23) 0.738 (21) 0.731 (26) 0.743 (26) 0.750 (27) 0.763 (25) 0.794 (26) 0.774 (25)
Nevada 0.720 (23) 0.768 (21) 0.727 (23) 0.702 (28) 0.705 (28) 0.744 (28) 0.748 (26) 0.768 (27) 0.748 (27)
New Hampshire 0.822 (16) 0.792 (19) 0.828 (15) 0.847 (16) 0.834 (18) 0.828 (19) 0.919 (12) 0.932 (11) 0.894 (13)
New Jersey 0.863 (14) 0.850 (14) 0.857 (13) 0.843 (17) 0.827 (20) 0.827 (20) 0.824 (18) 0.853 (19) 0.820 (20)
New Mexico 0.480 (44) 0.458 (45) 0.449 (45) 0.459 (46) 0.519 (43) 0.503 (45) 0.526 (45) 0.524 (46) 0.565 (43)
New York 1.062 (3) 1.087 (1) 1.051 (4) 1.019 (4) 1.001 (8) 1.037 (2) 1.053 (1) 1.067 (2) 1.001 (5)
Oregon 0.999 (8) 1.061 (4) 1.015 (8) 0.954 (10) 1.017 (5) 1.042 (1) 0.974 (8) 0.925 (13) 1.001 (4)
Pennsylvania 0.596 (34) 0.610 (33) 0.595 (32) 0.589 (35) 0.617 (36) 0.639 (36) 0.671 (35) 0.680 (36) 0.674 (33)
Rhode Island 0.998 (9) 0.922 (10) 0.881 (11) 0.909 (13) 0.990 (9) 0.886 (14) 0.991 (6) 0.927 (12) 0.817 (21)
Vermont 1.039 (6) 1.038 (5) 1.044 (5) 0.983 (7) 1.002 (6) 0.991 (5) 0.959 (10) 0.948 (10) 0.969 (9)
Virginia 0.867 (13) 0.907 (12) 0.870 (12) 0.835 (18) 0.874 (14) 0.857 (17) 0.860 (15) 0.898 (17) 0.874 (15)
Washington 1.058 (4) 1.069 (3) 1.052 (3) 1.056 (2) 1.138 (1) 0.987 (6) 0.988 (7) 1.026 (4) 1.011 (2)
Wisconsin 0.698 (25) 0.702 (27) 0.701 (25) 0.667 (29) 0.713 (27) 0.688 (31) 0.717 (29) 0.702 (31) 0.695 (30)

Avg. 0.839 (17) 0.837 (18) 0.829 (17) 0.811 (20) 0.842 (18) 0.828 (19) 0.847 (18) 0.860 (19) 0.836 (19)
Max. 1.108 (44) 1.087 (45) 1.156 (45) 1.122 (46) 1.138 (43) 1.042 (45) 1.053 (45) 1.106 (46) 1.030 (43)
Min. 0.480 (1) 0.458 (1) 0.449 (1) 0.459 (1) 0.519 (1) 0.503 (1) 0.526 (1) 0.524 (1) 0.565 (1)
S.D. 0.183 (12) 0.173 (12) 0.181 (11) 0.170 (12) 0.168 (12) 0.147 (12) 0.140 (12) 0.144 (12) 0.129 (11)

(b)

Alabama 0.496 (42) 0.511 (42) 0.509 (41) 0.530 (41) 0.554 (41) 0.547 (42) 0.597 (40) 0.624 (39) 0.609 (39)
Alaska 0.543 (40) 0.849 (15) 0.552 (38) 1.000 (5) 0.872 (15) 0.924 (11) 0.854 (17) 0.922 (14) 1.007 (3)
Arkansas 0.602 (32) 0.578 (37) 0.549 (39) 0.560 (37) 0.632 (34) 0.777 (23) 0.612 (38) 0.696 (33) 0.566 (42)
Florida 0.746 (20) 0.821 (18) 0.803 (16) 0.810 (21) 0.839 (17) 0.833 (18) 0.857 (16) 0.859 (18) 0.871 (16)
Idaho 0.910 (10) 1.016 (8) 1.016 (7) 0.959 (9) 1.031 (4) 0.956 (9) 1.000 (5) 1.018 (6) 0.993 (7)
Indiana 0.460 (45) 0.480 (44) 0.477 (44) 0.486 (44) 0.505 (44) 0.528 (43) 0.557 (44) 0.563 (43) 0.537 (45)
Iowa 0.555 (37) 0.583 (36) 0.575 (34) 0.597 (34) 0.632 (33) 0.651 (33) 0.714 (30) 0.710 (30) 0.672 (35)
Kansas 0.549 (38) 0.571 (39) 0.562 (36) 0.547 (40) 0.585 (39) 0.610 (37) 0.647 (37) 0.683 (35) 0.659 (36)
Kentucky 0.437 (47) 0.440 (46) 0.446 (46) 0.439 (47) 0.449 (46) 0.467 (46) 0.492 (46) 0.525 (45) 0.510 (46)
Louisiana 0.888 (11) 0.968 (9) 0.975 (9) 0.985 (6) 1.002 (7) 0.977 (7) 0.965 (9) 1.011 (8) 0.998 (6)



