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Abstract: Coronavirus Disease 2019 (COVID-19) became a pandemic around the world and has
huge impacts on our economic and social systems, particularly on the healthcare system and the
transportation and energy sectors. To examine a relationship between healthcare and energy sectors in
the COVID-19 era, we propose a holistic application of Data Envelopment Analysis for Environmental
Assessment (DEA-EA) to assess the COVID-19 response performance of 33 OECD (Organization
for Economic Co-operation and Development) nations and investigate whether health insurance
systems contribute to the performance. We also associate the performance with mobility, which is an
energy consumption measure, to test the relationship through statistical analyses. In the DEA-EA,
particularly, this study incorporates undesirable outputs (i.e., the number of confirmed cases and that
of deaths) as well as desirable outputs (i.e., the number of total recovered people and that of total
tested people) during April 2020 as the initial stage of COVID-19. While the former outputs need to be
maximized, the latter ones need to be minimized in the assessment of healthcare system performance.
This study finds that (a) the COVID-19 response performance of countries is varying and those
with higher public health coverage have outperformed others with lower public coverage in terms
of combating the COVID-19 outbreak, and (b) the healthcare system performance is significantly
associated with mobility. Particularly, the second finding indicates that outperforming nations in
the healthcare system are returning to the normal (with less volatility) while underperforming ones
are still stagnating in terms of mobility. It implies that outperforming countries need to prepare for
continuous commitment to clean/sustainable energy transition.

Keywords: coronavirus; energy; mobility; healthcare system; data envelopment analysis

1. Introduction

Human and natural systems have interacted with each other in history. For instance,
the transportation sector (particularly, fossil fuel-powered vehicles for mobility) has emitted
an enormous amount of Greenhouse Gases (GHGs) that led to global warming and climate
change. In return, they have affected transportation infrastructure adversely. In addition
to the interplay of transportation and energy/environment, human beings are currently
facing serious public health challenges stemming from the novel coronavirus disease 2019
(COVID-19) pandemic. By the nature of the infectious respiratory disease, many nations
have sought to contain COVID-19 through confinement measures such as a lockdown
or stay-at-home advisory. While those government policies impacted their economies
negatively, they resulted in the reduction of trips that led to the lower volume of energy
demand and supply but the improvement of the environment (e.g., better air quality) [1,2].
At this moment, it is not easy to predict how long those energy/environmental gains will
last. However, it is important to explore the relationship between energy/environment,
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public health, and transport sectors. Specifically, examining how COVID-19 is related to
mobility and energy consumption has many policy implications not only for public health
but also for transportation and energy/environment decision-makers.

One of the policy issues related to the COVID-19 management is the provision of
healthcare access, particularly to the marginalized populations who are more vulnerable to
various health risks. For example, those who live in polluted areas are more likely to have
COVID-19 confirmed cases or deaths [3,4]. Given that healthcare access is intertwined
with health insurance systems, the COVID-19 crisis called attention to the role of health
insurance systems. It was particularly true in nations with private health insurance
systems (rather than public or universal health insurance systems). In the United States,
for instance, redesigning its health insurance system recently aroused public opinion in
battling COVID-19 [5]. It is also worth noting that health insurance systems determine
the amount of medical resources, such as hospital personnel and medical space/supplies,
which rely on energy [6].

Another policy concern is how COVID-19 will impact each nation’s clean/sustainable
energy transition (e.g., Green New Deal initiatives). Before COVID-19 took place, many
countries, particularly the Organization for Economic Co-operation and Development
(OECD) members, were on the trajectory of attaining sustainable development goals
by decreasing their reliance on fossil fuels and increasing alternative energy sources.
The Kyoto Protocol and the Paris Climate Agreement, as well as the United Nations
Framework Convention on Climate Change (UNFCCC), were examples of those efforts.
However, COVID-19 changed many things including the contexts surrounding the original
sustainable development goals and implementation plans [7]. Because of the heterogeneity
of each nation’s COVID-19 containment measures and capacities, they undergo different
levels of economic and health damages that may enable some countries to keep on track
but may derail others from their original paths to sustainable development. Moreover, the
higher priority of government spending on the response to the COVID-19 emergency may
postpone investing in clean/sustainable energy transition. Given the complex impacts of
this unprecedented situation on the clean/sustainable energy transition, it may require
more holistic approaches to address policy concerns. A recently proposed concept, the
healthcare–energy–environment nexus under climate change constraints [8], can be such
an example.

In this vein, this study aims to explore the relationships between healthcare and
mobility, and their implications on clean/sustainable energy transition at a national level;
see Figure 1. Specifically, we examine the public health performance of OECD countries
in preventing and controlling the COVID-19 crisis instead of using oversimplified metrics
such as the number of cases or deaths. Then, we relate the national-level performance
with mobility using Google’s COVID-19 Community Mobility reports, which collect
mobile phone users’ location data. Moreover, we examine the moderating effect of
health insurance systems in the relationship. Based on the results, lastly, we develop
policy implications on outperforming OECD countries in containing COVID-19 and on
underperforming countries.

To explore such concerns, this study takes a two-stage approach. We measure each
nation’s COVID-19 response performance by proposing a novel application of Data En-
velopment Analysis for Environmental Assessment (DEA-EA) at the first stage. Then,
we examine statistical relationships between the performance and mobility (as a proxy
for energy consumption/supply) and consider that the transportation sector is a major
consumer of energy and contributor to GHG emissions while being impacted the most by
the COVID-19 prevention and control measures at the second stage. To partly deal with
the methodological difficulty in the first-stage assessment, this research attempts to apply
DEA-EA, as a practical method, which allows us to deal with multiple inputs and outputs
(undesirable and desirable outputs) based on linear programming and to produce efficiency
scores (generally between 0 and 1) as an indicator for performance. In the conventional use
of DEA-EA, economic activities are characterized by multiple production factors such as
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X (a vector of inputs), G (a vector of desirable outputs), and B (a vector of undesirable
outputs). At the national level, for instance, population, Gross Domestic Product (GDP),
and environmental pollution can represent X, G, and B, respectively. In the public health
context of COVID-19, however, we need to incorporate different production factors, such
as the number of hospital employees, the number of recoveries, and the number of deaths,
in each nation’s healthcare systems.

Figure 1. Relationships between healthcare–energy–environment nexus and clean/sustainable
energy transition.

The remaining sections are organized as follows: Section 2 conducts a literature survey
on the interplay of COVID-19 and energy/environment and the applications of DEA to
public health along with a brief introduction of national health insurance systems. Section 3
demonstrates a preliminary analysis of COVID-19 and the energy market with a focus
on the United States. Section 4 describes a proposed novel application of DEA-EA to
healthcare systems. Section 5 summarizes our empirical results obtained in this research.
Section 6 discusses the research outcomes in the COVID-19 context. Section 7 concludes
this study along with future extensions.

2. Literature Review

For the purpose of this study, we have surveyed literature on three different realms:
(a) the applications of DEA to the assessment of healthcare performance, (b) health insur-
ance systems in OECD nations, and (c) interplay of COVID-19 and energy/environment.
In the first realm of literature, we explore various DEA applications in the public health
context and justify the use of the DEA-EA methodology for measuring performance of
public health units and specific inputs and outputs in the analytic framework. In the
second, we look into health insurance systems that play critical role in providing access to
healthcare and, as an important context, may influence the healthcare performance. In the
third, we associate COVID-19 (and its response) with energy market and environmental
pollution. Based on those threads of literature, we constructed our research hypotheses.
After the three surveys, this section describes a rationale on why our approach is important
in exploring the relationship between COVID 19 and energy concerns.

2.1. Applications of DEA to Assessment of Healthcare Performance

Efficiency has been one of the important criteria in the various types of decision-
making processes, particularly in evaluating the performance of Decision-Making Units
(DMUs). Since DEA was developed to compute the efficiency scores of DMUs with multiple
inputs and outputs and provide a holistic nonparametric approach, it has been applied
to both public and private entities. Healthcare entities are one of the examples and DEA
has been used for assessing the performance of hospitals/clinics at an organizational level,
states/provinces at a regional level, and countries at a national level. Particularly, Table 1
summarizes previous DEA efforts to evaluate the performance of healthcare systems
at a national level. For example, Zanakis and Alvarez [9] measured the efficiency of
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116 countries in dealing with HIV/AIDS (Human Immunodeficiency Virus/Acquired
Immunodeficiency Syndrome). Asandului et al. [10] looked into European nations to assess
their public health system performance in maximizing life expectancy while minimizing
the required numbers of doctors and beds.

As COVID-19 became a pandemic and has huge impacts on our societies, each country
has been struggling in protecting its people from suffering and dying from COVID-19
symptoms [11]. They are desperate in forcing people to keep social distancing and securing
not only human capital (e.g., doctors and nurses) but also materials (e.g., hospital beds)
to prevent COVID-19 from spreading and to treat COVID-19 cases better. It requires
a high degree of efficiency in many aspects. For instance, it is important to understand
and determine how to triage patients, how to allocate healthcare personnel, and how to
produce and distribute necessary goods such as respirators and masks more efficiently
not only at a hospital level but also at a national level [12,13].

From this perspective, it makes sense to assess each nation’s healthcare systems by
efficiency in managing the COVID-19 crisis. It also suggests that DEA may act as a vehicle
to measure the efficiency scores. Acknowledging the importance of such previous works,
as summarized in Table 1; however, this study points out that the previous DEA studies
applied to healthcare systems have a methodological problem. Their research tool was
a standard DEA model, often referred to as ratio form, which can deal with desirable
outputs only. For instance, most of the previous efforts have looked into the performance
of country-level healthcare systems with a focus on maximizing life expectancy or survival
rate (as a transformation of mortality rate that needs to be minimized). To address this issue,
we need to separate outputs into desirable and undesirable categories, both of which have
opposite directions for optimization. In our COVID-19 context, for example, the number of
recoveries should be maximized but the number of deaths should be minimized. The two
types of outputs are unified together in a DEA-EA that is different from the classical DEA
and contains two different efficiency frontiers. One of the two frontiers is for desirable
outputs and the other is for undesirable outputs. The type of DEA applications cannot be
found in the conventional use of DEA models. To our best knowledge, furthermore, the
DEA-EA approach has not been used in a healthcare context.

2.2. Health Insurance Systems in OECD Nations

Health insurance is a key to quality healthcare services in both public and private
healthcare systems. While healthcare access matters in address public health issues, each
nation has adopted different health insurance systems. There are some studies on the
taxonomy of healthcare systems [17,18]. So, we largely classify them into public and private
ones. The former includes (a) UGHS (Universal Government-funded Health System),
(b) UPIS (Universal Public Insurance System), and (c) UPPS (Universal Public–Private
Insurance System) while the latter includes (d) UPHS (Universal Private Health Insurance
System and (e) NUIS (Non-Universal Insurance System). Table 2 summarizes the unique
features of the five different healthcare insurance systems in OECD nations.
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Table 1. Data Envelopment Analysis (DEA) applications to healthcare systems.

Author(s) Country Model Summary Inputs Outputs

Zanakis et al. [9] World Regression analysis
and DEA

This study identified social and
economic determinants of
HIV/AIDS and measured the
efficiency of 116 countries in
dealing with the pandemic.

Health system performance index
with existing resources; health
private expenditure; health public
expenditure tax-funded; doctors
per capita; nurses per capita; adult
literacy rate; GNP per capita;
radios per capita

Percentage of total adults
living with HIV/AIDS;
HIV/AIDS cases per capita;
and AIDS-related death rate
for adults and children

Spinks & Hollingsworth [14] OECD countries DEA
This study looked into the health
production efficiency of
28 OECD countries.

The level of education;
unemployment rate; GDP per
capita; total health expenditure

Life expectancy

Asandului et al. [10] European countries DEA and censored
regression analysis

This study explored the efficiency
of 30 European countries’ public
health systems and the relationship
between the efficiency, economic
and demographic factors.

The number of radiotherapy units
per 1,000,000 inhabitants; public
health expenditures as a percentage
of the GDP; and the number of
hospital beds for 10,000 inhabitants

The incidence of tuberculosis;
the number of deaths by
ischemic diseases per
100,000 inhabitants; and the
health adjusted life expectancy

Ortega et al. [15] Developing countries Robust DEA and
regression analysis

This study measured the efficiency
of 47 developing countries in
enhancing the under-five survival
rate and examined the relationship
between efficiency, inequality, and
government effectiveness.

Physician density per 10,000
people; and Total health
expenditure as a percentage of the
country’s GDP

Under-five survival rate; and
the Proportion of 1-year-old
children immunization
against measles

Abolghasem et al. [16] World Cross-efficiency DEA
with a flexible measure

This study measured the average
cross-efficiency of 120 countries’
healthcare systems.

Population; Specialist surgical;
birth rate; total fertility rate;
hospital beds; nurses and
midwives; physicians

Mortality; life expectancy
(as a flexible measure)
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Table 2. Description of five different health insurance systems.

Health Insurance System Description Example

Universal government-funded health system (UGHS)

All citizens, regardless of their income or employment
status, are accessible to government-funded healthcare
(or single-payer healthcare). Non-citizen residents may
access healthcare in some countries or buy private
insurance in other countries.

UK: Under the National Health Service (NHS) Act of 1946, all citizens are
eligible for a comprehensive, free health service. Non-citizens can access
only limited services such as emergency treatment. A primary NHS
funding source is general taxes. The NHS places limitation on cost-sharing
arrangements for free health services. Outpatient prescription drugs and
dentistry services are subject to copayments whereas screening and
vaccination are not. As of 2016, out-of-pocket health expenditures by
households accounted for 15 percent of total expenditures.

Universal public insurance system (UPIS)

Employed workers carry social insurance based on tax
levied by both employee and employer. Those who are
not employed or cannot register as unemployed may
be ineligible for public health care.

Japan: The combination of the statutory health insurance system (SHIS) and
the Public Social Assistance Program cover all citizens and resident
non-citizens. The SHIS is based on either employment or residence. Those
who carry SHIS pay copayments and coinsurance without any deductibles,
but marginalized people are exempt. As of 2015, out-of-pocket payments
accounted for 14 percent of current health expenditures.

Universal public-private insurance system (UPPS)
Some people receive healthcare via primary private
insurance. Others who are cannot afford to buy private
insurance are benefitted from the government.

Germany: Health insurance became mandatory in 2007 via either statutory
health insurance or private health insurance. Copayments are determined
by federal legislation. For instance, there are no copayments for
recommended preventive service (e.g., cancer screenings). As of 2017,
out-of-pocket spending accounted for 13.5 percent of total health spending.

Universal private health insurance system (UPHS)
People receive healthcare via mandatory private
insurance. Low-income citizens are eligible for
government subsidy.

Switzerland: Under the Health Insurance Law in 1994, health insurance
became mandatory, which is provided by many small private insurers.
The insured pays 10 percent coinsurance for most services along with a
minimum annual deductible of CHF 300 and a zero deductible for children.
As of 2016, cost-sharing accounted for 5.3 percent of total health expenditures.

Non-universal insurance system (NUIS)

Some citizens carry private health insurance. Others
are eligible for subsidized public health care. While
health insurance is not mandatory, some are not
insured at all.

U.S.A.: As of 2018, 8.5 percent of the population (i.e., 27.5 million people)
are uninsured due to the non-universal insurance system. More than the
half of population is covered by employment-based insurance. For the
marginalized people, public insurance programs such as Medicare and
Medicaid have been provided since 1965. The insured pays fully up to a
deductible. As of 2018, out-of-pocket spending represented 10 percent of
total health expenditures, which is particularly substantial for dental care
and prescribed medicines.

Source: International Health Care System Profiles and the Commonwealth Fund.
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Table 3 summarizes health insurance systems in 33 OECD nations. Although there
are 36 member countries on the OECD member list, we have dropped three (New Zealand,
Poland, and Sweden) due to their data limitations. The values in parenthesis represent the
percentage of the population covered by primary public health insurance [19]. For example,
the United States has 35.9% of the total population belonging to “Medicare”, which is public
healthcare insurance for old people more than 65.

Table 3. Health insurance systems of 33 OECD countries.

Health Insurance
System

Universal and Public Health Insurance System Non-Universal and Private Health
Insurance System

UGHS
(N = 12)

UPIS
(N = 13)

UPPS
(N = 5)

UPHS
(N = 2)

NUIS
(N = 1)

Country
(public coverage, %)

Australia (100%)
Canada (100%)
Denmark (100%)
Finland (100%)
Greece (100%)
Iceland (99.5%)
Ireland (100%)
Italy (100%)
Norway (100%)
Portugal (100%)
Spain (99%)
U.K. (100%)

Belgium (98.7%)
Czech R. (100%)
Estonia (94.1%)
France (99.9%)
Hungary (94%)
Israel (100%)
Japan (100%)
Korea (100%)
Latvia (100%)
Lithuania (98.1%)
Luxembourg
(95.2%)
Slovak R. (94.6%)
Slovenia (100%)

Austria (99.9%)
Chile (75.6%)
Germany (89.4%)
Mexico (89.3%)
Turkey (99.2%)

Netherlands (0%)
Switzerland (0%) USA (35.9%)

Note: UGHS = Universal Government-funded Health System, UPIS = Universal Public Insurance System, UPPS = Universal Public-Private
Insurance System, UPHS = Universal Private Health Insurance System, NUIS = Non-Universal Insurance System; and values in parenthesis
represent the percentage of population covered by primary public health insurance. Source: OECD [19].

In this vein, we construct the following null hypothesis:

Hypothesis 1 (H1). Each nation’s COVID-19 responses are the same as their performance measures.

They may vary across their different conditions and are dynamic over time. As an
example of the heterogeneous conditions, we select each nation’s different health insurance
systems. Given that one of the critical determinants of COVID-19 response performance
is people’s access to quality healthcare, the performance may be affected by each nation’s
health insurance systems. Taking the progression of COVID-19 and governments’ policy
actions into account, in addition, the performance may be changing over time.