Energies 2021, 14, 1180 17 of 23

Table 7. Cont.

UIM 2010 2011 2012 2013 2014 2015 2016 2017 2018

(b)

Mississippi 0.740 (21) 0.715 (26) 0.591 (33) 0.882 (14) 0.783 (21) 0.897 (12) 0.674 (33) 0.997 (9) 0.759 (26)
Missouri 0.547 (39) 0.535 (40) 0.523 (40) 0.514 (43) 0.544 (42) 0.557 (40) 0.582 (42) 0.557 (44) 0.570 (41)
Montana 0.399 (48) 0.439 (47) 0.428 (47) 0.422 (48) 0.438 (47) 0.431 (47) 0.467 (47) 0.485 (47) 0.491 (47)
Nebraska 0.599 (33) 0.593 (35) 0.573 (35) 0.559 (39) 0.600 (37) 0.600 (38) 0.655 (36) 0.673 (38) 0.628 (37)
N. Carolina 0.728 (22) 0.776 (20) 0.767 (19) 0.754 (22) 0.772 (22) 0.803 (21) 0.822 (19) 0.838 (21) 0.824 (19)
N. Dakota 0.321 (49) 0.350 (48) 0.349 (48) 0.362 (49) 0.398 (48) 0.381 (48) 0.402 (48) 0.422 (48) 0.417 (48)
Ohio 0.578 (35) 0.608 (34) 0.606 (31) 0.584 (36) 0.618 (35) 0.644 (34) 0.673 (34) 0.679 (37) 0.674 (34)
Oklahoma 0.509 (41) 0.518 (41) 0.500 (43) 0.526 (42) 0.566 (40) 0.553 (41) 0.595 (41) 0.622 (40) 0.609 (40)
S. Carolina 0.653 (28) 0.686 (29) 0.698 (26) 0.746 (24) 0.758 (24) 0.765 (26) 0.809 (22) 0.836 (22) 0.795 (23)
S. Dakota 0.787 (18) 0.846 (16) 0.795 (18) 0.810 (20) 0.854 (16) 0.889 (13) 0.892 (13) 0.913 (15) 0.876 (14)
Tennessee 0.708 (24) 0.729 (24) 0.711 (24) 0.738 (25) 0.756 (25) 0.768 (25) 0.784 (24) 0.809 (25) 0.845 (18)
Texas 0.566 (36) 0.575 (38) 0.552 (37) 0.559 (38) 0.588 (38) 0.579 (39) 0.608 (39) 0.614 (41) 0.621 (38)
Utah 0.495 (43) 0.508 (43) 0.501 (42) 0.479 (45) 0.494 (45) 0.509 (44) 0.559 (43) 0.574 (42) 0.557 (44)
W. Virginia 0.451 (46) 0.305 (49) 0.295 (49) 0.980 (8) 0.294 (49) 0.300 (49) 0.298 (50) 0.308 (50) 0.338 (50)
Wyoming 0.270 (50) 0.286 (50) 0.265 (50) 0.291 (50) 0.279 (50) 0.264 (50) 0.298 (49) 0.337 (49) 0.343 (49)

Avg. 0.601 (33) 0.639 (32) 0.611 (33) 0.646 (32) 0.664 (31) 0.680 (30) 0.688 (31) 0.723 (30) 0.700 (31)
Max. 0.910 (49) 1.016 (48) 1.016 (48) 1.000 (49) 1.031 (48) 0.977 (48) 1.000 (48) 1.018 (48) 1.007 (48)
Min. 0.321 (10) 0.350 (8) 0.349 (7) 0.362 (5) 0.398 (4) 0.381 (7) 0.402 (5) 0.422 (6) 0.417 (3)
S.D. 0.150 (12) 0.175 (12) 0.167 (12) 0.189 (14) 0.176 (13) 0.178 (14) 0.160 (13) 0.175 (14) 0.172 (14)

Note: Rank in the parenthesis.
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5.3. Statistical Test

To examine our hypotheses, we graphically describe differences in UEM scores and
conducted the Kruskal-Wallis tests of UEM/UIM scores among different groups of states.
Specifically, panels (a) and (b) of Figure 4 demonstrate mean UEM scores across states with
different political transitions in presidential and gubernatorial elections. In the former,
states with D to D transition outperformed their counterparts (i.e., states with D to R or R
to R transition). It is noted that there was no state with R to D transition in the presidential
election. In the latter, states with R to D or D to D outperformed their counterparts.
Interestingly, states with R to D transition performed the best even if they are compared to
states with D to D. On one hand, it implies that some Republican governors (particularly,
those in blue states) committed to environmental protection or climate actions. They include
California, Connecticut, Hawaii, Minnesota, and so forth. On the other hand, states with D
to R transition improved faster than those with R to R transition. Even though political
hegemony was shifted to the Republican from the Democratic in those states, it seems that
the learning curve from the Democratic gubernatorial administration may influence the
following Republican administration. States with R to R transitions performed the worst
and their mean UEM scores stagnated.
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Panels (c) and (d) of Figure 4 demonstrate regional variations in mean UEM scores. It is
clear that Seattle and Philadelphia regions (defined by EDA) and Regions 1, 2, and 10 (defined
by EPA) outperformed their counterparts. They include Pacific Northwest (e.g., Oregon and
Washington) and New England states (e.g., Massachusetts and New York). EDA’s Denver re-
gion, which is composed of EPA’s Regions 8 and 9, underperformed other regions. While EPA’s
Region 9 (e.g., California and Hawaii) performed well, Region 8 (e.g., North and South Dakotas)
performed poorly.

Tables 8 and 9 summarize the results of the Kruskal-Wallis tests vis-à-vis a political
context (hypothesis 1). Chi-squares (χ2) statistics indicate that we can reject null hypotheses
of identical mean UEM/UIM scores among three or four groups of states with different
presidential or gubernatorial election results. The UEM/UIM scores of D to D or R to
D groups are statistically significantly higher than those of D to R or R to R groups.
Tables 10 and 11 summarize the results of the Kruskal-Wallis tests regarding a spatial
context (hypothesis 2). The χ2-statistics indicate that we can reject null hypotheses of
identical mean UEM/UIM scores among six or ten groups of states situated in different
EDA or EPA regions. The UEM/UIM scores of Seattle and Philadelphia regions or Regions
1, 2, and 10 are statistically significantly higher than those of other regions.

Table 8. Kruskal-Wallis Tests of States with Different Presidential Election Results.

Efficiency/Index
Mean (Rank Sum)

χ2-Statistic
D to D D to R R to R

UEM 0.816 (70,082) 0.638 (16,747) 0.586 (38,421) 162.777 ***
UIM 0.874 (56,885) 0.672 (12,803) 0.634 (31,787) 146.295 ***

Note: *** = significant at 1%.

Table 9. Kruskal-Wallis Tests of States with Different Gubernatorial Election Results.

Efficiency/Index
Mean (Rank Sum)

χ2-Statistic
D to D D to R R to D R to R

UEM 0.695 (44,269) 0.628 (24,458) 0.817 (24,888) 0.660 (31,635) 54.365 ***
UIM 0.742 (35,251) 0.671 (19,723) 0.887 (20,447) 0.710 (26,055) 51.119 ***

Note: *** = significant at 1%.

Table 10. Kruskal-Wallis Tests of States of EDA’s Six Different Regions.

Efficiency/Index
Mean (Rank Sum)

χ2-Statistic
Atlanta Austin Chicago Denver Philadelphia Seattle

UEM 0.664
(18,442)

0.587
(14,492)

0.625
(11,997)

0.600
(19,154)

0.802
(45,129)

0.887
(16,036) 161.557 ***

UIM 0.711
(14,939)

0.625
(11,437)

0.659
(9112)

0.639
(15,285)

0.869
(37,221)

0.966
(13,482) 168.804 ***

Note: *** = significant at 1%.

Table 11. Kruskal-Wallis Tests of States of EPA’s Ten Different Regions.