2.3. Interplay of COVID-19 and Energy/Environment

Table 4 summarizes previous studies between COVID-19 and energy/environment.
With the emergence of the COVID-19 pandemic, a considerable number of attempts have
explored not only public health but also energy/environment issues. As depicted in Table 4,
scholars started researching the impact of COVID-19 on energy/environment at local,
regional, national, and global levels. For instance, Collivignarelli et al. [20] and Adams [21]
explored the impact of COVID-19-related government measures on the concentration of
air pollutants that were primarily emitted from vehicle tailpipes and found a significant
decrease in the concentration at the City of Milan, Italy, and the Province of Ontario,
Canada, respectively.
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Table 4. Studies of the interactions between COVID-19 and energy/environment.

Author(s) Country Summary

Collivignarelli et al. [20] Italy This study measured the effects of Italian local governments’ lockdown order
on air pollutants concentration primarily due to the reduced amount of traffic.

Adams [21] Canada
This study examined the impact of the province of Ontario’s emergency
measures on the concentration of air pollutants (e.g., nitrogen oxide and
dioxide) as a result of stay-at-home and fewer trips.

Malliet et al. [22] France
This study evaluated the short- and long-term impact of lockdown measures
on economy and environment with a focus on CO2 emissions and carbon
pricing implementation.

Lahcen et al. [23] Belgium
This study quantified the macroeconomic impact of COVID-19 taking into
account CO2 emissions and government investments in eco-friendly
construction projects.

Le Quéré et al. [24] Europe, US, China,
and India

This study explored how government policies (confinements) influence
CO2 emissions through changes in sectoral activities, particularly in the
surface transport.

Ghiani et al. [25] Italy This study analyzed the impact of COVID-19 containment measures on load
profiles, consumption, and market price in the electricity sector.

Ruan et al. [26] US This study assessed the short-term impact of COVID-19 on the electricity
consumption along with social distancing and commercial activity.

Eryilmaz et al. [27] US This study looked into how the stay-at-home advisory impacts the amount
and fuel mix of regional electricity generation.

Snow et al. [28] Australia This study researched household electricity consumption, controlling the
weather conditions, over the COVID-19 pandemic.

Nyga-Łukaszewska &
Aruga [29] Japan and US This study investigated how energy market (i.e., oil and gas prices) responded

to the COVID-19 pandemic in two nations.

Kuzemko et al. [30] World
This study shed light on the political implications of COVID-19 on the
sustainable energy transitions in terms of energy system change, finance and
investment, multi-scalar policy and politics, and social and political practices.

Malliet et al. [22] and Lahcen et al. [23] examined changes in the national-level CO2
emissions due to the COVID-19 emergency measures in France and Belgium, respectively.
Le Quéré et al. [24] expanded a research scope to include more countries and demon-
strated that CO2 emissions were significantly decreased primarily due to the curtailed
volume of traffic. In the energy area, the references of [25–28] examined the effect of the
COVID-19 confinement measures on the electricity market in Italy, US, and Australia.
Other than electricity, Nyga-Łukaszewska and Aruga [29] investigated the dynamics of oil
and gas prices over the COVID-19 pandemic. While the references of [20–29] employed
quantitative methods such as direct measurements, auto-regressive distributive lag, and
computable general equilibrium models, [30] took a qualitative approach to offer insights
on the impact of COVID-19 on clean/sustainable energy transition taking political context
into consideration.

To address these issues, some studies provided prospects of clean/sustainable energy
transition drawing on qualitative assessment whereas others looked into the relationship
between COVID-19 and the energy market through quantitative methods. While all of them
are useful, their limitations lie in the oversimplification of the COVID-19 crisis. Existing
literature tends to assess each nation’s crisis management performance based on simple
metrics, such as the number of COVID-19 cases or deaths, explore statistical associations
between simple COVID-19 metrics and nations’ complex energy market indicators, and
forecast the future of clean/sustainable energy transition. Unlike those studies, this re-
search first seeks to evaluate each nation’s COVID-19 response performance in a refined
analytic framework and then associate the performance with mobility (a paramount goal of
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transportation) to provide insights on the progress of clean/sustainable energy transition
in the future.

In this vein, we construct the following null hypothesis:

Hypothesis 2 (H2). People’s mobility scores in each nation are not associated with their COVID-19
response performance measures.

Specifically, we hypothesize that “there is no relationship between mobility and the
performance measures”. We expect the positive relationship because the effective and
efficient government policies can contain COVID-19 within the manageable capacity of
their healthcare systems and, as a consequence, people in outperforming countries feel free
to make more trips than those in underperforming countries do.

2.4. Contribution to Existing Literature

As an extension of the previous studies, this study considers policy insights about
the energy and environment sectors that are now in highly uncertain times (characterized
by the COVID-19 pandemic). We combine a new methodological application of DEA-EA
in the public health context, which is used together with a Linear Growth Model (LGM:
measuring a mobility level of transportation as a measure of major energy consumption).
We empirically examine the associations between the COVID-19 response performance,
health insurance systems, and mobility at a national level so that this research explores the
relationship between COVID-19 and energy issues. Prior to the COVID-19 crisis, there has
been a paucity of literature on the relationship between the public health sector and the
energy and environment sectors because most diseases tend to be epidemic or endemic
(locally confined) rather than pandemic (globally spread). They had relatively minimal
effects on these sectors in a global scale. Meanwhile, COVID-19, among other diseases, had
unique impacts on them through the transportation sector (by reducing mobility). In the
aftermath of the pandemic, for instance, international mobility (e.g., via air transportation)
has dramatically decreased and the consumption of airplane fuel and the greenhouse gas
emission from the airline industry both have curtailed.

On the other hand, while technological innovations (e.g., new vaccines for COVID-
19) and some nations’ stringent policy measures (e.g., strict mask-wearing and social
distancing) show some promising perspectives of managing COVID-19, they add more
uncertainty in predicting the nations’ future of clean/sustainable energy transition. In such
an uncertain era, this study employs DEA-EA in conjunction with a statistical model
(i.e., LGM) to explore the dynamic COVID-19 response performance of OECD nations
in April 2020 (at the culmination of the first wave of COVID-19) and then relate it to
people’s mobility to develop policy implications for the energy and environment sectors.
To the best knowledge, the application of DEA-EA in the public health setting linked to
energy is the first attempt although the conventional use of DEA is somewhat popular
(see Table 1). In addition, this study is different from the existing literature in which we
consider the role of health insurance systems in the relationship between the COVID-19
response performance and people’s mobility. The aspect of this study may bridge a gap in
the existing literature that seeks to shed light on the connections between the public health
sector and the energy sector due to mobility.

3. Preliminary Analysis: A Case of the United States

Prior to our proposed two-stage analyses (i.e., DEA and statistical analysis), we
conduct a preliminary analysis of the relationships between COVID-19 and the energy
market. Considering the availability of recent energy prices and consumption, we select
the United States as a testbed for our analysis. Our interim purpose is to examine if there
are statistically significant relationships and, in a broader context, if the healthcare concerns
are associated with social systems including economy and energy consumption.
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Using COVID-19 death data from the US Center for Disease Prevention and Control
(CDC) and energy data from the US Energy Information Administration (EIA), we prepare
four charts in Figure 2, whose x-axis indicates new deaths due to COVID-19 and the y-
axis represents (a) weekly regular conventional retail gasoline prices (dollars per gallon),
(b) weekly diesel retail prices (dollars per gallon), (c) weekly petroleum products supplied
(thousand barrels), and (d) weekly finished motor gasoline (thousand barrels) over the
period of 45 weeks from 27 January 2020 to 30 November 2020. Petroleum products
include finished motor gasoline, kerosene-type jet fuel, distillate fuel oil, residual fuel oil,
propane/propylene, and other oils. Figure 1 demonstrates that there are hypothesized
relationships between COVID-19 and the energy market, suggesting the importance of
healthcare study in discussing the change of energy components. It also implies that the
future of energy sectors may depend at least partly upon whether we can prevent and
control COVID-19 effectively and efficiently.

Figure 2. Relationships between new COVID-19 deaths and energy sectors. Note: (a) Gasoline price, (b) diesel price, (c)
petroleum products supplied, and (d) motor gasoline supplied. In the four charts, the x-axis indicates new deaths due to
COVID-19 and the y-axis represents (a) weekly regular conventional retail gasoline prices (dollars per gallon), (b) weekly
diesel retail prices (dollars per gallon), (c) weekly petroleum products supplied (thousand barrels), and (d) weekly finished
motor gasoline (thousand barrels) over the period of 45 weeks from 27 January 2020 to 30 November 2020. Petroleum
products include finished motor gasoline, kerosene-type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and
other oils.
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4. Methods

In the two-stage analytic framework, we first apply DEA-EA to assess each nation’s
COVID-19 management performance and then a linear growth modeling approach to test
statistical associations between the COVID-19 response performance and mobility. At the
first stage, particularly, we use DEA-EA, one of the nonparametric techniques, which has
some advantages over other parametric techniques. For instance, the approach does not
assume any specific functional forms relating inputs and outputs. Furthermore, DEA-EA
obtains a frontier (based on efficient DMUs) that acts as a benchmark for inefficient ones
while parametric techniques tend to focus on means (demonstrating general tendency).
In this study that seeks to evaluate DMU’s performance, the advantages of DEA-EA
are capitalized on. An important research question, particularly in the application of
DEA-EA to public health context, is why the proposed approach can unify desirable (e.g.,
recoveries from COVID-19) and undesirable outputs (e.g., deaths induced by COVID-19),
both of which have opposite directional vectors for performance betterment. This section
mathematically describes the rationale. We also explain differences between efficiency and
index measures. On occasion, DEA generates too many efficient DMUs, which make it
difficult to rank DMUs, so that we introduce indexes as well as efficiencies.