Efficiency/
Index

Mean (Rank Sum)
χ2-Statistic

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 Region 10

UEM 0.880
(24,095)

0.884
(8041)

0.674
(12,993)

0.664
(18,442)

0.625
(11,997)

0.600
(8629)

0.571
(5863)

0.497
(7107)

0.753
(12,047)

0.887
(16,036) 230.318 ***

UIM 0.955
(19,904)

0.941
(6516)

0.738
(10,801)

0.711
(14,939)

0.659
(9112)

0.646
(7045)

0.598
(4392)

0.525
(5474)

0.810
(9811)

0.966
(13,482) 234.047 ***

Note: *** = significant at 1%.
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5.4. Results and Discussion

This study demonstrated the variations of the environmental performance of 50 states
of the U.S. by temporal, political, and spatial contexts. The summarized results are as
follows. Temporally, the environmental performance of states tends to have improved
regardless of their political transitions and locations. Politically, the UEM/UIM scores of
blue states have been significantly higher than those of red states, suggesting that the
overall environmental performance is better in blue states than in red states. Meanwhile,
it is worth noting that red states’ technological progress is substantial. It was dramatic
particularly in the states with the political transition from D to R, implying that even
though there was a political hegemony change in those states, climate/environmental
learning from the previous Democratic administration may have some impacts on their
residents/public opinions and the following Republican administration. Geographically,
the Pacific Northwest and New England regions (Seattle and Philadelphia regions defined
by EDA and Regions 1, 2, and 10 defined by EPA) demonstrated better environmental
performance than their counterparts.

To some degree, states with the political transition from D to D or from R to D
overlap those on both coasts. However, it does not explain everything. Over the past
decade, on one hand, political partisanship has transitioned from D to R, particularly in the
presidential elections where there were eight states with the political transition from D to R
but no state with the political transition from R to D. On the other hand, more and more
states (or governors) have committed to climate/environmental policy regardless of their
dominant political partisanship. For instance, Montana had the political transition from R
to R in the presidential elections but signed up for the U.S. Climate Alliance to meet the
goals proposed by the Paris Agreement. In some states, in addition, there is discordance in
political transition between presidential and gubernatorial elections. For example, Vermont
had the political transition from D to D in the presidential elections but from R to R in the
gubernatorial elections.

While many studies (mostly focused on cross-country analyses) examined the re-
lationships between environmental performance and socioeconomic factors (suggested
by the environmental Kuznets Curve), this study centered on the examination of tempo-
ral, political, and spatial factors in the U.S. When compared to some studies in this vein,
our results showed some consistent results. For instance, Leal et al. [30] demonstrated the
association between environmental performance and political globalization that represents
the dissemination and sharing of government environmental policies. Also, Esty and
Porter [31] showed the relationship between environmental performance and the quality
of the environmental regulations (particularly, the rigor and structure of enforcement).
They further argued that environmental performance is related to a country’s broader insti-
tutions (not only environmental regulatory regime but also economic and legal context).
As shown in the previous literature, the political dimension interplays with the estab-
lishment and elimination of national institutions (particularly, environmental regulatory
regime), which can lead to improvement or degradation of environmental performance.
Our study reinforces the previous results and offers new policy insights in that we studied
the dynamic political transition, not static political section at a specific time point.

Regional variations in environmental performance in this study are also bolstered
by the existing literature whose studies were conducted in different countries. For in-
stance, Zuo et al. [32] showed province-level variations in environmental performance in
China by creating a composite index. In a similar vein, Yang and Yang [33] demonstrated
province-level differences in eco-innovations in China, which are critical for environmental
performance, by employing a non-radial directional distance function.

6. Conclusions

Drawing on the combination of the nonparametric DEA-EA with Kruskal-Wallis tests,
we attempted to assess the dynamic environmental performance of 50 states of the U.S.
and shed light on their associations with political/spatial contexts. As a result, we found
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that (a) overall environmental performance has gradually enhanced over time, (b) there
were statistically significant differences in the environmental performance by political
transitions, and (c) states on both coasts outperformed those in the middle.

Meanwhile, we need to acknowledge that those contexts are a subset of all explanatory
factors for state-level environmental performance. As some studies discussed, there may be
other dimensions, such as public and local government leader opinions [34], religion [35],
and the structure of the energy market [36,37], in explicating environmentalism.

There are some other limitations in this study. First, we considered only two outputs
(i.e., GSP and CO2 emissions) to assess the performance of states in terms of sustainable
development. While CO2 attracts the most attention in climate change, other greenhouse
gases (e.g., methane) and pollutants (e.g., SOx and NOx) were omitted. Second, our study
period was not sufficient to fully capture the change from the Obama Administration to the
Trump Administration. While we included data from a part of the Trump Administration
(2017–2018) and observed some decline in the environmental performance in the time win-
dow, we would be able to argue better if we could extend our dataset up to 2020. However,
it was not possible due to the data availability issue. Finally, it is possible for us to use
other type of DEA methods such as the “intermediate approach” [38]. The methodological
comparison may avoid a methodological bias. It is hoped that our future studies will
address those limitations. See [39–42] for a general direction on DEA applied to energy
and environment.

As it is anticipated that the Biden Administration steps in, the public and political
leaders in the U.S. will face different national mood and focusing events from the Trump
Administration in the near future. The Biden Plan for a Clean Energy Revolution and
Environmental Justice includes many pro-environmental ideas such as the Green New Deal
and recommitment to the Paris Agreement [43]. In particular, the incoming administration
proposes to “achieve a 100% clean energy economy and reach net-zero emissions no
later than 2050.” With the promise, we expect the states’ environmental performance to
keep improving.

Author Contributions: Conceptualization, T.S. and Y.R.; methodology, T.S.; software, Y.R.; validation,
T.S. and Y.R.; formal analysis, T.S.; investigation, Y.R.; resources, Y.R.; data curation, Y.R.; writing—
original draft preparation, Y.R.; writing—review and editing, T.S.; visualization, Y.R.; supervision,
T.S.; project administration, Y.R.; funding acquisition, Y.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the U.S. Department of Defense; the grant number HQ0034-
19-FOA-ARP-0001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Clark, A.; Justwan, F.; Carlisle, J.E.; Clark, M. Polarization politics and hopes for a green agenda in the United States.

Environ. Politics 2019, 29, 719–745. [CrossRef]
2. Baldassarri, D.; Gelman, A. Partisans without Constraint: Political Polarization and Trends in American Public Opinion.

Am. J. Sociol. 2008, 114, 408–446. [CrossRef]
3. McCright, A.M.; Xiao, C.; Dunlap, R.E. Political polarization on support for government spending on environmental protection

in the USA, 1974–2012. Soc. Sci. Res. 2014, 48, 251–260. [CrossRef]
4. Guber, D.L. A Cooling Climate for Change? Party Polarization and the Politics of Global Warming. Am. Behav. Sci. 2012, 57,

93–115. [CrossRef]
5. Kim, S.E.; Urpelainen, J. Environmental public opinion in U.S. states, 1973–2012. Environ. Politics 2017, 27, 89–114. [CrossRef]

http://doi.org/10.1080/09644016.2019.1654238
http://doi.org/10.1086/590649
http://doi.org/10.1016/j.ssresearch.2014.06.008
http://doi.org/10.1177/0002764212463361
http://doi.org/10.1080/09644016.2017.1362720


Energies 2021, 14, 1180 22 of 23

6. Cooper, M. Governing the global climate commons: The political economy of state and local action, after the U.S. flip-flop on the
Paris Agreement. Energy Policy 2018, 118, 440–454. [CrossRef]

7. Markard, J. The next phase of the energy transition and its implications for research and policy. Nat. Energy 2018, 3,
628–633. [CrossRef]

8. van Zalk, J.; Behrens, P. The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of
power densities and their application in the U.S. Energy Policy 2018, 123, 83–91. [CrossRef]

9. Hayashida, S.; La Croix, S.; Coffman, M. Understanding changes in electric vehicle policies in the U.S. states, 2010–2018.
Transp. Policy 2021, 103, 211–223. [CrossRef]

10. Yilmaz, S.; Dinc, M. Telecommunications and Regional Development: Evidence from the U.S. States. Econ. Dev. Q. 2002, 16,
211–228. [CrossRef]

11. Lee, C.C.; Joo, S.-J. Measuring the Performance of the U.S. Correctional Systems at the State Level. J. Appl. Bus. Econ. 2020,
22, 97–110.

12. Khan, A.; Murova, O.I. Productive Efficiency of Public Expenditures: A Cross-state Study. State Local Gov. Rev. 2015, 47,
170–180. [CrossRef]

13. Thomas, V.J.; Sharma, S.; Jain, S.K. Using patents and publications to assess R&D efficiency in the states of the USA. World Pat. Inf.
2011, 33, 4–10.