Note that the Appendix A of this study lists the nomenclatures, along with abbre-
viations, used for the formulations discussed in this study. The references [31,32] have
discussed a new type of applications of DEA-EA.

4.1. Unified Efficiency

This research summarizes abbreviations and nomenclatures used for DEA-EA at
the end of this article. To formulate unified efficiency measures, this study specifies the
following three types of data ranges (R) according to the upper and lower bounds of
production factors:

Rx
i = (m + s + h)−1

(
max

j

{
xij
∣∣j = 1, . . . , n

}
−min

j

{
xij
∣∣j = 1, . . . , n

})−1
,

Rg
r = (m + s + h)−1

(
max

j

{
grj
∣∣j = 1, . . . , n

}
−min

j

{
grj
∣∣j = 1, . . . , n

})−1
&

Rb
f = (m + s + h)−1

(
max

j

{
b f j

∣∣∣j = 1, . . . , n
}
−min

j

{
b f j

∣∣∣j = 1, . . . , n
})

.

The purpose of the three ranges is that computation results can avoid an occurrence of
zero in dual variables. Such an occurrence implies that corresponding production factors
(i.e., X: Inputs, G: Desirable outputs, and B: Undesirable outputs) are not fully utilized in
the proposed assessment. The occurrence is problematic so that we incorporate the data
ranges into the proposed formulations.

Natural Disposability: We use Model (1) to measure the degree of unified efficiency
of the kth DMU under natural disposability (N) where the first priority is betterment of
desirable outputs and the second priority is reduction of undesirable outputs. In many
previous studies that used the concept of natural disposability in the context of economic
development, the maximization of operational aspects (e.g., gross domestic product) was
placed in a preferred position over the minimization of environmental ones (e.g., carbon
emissions). In our public health context, the former was replaced by the positive aspects
of COVID-19 response (e.g., the number of tests and recoveries) resulting from better
diagnosis and higher-quality treatment while the latter is replaced by the negative aspects
of COVID-19 response (e.g., the number of confirmed cases and deaths) stemming from
a lower level of compliance to governments’ COVID-19 measures and worse resource
production/allocation. Under natural disposability, in other words, the maximization of
desirable COVID-19 response outputs overrides the minimization of undesirable COVID-19
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response outputs. To reflect on natural disposability, we particularly incorporate the status
of constant returns to scale (RTS: desirable outputs proportionally increase with inputs) [31]:

Maximize ξ + εs(
m
∑

i=1
Rx

i dx−
i +

s
∑

r=1
Rg

r dg
r +

h
∑

f=1
Rb

f db
f )

s.t.
n
∑

j=1
xijλj + dx−

i = xik (i = 1, . . . , m),

n
∑

j=1
grjλj − dg

r − ξgrk = grk (r = 1 , . . . , s),

n
∑

j=1
b f jλj + db

f + ξbfk = bfk ( f = 1 , . . . , h),

λj ≥ 0 (j = 1, . . . , n), ξ : URS, dx−
i ≥ 0(i = 1, . . . , m),

dg
r ≥ 0(r = 1, . . . , s) & db

f ≥ 0( f = 1, . . . , h).

(1)

Here, it is important to note two concerns on Model (1). One of the two is that
the efficiency frontier consists of ∑n

j=1 xijλj, ∑n
j=1 grjλj and ∑n

j=1 b f jλj in (1), located on the
position of maximizing the components of G (e.g., total recovered and tests from COVID-19)
and minimizing the components of B (e.g., total cases and deaths due to COVID-19). Model
(1) attains the optimization by reducing the inputs (X: e.g., health expenditure). The other
is that the optimization is based upon G and B, both of which have opposite vectors and
thereby be unified as in Model (1). In other words, the degree ξ is an output-based measure
that unifies G-based maximization and B-based minimization within the framework of
Model (1).

We measure the degree of unified efficiency (UENR
c ) of the kth DMU under natural

disposability by

UENR
c = 1− [ξ∗ + εs(

m

∑
i=1

Rx
i dx−∗

i +
s

∑
r=1

Rg
r dg∗

r +
h

∑
f=1

Rb
f db∗

f )], (2)

where the inefficiency measure and all slack variables are determined on the optimality
of Model (1). Thus, the equation within the parenthesis is resulted from maximizing
the objective while satisfying constraints in Model (1). The unified efficiency (UENR

c ) is
obtained by subtracting the level of inefficiency from unity.

Managerial Disposability: In a great body of existing literature that has used the
concept of managerial disposability in the context of sustainable development, the mini-
mization of environmental ones (e.g., carbon emissions) was placed in a preferred position
over the maximization of operational aspects (e.g., GDP). In our public health context, the
minimization of undesirable COVID-19 response outputs overrides the maximization of
desirable COVID-19 response outputs. Shifting to managerial disposability that has an
opposite priority, we change Model (1) under constant damages to scale (DTS: Undesirable
outputs proportionally increase with inputs) as follows [32]:

Maximize ξ + εs(
m
∑

i=1
Rx

i dx+
i +

s
∑

r=1
Rg

r dg
r +

h
∑

f=1
Rb

f db
f )

s.t.
n
∑

j=1
xijλj − dx+

i = xik (i = 1, . . . , m),

the same as in Model (1),

λj ≥ 0 (j = 1, . . . , n), ξ : URS, dx+
i ≥ 0(i = 1, . . . , m).

(3)
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Model (3) changes +dx−
i of Model (1) to −dx+

i in Model (3). The unified efficiency
under managerial disposability is measured by the following Equation:

UEMR
c = 1− [ξ∗ + εs(

m

∑
i=1

Rx
i dx+∗

i +
s

∑
r=1

Rg
r dg∗

r +
h

∑
f=1

Rb
f db∗

f )], (4)

where the inefficiency score and all slack variables are determined on the optimality of
Model (3). The equation within the parenthesis is obtained from the optimality of Model (3).
The unified efficiency under managerial disposability (UEMR

c ) is obtained by subtracting
the level of inefficiency from unity.

4.2. Unified Index

Natural Disposability: To handle an occurrence of many efficient DMUs, this study
use “sensitivity analysis”, which measures an index of each efficient DMU, not inefficiency,
to determine the order of all DMUs. To explain the index measurement, we use a new
model that pays attention to the efficient DMU {a} whose efficiency status was previously
determined by Model (1).

The model for index measurement under constant RTS becomes as follows:

Maximize ξ + εs(
m
∑

i=1
Rx

i dx−
i +

s
∑

r=1
Rg

r dg
r +

h
∑

f=1
Rb

f db
f )

s.t. ∑
j∈J−a

xijλj + dx−
i = xia (i = 1, . . . , m),

∑
j∈J−a

grjλj − dg
r − ξgra = gra (r = 1 , . . . , s)

∑
j∈J−a

b f jλj + db
f + ξbfa = bfa ( f = 1 , . . . , h),

λj ≥ 0 (j ∈ J − a), ξ : URS, dx−
i ≥ 0(i = 1, . . . , m),

dg
r ≥ 0(r = 1, . . . , s) & db

f ≥ 0( f = 1, . . . , h).

(5)

The unique feature of Model (5) is that it drops efficient DMU {a} from a frontier as
formulated from the left-hand side and then measure the index of the DMU as formulated
in the right-hand side. As a consequence, Model (5) measures the index of the DMU that
may have the magnitude more than unity. So, it is not an efficiency score (between 0: Fully
inefficient and 1: Fully efficient) anymore, rather being an index measure that implies how
much above the efficiency frontier.

The degree of the index measure is determined by the following equation:

UINR
c = 1− [ξ∗ + εs(

m

∑
i=1

Rx
i dx−∗

i +
s

∑
r=1

Rg
r dg∗

r +
h

∑
f=1

Rb
f db∗

f )], (6)

where the inefficiency score and all slack variables are determined on the optimality of
Model (5). The ξ∗ may become negative on the optimality of Model (5). The equation
within the parenthesis is obtained from the optimality. The unified efficiency under natural
disposability (UINR

c ) is obtained by subtracting the level of inefficiency from unity.
Managerial Disposability: To shift the index measure under managerial disposability,

this study measures an index of each efficient DMU to determine the order of all DMUs as
we discuss previously on Model (5). We use the following new model that pays attention to
only the efficient DMU {a} whose efficiency status was previously determined by Model (5).
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The proposed model under constant DTS becomes as follows:

Maximize ξ + εs(
m
∑

i=1
Rx

i dx+
i +

s
∑

r=1
Rg

r dg
r +

h
∑

f=1
Rb

f db
f )

s.t. ∑
j∈J−a

xijλj − dx+
i = xia (i = 1, . . . , m),

the same as in Model (5),

λj ≥ 0 (j ∈ J − a), ξ : URS, dx+
i ≥ 0(i = 1, . . . , m),

dg
r ≥ 0(r = 1, . . . , s) & db

f ≥ 0( f = 1, . . . , h).

(7)

The important feature of Model (7) is that it changes +dx−
i of Model (5) to −dx+

i
in order to attain the status of managerial disposability. It also drops DMU {a} from an
efficiency frontier as formulated from the left-hand side and then measures the index of
the DMU as formulated in the right-hand side. As a consequence, Model (7) measures the
index of the DMU that may have the magnitude more than unity. So, it is not an efficiency
score (between 0: Fully inefficient and 1: Fully efficient) anymore, rather being an index
measure that implies how much above the efficiency frontier.

The degree of the index measure is determined by the following equation:

UIMR
c = 1− [ξ∗ + εs(

m

∑
i=1

Rx
i dx+∗

i +
s

∑
r=1

Rg
r dg∗

r +
h

∑
f=1

Rb
f db∗

f )], (8)

where the degree of ξ∗ may become positive and/or negative on the optimality of (7).

4.3. Computational Flow

Figure 3 depicts the computational flow of the proposed approach. We first apply
Models (1) and (3) to all DMUs to compute their unified efficiency measures.

Figure 3. Computational process.

Of them, we apply Models (5) and (7) to efficient DMUs only to compute their unified
index measures. Based on two-stage process, we rank all DMUs: Efficient ones by unified
index measures and inefficient ones by unified efficiency measures. In the figure, we need
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to note that the indexes measured by Models (5) and (7) assume constant RTS and DTS to
avoid an occurrence of computational infeasibility, respectively. The index measurement is
conventionally referred to as sensitivity analysis. However, the previous literature does
not include the existence of undesirable outputs and a directional vector of observed
production factors in the framework. In the regard, the proposed approach is different
from them.

5. Empirical Result
5.1. Data

This study has kept track of 33 OECD countries over the period in which COVID-19
progressed dramatically. Specifically, we have measured variables at three different time
points: 4 April 2020, 10 April 2020, and 16 April 2020. A rationale on why we select
April 2020 is as follows: After the World Health Organization (WHO) declared COVID-19
pandemic on March 11, 2020, there has been significant COVID-19 progression in April,
particularly in the OECD countries such as Italy, South Korea, and Spain. On 4 April, the
number of confirmed cases reached 1 million worldwide. Then, 9 April was the time when
100 days had passed since the first COVID-19 case (“pneumonia with unknown cause”
at that time) was reported. With the dramatic growth of COVID-19 cases and deaths, on
16 April, WHO started to recommend more aggressive measures such as lockdowns. See
WHO COVID-19 Timeline [33] for a detailed report. The selection of the three days is
subjective. Therefore, the first hypothesis to be examined in this study confirms the validity
on whether the selection does not produce any major difference in our empirical results.

While our study time window is relatively narrow, testing the first hypothesis is still
meaningful because (a) as aforementioned, April 2020 was a critical time point for nations
to take appropriate actions and actually many policy measures were implemented for the
short time period [34], which reflects the dynamic change of governments’ interventions.
(b) At the beginning of the COVID-19 crisis (January or February 2020), the disease did
not reach the level of global pandemic yet so a comparative study may be too early to be
conducted and relevant statistics (e.g., the number of cases or deaths) were neither fully
reliable nor consistent across nations. (c) By the nature of infectious disease, it is pivotal to
perform initial response to contain the disease within nations’ healthcare capacity and the
initial performance may, at least partly, determine the overall performance of the nations
by the path-dependency theory [35,36]. Lastly, (d) before the second wave of COVID-19
started, April 2020 data may have sufficient predictive power for the future (at least for the
near future) so some studies (e.g., COVID-19 prediction models using S-curve or logistic
functions) were based on a relatively short timeframe.

For our DEA-EA application in the frame of inputs and desirable and undesirable out-
puts, we have collected a data set from two sources: (a) COVID-19 data from Worldometer,
Johns Hopkins University, and Our World in Data and (b) health system data from OECD
Health Database and WHO Global Health Expenditure Database.

This research uses three inputs: Current Health Expenditure (CHE), Total Hospital
Employment (THE), and Total Hospital Beds (THB). The CHE is measured at per-capita
purchasing power parity (PPP) while both THE and THB are measured in per 1000
populations. Those inputs correspond with the input factors (i.e., labor and capital) of
general production function. THE, as a labor, includes medical workforce, such as doctors
and nurses, which are responsible for taking care of COVID-19 patients. CHE and THB
both represent capital that medical workforce can utilize. CHE is related to access to
high-quality healthcare, particularly in nations with private health insurance systems.
THB is an indicator of nations’ healthcare capacity so securing the sufficient number of
beds is critical for controlling COVID-19. Those input factors are widely used in other
healthcare studies (see Table 1).

There are two desirable outputs: COVID-19 Total Recovered (CTR) and Total Tests
(CTT) as well as two undesirable outputs COVID-19 Total Cases (CTC) and Total Deaths
(CTD). Four outputs are measured in per 1 million populations. CTR indicates the result of
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quality healthcare in that it requires the effective triage and timely treatment of COVID-19
patients. CTT points out not only nations’ COVID-19 diagnosis capacity but also their
willingness to track and monitor COVID-19 cases, which is essential for preventing and
controlling infectious disease. CTC is a bad output stemming from the lack of nations’
COVID-19 managing capacity or their unwillingness to respond to COVID-19 (particularly
if they seek the herd immunity without any serious government intervention). It may be a
result from their citizens’ incompliance to government measures (e.g., social distancing and
face mask wearing). CTD, as an ultimate toll of the COVID-19 crisis, should be avoided.
Nations’ healthcare systems should prevent COVID-19 at best and, otherwise, convert
confirmed cases into recoveries. It is important to note that the inputs are considered as the
same in April 2020, but the desirable and undesirable outputs change on April 4th, 10th,
and 16th; see Table 3 that classifies the types of insurance systems in OECD nations.

Table 5 provides a data set and descriptive statistics. Countries are listed in alphabeti-
cal order of their names. The first row of the table contains POP: Population (1000 s); CHE:
Current health expenditure (per capita in PPP); THE: Total hospital employment (per 1000
POP); THB: Total hospital beds (per 1000 POP); CTC: Total cases (per 1 million POP); CTD:
Total deaths (per 1 million POP); CTR: Total recoveries (per 1 million POP); and (h) CTT:
Total tests (per 1 million POP).

On average, 33 OECD countries have approximately 14 hospital employees and 5
hospital beds per 1000 populations and their individuals spend more than US $4000 in
health care annually. As of 16 April 2020, on average, they conduct approximately 17,000
COVID-19 tests and have 1500 confirmed cases, 80 deaths, and 400 recovered per 1 million
populations, respectively.

5.2. Efficiency and Index Measures

This research first measures efficiency and index measures as of 4, 10, and 16 April
2020, respectively, as summarized in Tables 6 and 7. We document the unified efficiencies
and indexes under natural and managerial disposability. The former table lists UENC
measured by Model (1) and UEMC measured by Model (3) while the latter table lists UINC
measured by Model (5) and UIMC measured by Model (7).

The efficiency and index measures have both their degrees and ranks based upon a
descending order with parenthesis. Efficient nations in both UENC and UEMC include
Australia, Iceland, Korea, and Latvia. The efficient nations only in UEMC contain Japan and
Slovak R. The other nations contain some level of inefficiency. The average of UENC (0.63)
is slightly greater than that of UEMC (0.59). All inefficiency measures shift to UINC and
UIMC as shown in Figure 2. Meanwhile, we apply Models (5) and (7) on efficient nations
to determine their UINC and UIMC measures. As of 4 April 2020, for example, Japan has
0.39 (81th) in UINC and 1.69 (1st) in UIMC, so being influenced by a shift from natural to
managerial disposability due to less infected case and death with the smaller number of
tests. The finding can be found in their average measures. The average of UINC is 0.64,
which is greater than that of UIMC (0.60).
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Table 5. Data and descriptive statistics.