14. Drivas, K.; Economidou, C.; Tsionas, E.G. Production of output and ideas: Efficiency and growth patterns in the United States.
Reg. Stud. 2018, 52, 105–118. [CrossRef]

15. Gearhart, R.S. Non-parametric frontier estimation of health care efficiency among US states, 2002–2008. Health Syst. 2017, 6,
15–32. [CrossRef]

16. Gearhart, R.; Michieka, N. Efficiency of American states after implementation of the patient protection and affordable care act
(PPACA) from 2014 to 2017. Appl. Econ. 2020, 52, 1959–1972. [CrossRef]

17. Park, Y.S.; Lim, S.H.; Egilmez, G.; Szmerekovsky, J. Environmental efficiency assessment of U.S. transport sector: A slack-based
data envelopment analysis approach. Transp. Res. Part D Transp. Environ. 2018, 61, 152–164. [CrossRef]

18. Halkos, G.E.; Polemis, M.L. The impact of economic growth on environmental efficiency of the electricity sector: A hybrid
window DEA methodology for the USA. J. Environ. Manag. 2018, 211, 334–346. [CrossRef] [PubMed]

19. Carmichael, J.T.; Brulle, R.J. Elite cues, media coverage, and public concern: An integrated path analysis of public opinion on
climate change, 2001–2013. Environ. Politics 2017, 26, 232–252. [CrossRef]

20. Rabe, B.G. States on Steroids: The Intergovernmental Odyssey of American Climate Policy. Rev. Policy Res. 2008, 25,
105–128. [CrossRef]

21. Yi, H. Clean energy policies and green jobs: An evaluation of green jobs in U.S. metropolitan areas. Energy Policy 2013, 56,
644–652. [CrossRef]

22. Fredriksson, P.G.; Millimet, D.L. Strategic Interaction and the Determination of Environmental Policy across U.S. States.
J. Urban Econ. 2002, 51, 101–122. [CrossRef]

23. Byrne, J.; Hughes, K.; Rickerson, W.; Kurdgelashvili, L. American policy conflict in the greenhouse: Divergent trends in federal,
regional, state, and local green energy and climate change policy. Energy Policy 2007, 35, 4555–4573. [CrossRef]

24. Clark, B.T.; Burkardt, N.; King, D. Watershed Management and Organizational Dynamics: Nationwide Findings and Regional
Variation. Environ. Manag. 2005, 36, 297–310. [CrossRef] [PubMed]

25. Zwickl, K.; Ash, M.; Boyce, J.K. Regional variation in environmental inequality: Industrial air toxics exposure in U.S. cities.
Ecol. Econ. 2014, 107, 494–509. [CrossRef]

26. Hamilton, L.C.; Keim, B.D. Regional variation in perceptions about climate change. Int. J. Climatol. 2009, 29, 2348–2352. [CrossRef]
27. Howe, P.D.; Mildenberger, M.; Marlon, J.R.; Leiserowitz, A. Geographic variation in opinions on climate change at state and local

scales in the USA. Nat. Clim. Chang. 2015, 5, 596–603. [CrossRef]
28. Sueyoshi, T.; Goto, M. Performance assessment of Japanese electric power industry: DEA measurement with future impreciseness.

Energies 2020, 13, 490. [CrossRef]
29. Sueyoshi, T.; Goto, M. Environmental Assessment on Energy and Sustainability by Data Envelopment Analysis; John Wiley & Sons:

London, UK, 2018.
30. Leal, P.H.; Marques, A.C.; Shahbaz, M. The role of globalisation, de jure and de facto, on environmental performance: Evidence

from developing and developed countries. Environ. Dev. Sustain. 2020. [CrossRef]
31. Esty, D.C.; Porter, M.E. National environmental performance: An empirical analysis of policy results and determinants.

Environ. Dev. Econ. 2005, 10, 391–434. [CrossRef]
32. Zuo, X.; Hua, H.; Dong, Z.; Hao, C. Environmental Performance Index at the Provincial Level for China 2006–2011. Ecol. Indic.

2017, 75, 48–56. [CrossRef]
33. Yang, F.; Yang, M. Analysis on China’s eco-innovations: Regulation context, intertemporal change and regional differences. Eur. J.