Country CHE
(per Capita in PPP)

THE
(per 1000 POP)

THB
(per 1000 POP)

CTC (per 1 M POP) CTD (per 1 M POP) CTR (per 1 M POP) CTT (per 1 M POP)

4/4/20 4/10/20 4/16/20 4/4/20 4/10/20 4/16/20 4/4/20 4/10/20 4/16/20 4/4/20 4/10/20 4/16/20

Australia 4816.15 17.98 3.81 218 245 254 1.0 2.1 2.0 23.93 73.86 153.25 11,247 13,696 14,902

Austria 5617.40 13.41 7.37 1308 1506 1605 21.0 35.4 44.0 285.77 752.78 1024.29 11,562 16,052 17,410

Belgium 5119.07 18.92 5.66 1590 2301 3003 111.0 260.5 419.0 286.04 527.32 666.15 6040 9982 11,588

Canada 4928.63 17.52 2.52 369 586 752 6.0 15.1 27.0 70.85 179.91 245.17 8425 10,679 12,393

Chile 2228.56 6.72 2.11 218 340 461 1.0 3.4 5.0 29.24 103.24 162.67 2543 4134 4806

Czech R. 2753.38 14.49 6.63 418 535 589 6.0 11.1 16.0 7.37 38.85 78.55 6926 11,767 13,634

Denmark 5510.00 20.60 2.61 704 1005 1188 28.0 42.6 55.0 223.18 340.07 525.85 7816 11,691 14,223

Estonia 2153.34 12.23 4.69 783 948 1081 10.0 18.1 27.0 44.85 70.69 101.09 14,392 23,326 27,156

Finland 4255.22 18.01 3.28 340 500 608 5.0 8.7 14.0 54.32 54.32 307.79 5234 8251 8970

France 5011.20 19.62 5.98 1378 1389 2265 116.0 202.2 263.0 231.09 395.05 463.37 3436 6217 5114

Germany 5922.64 16.48 8.00 1147 1404 1619 17.0 30.4 46.0 319.92 695.58 933.09 10,962 19,737 20,629

Greece 2295.33 9.14 4.21 161 193 212 7.0 8.6 10.0 7.24 24.98 24.98 2153 3364 4871

Hungary 1979.40 10.77 7.02 70 136 171 3.0 8.8 15.0 5.92 11.74 20.31 2011 3322 3984

Iceland 4721.43 20.79 3.06 4152 4908 5061 12.0 20.5 23.0 1182.00 2510.26 3214.69 69,276 102,591 109,558

Ireland 5544.68 13.15 2.96 932 1638 2541 28.0 58.1 90.0 5.23 5.23 16.09 6119 13,364 18,358

Israel 3014.65 10.90 3.02 907 1202 1455 5.0 11.0 16.0 51.31 161.15 315.33 10,443 17,740 21,634

Italy 3619.70 10.33 3.18 2061 2441 2732 254.0 311.8 358.0 346.53 536.96 628.69 10,870 16,294 18,481

Japan 4563.46 16.50 13.05 25 42 68 0.6 0.7 1.0 4.03 5.98 7.07 339 592 745

Korea 2980.16 7.47 12.27 198 204 207 3.0 4.1 4.0 124.06 142.07 152.15 8875 9911 10,509

Latvia 1682.34 10.77 5.57 270 324 358 0.5 1.1 3.0 0.51 8.20 29.23 10,275 14,684 16,595

Lithuania 2132.61 15.42 6.56 283 367 414 4.0 6.2 11.0 2.46 18.96 62.50 7852 13,487 17,829

Luxembourg 5956.48 15.77 4.66 4360 5149 5388 50.0 86.3 110.0 846.50 846.50 890.52 36,412 47,960 49,080

Mexico 1035.59 6.98 1.38 15 30 45 0.6 1.8 3.0 4.90 4.90 16.45 122 190 311

Netherlands 5513.10 15.23 3.32 970 1348 1705 96.0 146.5 193.0 14.64 14.64 14.64 4401 6765 8634

Norway 6518.87 21.62 3.60 1024 1152 1254 11.0 17.0 28.0 6.09 6.09 6.09 19,528 22,805 24,020

Portugal 2917.36 12.67 3.39 1032 1517 1848 26.0 42.7 62.0 7.27 25.80 47.82 7952 12,364 20,430



Energies 2021, 14, 1174 18 of 30

Table 5. Cont.

Country CHE
(per Capita in PPP)

THE
(per 1000 POP)

THB
(per 1000 POP)

CTC (per 1 M POP) CTD (per 1 M POP) CTR (per 1 M POP) CTT (per 1 M POP)

4/4/20 4/10/20 4/16/20 4/4/20 4/10/20 4/16/20 4/4/20 4/10/20 4/16/20 4/4/20 4/10/20 4/16/20

Slovak R. 2184.20 7.62 5.82 86 131 179 0.2 0.4 1.0 1.84 4.23 30.72 2497 5031 6311

Slovenia 2960.59 11.09 4.50 470 558 610 11.0 21.6 29.0 38.24 71.64 84.22 13,040 16,739 18,344

Spain 3468.69 12.10 2.97 2699 3358 3910 256.0 338.9 409.0 735.45 1270.40 1607.57 7593 13,745 19,896

Switzerland 8216.96 25.16 4.53 2369 2799 3089 77.0 93.0 147.0 761.92 1437.13 1829.08 17,729 21,913 23,849

Turkey 1180.64 9.02 2.81 284 558 823 6.0 11.9 18.0 9.73 36.72 70.27 1913 4060 5664

U.K. 4338.37 20.11 2.54 617 1035 1519 64.0 132.0 202.0 2.05 5.22 12.83 2698 4004 6152

U.S.A. 10,246.14 20.02 2.71 941 1515 1965 26.0 56.7 99.0 45.69 96.38 151.30 4933 8043 9899

Mean 4102.62 14.50 4.72 982 1254 1484 38.3 60.9 83.3 175.16 317.48 421.03 10,170 14,985 17,151

Max 10,246.14 25.16 13.05 4360 5149 5388 256.0 338.9 419.0 1182.00 2510.26 3214.69 69,276 102,591 109,558

Min 1035.59 6.72 1.38 15 30 45 0.2 0.4 1.0 0.51 4.23 6.09 122 190 311

S.D. 2041.63 4.85 2.64 1078 1277 1390 64.6 91.6 119.5 292.90 541.46 681.13 12,659 18,092 19,094

Table 6. UENc and UEMc over the three periods.

Country
UENc UEMc

4/4/2020 4/10/2020 4/16/2020 4/4/2020 4/10/2020 4/16/2020

Australia 1.00 (2) 0.98 (11) 1.00 (1) 1.00 (3) 0.98 (11) 1.00 (2)

Austria 0.50 (68) 0.87 (24) 1.00 (10) 0.47 (66) 0.81 (25) 0.93 (15)

Belgium 0.43 (74) 0.53 (63) 0.51 (64) 0.39 (76) 0.48 (65) 0.46 (67)

Canada 0.65 (49) 0.66 (46) 0.68 (41) 0.57 (51) 0.60 (47) 0.62 (42)

Chile 0.48 (70) 0.64 (50) 0.71 (37) 0.55 (56) 0.63 (40) 0.69 (32)

Czech R. 0.47 (71) 0.61 (52) 0.67 (43) 0.45 (69) 0.55 (55) 0.57 (52)

Denmark 0.66 (47) 0.69 (40) 0.82 (29) 0.61 (43) 0.63 (41) 0.75 (29)

Estonia 0.67 (44) 0.90 (21) 0.94 (18) 0.48 (62) 0.59 (48) 0.60 (46)

Finland 0.42 (77) 0.44 (73) 0.88 (23) 0.44 (72) 0.44 (70) 0.82 (24)
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Table 6. Cont.

Country
UENc UEMc

4/4/2020 4/10/2020 4/16/2020 4/4/2020 4/10/2020 4/16/2020

France 0.41 (79) 0.61 (53) 0.48 (69) 0.37 (78) 0.56 (54) 0.44 (73)

Germany 0.60 (55) 0.87 (25) 0.95 (17) 0.57 (53) 0.81 (26) 0.88 (20)

Greece 0.37 (83) 0.46 (72) 0.56 (61) 0.40 (75) 0.48 (64) 0.58 (50)

Hungary 0.66 (48) 0.59 (56) 0.57 (60) 0.75 (30) 0.63 (39) 0.60 (45)

Iceland 1.00 (2) 1.00 (8) 1.00 (4) 0.90 (16) 0.96 (14) 1.00 (4)

Ireland 0.20 (93) 0.42 (76) 0.43 (75) 0.21 (90) 0.24 (83) 0.22 (89)

Israel 0.50 (67) 0.69 (39) 0.73 (36) 0.36 (81) 0.40 (74) 0.49 (59)

Italy 0.42 (78) 0.51 (66) 0.53 (62) 0.37 (79) 0.46 (68) 0.48 (63)

Japan 0.39 (81) 0.39 (82) 0.31 (86) 1.00 (1) 0.88 (19) 0.64 (37)

Korea 0.95 (15) 0.98 (12) 1.00 (5) 0.97 (13) 0.98 (12) 1.00 (6)

Latvia 1.00 (6) 1.00 (9) 1.00 (6) 1.00 (7) 1.00 (5) 0.88 (18)

Lithuania 0.70 (38) 0.87 (26) 0.97 (13) 0.66 (36) 0.78 (27) 0.85 (21)

Luxembourg 0.51 (65) 0.58 (58) 0.57 (59) 0.44 (71) 0.37 (77) 0.37 (80)

Mexico 0.62 (51) 0.37 (84) 0.68 (42) 0.99 (10) 0.58 (49) 0.77 (28)

Netherlands 0.14 (97) 0.16 (95) 0.21 (91) 0.16 (97) 0.16 (95) 0.16 (96)

Norway 0.74 (35) 0.79 (31) 0.79 (33) 0.49 (61) 0.50 (58) 0.49 (60)

Portugal 0.29 (87) 0.40 (80) 0.58 (57) 0.23 (85) 0.24 (84) 0.32 (82)

Slovak R. 0.84 (27) 0.95 (16) 0.81 (30) 1.00 (8) 1.00 (9) 0.84 (22)

Slovenia 0.79 (32) 0.90 (20) 0.93 (19) 0.64 (38) 0.68 (35) 0.68 (34)

Spain 0.60 (54) 0.75 (34) 0.84 (28) 0.54 (57) 0.68 (33) 0.72 (31)

Switzerland 0.67 (45) 0.89 (22) 0.96 (14) 0.61 (44) 0.82 (23) 0.89 (17)

Turkey 0.21 (92) 0.29 (88) 0.33 (85) 0.22 (87) 0.22 (88) 0.22 (86)

UK 0.14 (98) 0.12 (99) 0.16 (96) 0.16 (94) 0.14 (98) 0.13 (99)

US 0.16 (94) 0.24 (90) 0.26 (89) 0.20 (92) 0.19 (93) 0.20 (91)
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Table 6. Cont.

Country
UENc UEMc

4/4/2020 4/10/2020 4/16/2020 4/4/2020 4/10/2020 4/16/2020

Descriptive statistics

Mean 0.55 (58) 0.64 (49) 0.69 (43) 0.55 (55) 0.59 (49) 0.61 (46)

Max 1.00 (98) 1.00 (99) 1.00 (96) 1.00 (97) 1.00 (98) 1.00 (99)

Min 0.14 (2) 0.12 (4) 0.16 (1) 0.16 (1) 0.14 (5) 0.13 (4)

S.D. 0.25 (28) 0.26 (28) 0.26 (29) 0.27 (30) 0.26 (28) 0.26 (29)

Kruskal-Wallis rank test

Rank sum 1371 1686 1893 1498 1675 1777

H-statistic 5.076 (p = 0.0790) 1.464 (p = 0.4809)

Note: UENc = unified efficiency under natural disposability and constant returns to scale, UEMc = unified efficiency under managerial disposability and constant damages to scale; and the values in parenthesis
indicate each country’s rank.

Table 7. UINc and UIMc over the three periods.

Country
UINc UIMc

4/4/2020 4/10/2020 4/16/2020 4/4/2020 4/10/2020 4/16/2020

Australia 1.02 (8) 0.98 (11) 1.15 (3) 1.09 (6) 0.98 (11) 1.16 (4)

Austria 0.50 (68) 0.87 (24) 1.00 (10) 0.47 (66) 0.81 (25) 0.93 (15)

Belgium 0.43 (74) 0.53 (63) 0.51 (64) 0.39 (76) 0.48 (65) 0.46 (67)

Canada 0.65 (49) 0.66 (46) 0.68 (41) 0.57 (51) 0.60 (47) 0.62 (42)

Chile 0.48 (70) 0.64 (50) 0.71 (37) 0.55 (56) 0.63 (40) 0.69 (32)

Czech R. 0.47 (71) 0.61 (52) 0.67 (43) 0.45 (69) 0.55 (55) 0.57 (52)

Denmark 0.66 (47) 0.69 (40) 0.82 (29) 0.61 (43) 0.63 (41) 0.75 (29)

Estonia 0.67 (44) 0.90 (21) 0.94 (18) 0.48 (62) 0.59 (48) 0.60 (46)

Finland 0.42 (77) 0.44 (73) 0.88 (23) 0.44 (72) 0.44 (70) 0.82 (24)
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Table 7. Cont.

Country
UINc UIMc

4/4/2020 4/10/2020 4/16/2020 4/4/2020 4/10/2020 4/16/2020

France 0.41 (79) 0.61 (53) 0.48 (69) 0.37 (78) 0.56 (54) 0.44 (73)

Germany 0.60 (55) 0.87 (25) 0.95 (17) 0.57 (53) 0.81 (26) 0.88 (20)

Greece 0.37 (83) 0.46 (72) 0.56 (61) 0.40 (75) 0.48 (64) 0.58 (50)

Hungary 0.66 (48) 0.59 (56) 0.57 (60) 0.75 (30) 0.63 (39) 0.60 (45)

Iceland 1.06 (6) 1.01 (9) 1.22 (1) 0.90 (16) 0.96 (14) 1.10 (5)

Ireland 0.20 (93) 0.42 (76) 0.43 (75) 0.21 (90) 0.24 (83) 0.22 (89)

Israel 0.50 (67) 0.69 (39) 0.73 (36) 0.36 (81) 0.40 (74) 0.49 (59)

Italy 0.42 (78) 0.51 (66) 0.53 (62) 0.37 (79) 0.46 (68) 0.48 (63)

Japan 0.39 (81) 0.39 (82) 0.31 (86) 1.69 (1) 0.88 (19) 0.64 (37)

Korea 0.95 (15) 0.98 (12) 1.04 (7) 0.97 (13) 0.98 (12) 1.03 (7)

Latvia 1.19 (2) 1.14 (4) 1.06 (5) 1.20 (3) 1.00 (9) 0.88 (18)

Lithuania 0.70 (38) 0.87 (26) 0.97 (13) 0.66 (36) 0.78 (27) 0.85 (21)

Luxembourg 0.51 (65) 0.58 (58) 0.57 (59) 0.44 (71) 0.37 (77) 0.37 (80)

Mexico 0.62 (51) 0.37 (84) 0.68 (42) 0.99 (10) 0.58 (49) 0.77 (28)

Netherlands 0.14 (97) 0.16 (95) 0.21 (91) 0.16 (97) 0.16 (95) 0.16 (96)

Norway 0.74 (35) 0.79 (31) 0.79 (33) 0.49 (61) 0.50 (58) 0.49 (60)

Portugal 0.29 (87) 0.40 (80) 0.58 (57) 0.23 (85) 0.24 (84) 0.32 (82)

Slovak R. 0.84 (27) 0.95 (16) 0.81 (30) 1.52 (2) 1.02 (8) 0.84 (22)

Slovenia 0.79 (32) 0.90 (20) 0.93 (19) 0.64 (38) 0.68 (35) 0.68 (34)

Spain 0.60 (54) 0.75 (34) 0.84 (28) 0.54 (57) 0.68 (33) 0.72 (31)

Switzerland 0.67 (45) 0.89 (22) 0.96 (14) 0.61 (44) 0.82 (23) 0.89 (17)

Turkey 0.21 (92) 0.29 (88) 0.33 (85) 0.22 (87) 0.22 (88) 0.22 (86)

UK 0.14 (98) 0.12 (99) 0.16 (96) 0.16 (94) 0.14 (98) 0.13 (99)

US 0.16 (94) 0.24 (90) 0.26 (89) 0.20 (92) 0.19 (93) 0.20 (91)
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Table 7. Cont.

Country
UINc UIMc

4/4/2020 4/10/2020 4/16/2020 4/4/2020 4/10/2020 4/16/2020

Descriptive statistics

Mean 0.56 (58) 0.65 (49) 0.71 (43) 0.60 (54) 0.59 (49) 0.62 (46)

Max 1.19 (98) 1.14 (99) 1.22 (96) 1.69 (97) 1.02 (98) 1.16 (99)

Min 0.14 (2) 0.12 (4) 0.16 (1) 0.16 (1) 0.14 (8) 0.13 (4)

S.D. 0.27 (28) 0.26 (28) 0.28 (29) 0.37 (30) 0.26 (28) 0.27 (29)

Kruskal-Wallis rank test

Rank sum 1370 1683 1897 1506 1668 1776

H-statistic 5.161 (p = 0.0758) 1.357 (p = 0.5075)

Note: UINc = unified index under natural disposability and constant returns to scale, UIMc = unified index under managerial disposability and constant damages to scale; and the values in parenthesis indicate
each country’s rank.
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To statistically examine whether the differences in efficiency and index measures have
occurred among the three periods, we applied the Kruskal–Wallis rank-sum tests. For
the test, all the datasets in the three periods were pooled. The tests do not reject the null
hypotheses that there are no differences in UENc/UEMc and UINC/UIMc at the level of 5%
significance. For the former, the bottom of Table 6 exhibits the H-statistic of 5.076 (p-value
= 0.0790) and 1.464 (p-value = 0.4809), respectively. For the latter, the bottom of Table 7
exhibits the H-statistic of 5.161 (p-value = 0.0758) and 1.357 (p-value = 0.5075.)

Here, it is worth noting Japan and the United Kingdom (UK) as illustrative discussions.
Japan has a declining trend in both UINc and UIMc. For example, Japan had 0.39, 0.39,
and 0.31 in UINC and 1.69, 0.88, and 0.64 in UIMC over the three periods. The decreasing
trend was particularly serious in UIMC. The UK is more undesirable than Japan. The
nation showed 0.14, 0.12, and 0.16 in UINC and 0.16, 0.14, and 0.13 in UIMC over the
same period. The results imply that the two nations did not pay serious attention to the
pandemic response in April 2020. For example, Hunter [37] discussed that the UK lacked
the number of hospital beds and had a limited number of medical staff and protection
equipment (e.g., face masks). The medical insufficiency and lack of government measures
may be applicable to Japan as well [38].