Oper. Res. 2015, 247, 1003–1012. [CrossRef]
34. Sarah, M.; Christopher, G. Public and local government leader opinions on environmental federalism: Comparing issues and

national contexts. State Local Gov. Rev. 2016, 48, 165–174.
35. Peifer, J.L.; Khalsa, S.; Ecklund, E.H. Political conservatism, religion, and environmental consumption in the United States.

Environ. Politics 2016, 25, 661–689. [CrossRef]

http://doi.org/10.1016/j.enpol.2018.03.037
http://doi.org/10.1038/s41560-018-0171-7
http://doi.org/10.1016/j.enpol.2018.08.023
http://doi.org/10.1016/j.tranpol.2021.01.001
http://doi.org/10.1177/08942402016003002
http://doi.org/10.1177/0160323X15610385
http://doi.org/10.1080/00343404.2016.1275536
http://doi.org/10.1057/s41306-016-0015-2
http://doi.org/10.1080/00036846.2020.1730758
http://doi.org/10.1016/j.trd.2016.09.009
http://doi.org/10.1016/j.jenvman.2018.01.067
http://www.ncbi.nlm.nih.gov/pubmed/29425942
http://doi.org/10.1080/09644016.2016.1263433
http://doi.org/10.1111/j.1541-1338.2007.00314.x
http://doi.org/10.1016/j.enpol.2013.01.034
http://doi.org/10.1006/juec.2001.2239
http://doi.org/10.1016/j.enpol.2007.02.028
http://doi.org/10.1007/s00267-004-1039-0
http://www.ncbi.nlm.nih.gov/pubmed/15995892
http://doi.org/10.1016/j.ecolecon.2014.09.013
http://doi.org/10.1002/joc.1930
http://doi.org/10.1038/nclimate2583
http://doi.org/10.3390/en13020490
http://doi.org/10.1007/s10668-020-00923-7
http://doi.org/10.1017/S1355770X05002275
http://doi.org/10.1016/j.ecolind.2016.12.016
http://doi.org/10.1016/j.ejor.2015.07.029
http://doi.org/10.1080/09644016.2016.1159604


Energies 2021, 14, 1180 23 of 23

36. Sueyoshi, T.; Tadiparthi, G.R. An agent-based decision support system for wholesale electrify market. Decis. Support Syst. 2008,
44, 425–446. [CrossRef]

37. Halkos, G.E.; Polemis, M.L. The impact of market structure on environmental efficiency in the United States: A quantile approach.
Bus. Strategy Environ. 2019, 28, 127–142. [CrossRef]

38. Sueyoshi, T.; Yuan, Y. Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese
regional planning for economic development and pollution prevention. Energy Econ. 2017, 66, 154–166. [CrossRef]

39. Sueyoshi, T.; Yuan, Y.; Goto, M. A literature study for DEA applied to energy and environment. Energy Econ. 2017, 62,
104–124. [CrossRef]

40. Sueyoshi, T.; Ryu, Y. Performance Assessment of the semiconductor industry: Measured by DEA environmental assessment.
Energies 2020, 13, 5998. [CrossRef]

41. Sueyoshi, T.; Liu, X.; Li, A. Evaluating the performance of Chinese fossil fuel power by data envelopment analysis: An application
of three intermediate approaches in a time horizon. J. Clean. Prod. 2020, 227, 121992. [CrossRef]

42. Sueyoshi, T.; Ryu, Y.; Yun, J.-Y. Coronavirus-19 response and prospects of clean/sustainable energy transition in industrial nations:
New Environmental assessment. Energies 2021, 14, 1174. [CrossRef]

43. Biden Plan for a Clean Energy Revolution and Environmental Justice. Available online: https://joebiden.com/climate-plan/
(accessed on 10 December 2020).

http://doi.org/10.1016/j.dss.2007.05.007
http://doi.org/10.1002/bse.2244
http://doi.org/10.1016/j.eneco.2017.06.008
http://doi.org/10.1016/j.eneco.2016.11.006
http://doi.org/10.3390/en13225998
http://doi.org/10.1016/j.jclepro.2020.121992
http://doi.org/10.3390/en14041174
https://joebiden.com/climate-plan/

	Introduction 
	Previous Studies 
	State-Level Performance Measurement 
	Political and Spatial Contexts on Climate/Environmental Policy 

	Underlying Concepts 
	Method 
	An Illustrative Example 
	Data 
	Efficiency/Index Measures 
	Statistical Test 
	Results and Discussion 

	Conclusions 
	References