Note that Tables 6 and 7 have overviewed the COVID-19 response performance
measures and ranks of 33 OECD nations. There are stark contrasts between outperforming
and underperforming nations in terms of efficiency/index measures. As indicated by H-
statistics, on the other hand, each nation’s COVID-19 response performance measures were
not significantly changed over time, specifically in the beginning to mid-April 2020. It may
be due to our short period analysis time windows. If we extend the analysis period, the
result may be different. Anyway, we tentatively and cautiously conclude that each nation’s
performance tends to be path-dependent so it may be critical for each nation’s public health
authorities to take aggressive actions at the beginning to maintain their performance in the
COVID-19 prevention and control.

Additionally, we have analyzed the relationship between the performance and health
insurance systems (as one of the different conditions of OECD countries). Supposing
that different health insurance systems provide citizens (particularly socio-economically
vulnerable populations) with different levels of healthcare access, which is critical in
increasing the numbers of tests and recovered patients while decreasing the number of
deaths, we have hypothesized that the performance indexes (UINc and UIMc) of countries
with higher public coverage (e.g., UGHS, UPIS, and UPPS) are statistically greater than
those of countries with lower public coverage (e.g., UPHS and NUIS).

5.3. Mobility and Efficiency/Index Measures

Our second hypothesis concerns the relationships between mobility and efficiency/index
measures. To test the relationships, we first provide an array of charts showing the differ-
ence in mobility measures between efficient and inefficient nations and then some statistics
confirming the difference. Additionally, we run a linear growth modeling to examine
how COVID-19 management performance influences mobility measures. For the mobility
measures, we refer to Google’s COVID-19 Community Mobility reports.

As shown in Figure 4, COVID-19-based mobility change of underperforming nations
(in orange) tends to be more volatile than that of outperforming ones (in blue) is, except
for the beginning of October when the COVID-19 second wave started, at four different
locations: Grocery and pharmacy, residential, retail and recreation, and workplaces. It
is also supported by the higher standard deviation (SD) of underperforming nations
(see Table 8 for efficiency and Table 9 for index). According to Pearson correlation, it is
found that outperforming and underperforming nations show relatively similar patterns
at residential and transit stations, positively related with mobility measures and a public
health insurance system can play a significant role in changing mobility measures.
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Figure 4. Mobility measures over Time by UENc/UINc: Efficient (in blue) and inefficient nations (in orange) at (a) grocery,
(b) residential, (c) retail and recreation, and (d) workplaces. Note: Mobility measures in four difference places indicate the
percent change from the baseline (before COVID-19 took place).

Table 8. Differences in mobility between efficient and inefficient nations by UENc/UINc.

UENc/UINc Grocery &
Pharmacy Parks Residential Retail &

Recreation
Transit

Stations Workplaces

SD
Inefficient 10.54 44.98 6.81 19.98 16.66 16.27

Efficient 5.71 21.99 3.27 7.60 7.32 9.06

Pearson correlation 0.38 0.62 0.81 0.70 0.81 0.68

Note: SD = standard deviation.

Table 9. Differences in mobility between efficient and inefficient nations by UEMc/UIMc.

UEMc/UIMc Grocery &
Pharmacy Parks Residential Retail &

Recreation
Transit

Stations Workplaces

SD
Inefficient 10.72 46.28 6.99 20.30 16.96 16.75

Efficient 6.06 22.17 3.57 9.70 8.84 8.97

Pearson correlation 0.67 0.82 0.90 0.90 0.92 0.82

Note: SD = standard deviation.

Table 10 presents a correlation table between mobility and index measures. In addition
to the Pearson correlation, we calculated a partial correlation controlling time. Because it
adjusted time effect, partial correlation coefficients are smaller than Pearson correlation
coefficients. However, there are statistically significant relationships between (a) UINc and
all mobility measures (except for retail and recreation, and grocery and pharmacy), and (b)
UIMc and all mobility measures (without any exception) at the 5% significance level.
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Table 10. Correlations between mobility and COVID-19 performance measures.

GRR GGP GPK GTS GWP GRD UINc UIMc

GRR 1.000

GGP 0.816 *** 1.000

GPK 0.695 *** 0.674 *** 1.000

GTS 0.777 *** 0.720 *** 0.712 *** 1.000

GWP 0.863 *** 0.786 *** 0.796 *** 0.880 *** 1.000

GRD −0.705 *** −0.660 *** −0.837 *** −0.796 *** −0.895 *** 1.000

UINc 0.260 * 0.168 * 0.319 *** 0.396 *** 0.336 *** −0.377 *** 1.000

UIMc 0.434 *** 0.277 *** 0.341 *** 0.498 *** 0.536 *** −0.472 *** 0.775 *** 1.000

Note: GRR = retail and recreation, GGP = groceries and pharmacies, GPK = parks, GTS = transit stations, GWP = workplaces, GRD = resi-
dential; UINc = unified index under natural disposability and constant returns to scale, UIMc = unified index under managerial disposability
and constant damages to scale; and *** = statistically significant at 1%, ** = 5%, and * = 10%.

6. Discussion

This section discusses the two hypotheses presented in the literature review section
along with statistical evidence.

On Hypothesis 1: Each nation’s COVID-19 response performance measures are vary-
ing across their different conditions and are dynamic over time.

To empirically test the hypothesis, we have first checked the normality of UINc and
UIMc. A skewness and kurtosis test (listed at the end of this article) was conducted
to determine if UINc and UIMc are normally distributed, respectively. Based on the
test, we reject the hypotheses that UINc and UIMc are normally distributed, respectively,
χ2(2) = 5.20 (p = 0.0744) and χ2(2) = 10.38 (p = 0.0056). Because of non-normality, we
conduct the Kruskal–Wallis tests to determine if there are differences in UINc and UIMc
between (a) the two groups (high public vs. low public coverage) and (b) the five groups
(UGHS, UPIS, UPPS, UPHS, and NUIS) with different health insurance systems.

Table 11 summarizes indexes and the sum of ranks of (a) the two groups and (b)
the five groups of healthcare insurance systems. In the H-statistic columns of the table,
UINc and UIMc are statistically different across health insurance systems, respectively,
H-statistic = 5.181 (p = 0.023) and H-statistic = 5.808 (p = 0.016) for the two groups; and
H-statistic = 9.975 (p = 0.041) and H-statistic = 11.843 (p = 0.019) for the five groups. We
reject the null hypotheses (i.e., no difference among (a) the two groups (high and lower
coverages) and (b) the five groups of health insurance systems). Thus, the indexes of
nations with higher public coverage under UGHS, UPIS, and UPPS are statistically greater
than those of countries with lower public coverage under UPHS and NUIS.

Table 11. Summary of the Kruskal–Wallis tests.

Performance
Index

(a)
(N = 90)

(b)
(N = 9) H-statistic (c)

(N = 36)
(d)

(N = 39)
(e)

(N = 15)
(f)

(N = 6)
(g)

(N = 3) H-statistic

UINc 0.660
(4687)

0.411
(263) 5.181 * 0.624

(1739)
0.714
(2246)

0.606
(702)

0.506
(236)

0.220
(27) 9.975 *

UIMc 0.626
(4698)

0.376
(252) 5.808 * 0.549

(1622)
0.700
(2257)

0.623
(819)

0.467
(228)

0.195
(24) 11.843 *

Note: (a) Health insurance system with higher public coverage; (b) Health insurance system with lower public coverage; (c) UGHS = Uni-
versal Government-funded Health System; (d) UPIS = Universal Public Insurance System; (e) UPPS = Universal Public-Private Insurance
System; (f) UPHS = Universal Private Health Insurance System; and (g) NUIS = Non-Universal Insurance; and * stands for statistical
significance at 10%.

On Hypothesis 2: People’s mobility scores in each nation are associated with their
COVID-19 response performance.



Energies 2021, 14, 1174 26 of 30

A series of charts and correlation tables in Section 5.3 supported our second hypothesis
on the relationship between each nation’s COVID-19 response performance and mobility
measures. Specifically, outperforming nations tend to show more stable mobility than
underperforming ones. In addition, mobility measures in the latter return to the baseline
level whereas those in the latter still stagnate. While the second or later waves of COVID-19
may impact mobility measures in the future, it implies that outperforming nations need to
prepare for back-to-the-normal strategies, which include clean/sustainable energy transi-
tion, for their sustainable development. This is particularly important and timely since we
observed previous incidents where energy (particularly, fossil fuels) consumption soared
up even higher than the baseline level after economic recessions (e.g., the financial crisis of
2008) were recovered. Once the COVID-19 crisis is addressed, it may end up with much
more trips that lead to more energy consumption and more GHG emissions. That is why it
is critical for OECD nations (particularly high-performing nations in managing COVID-19)
to lead clean/sustainable energy transition through a continuous commitment to their
Green New Deal initiatives (e.g., more deployment of alternative fuel-powered vehicles).

Tables 12 and 13 summarize LGM (linear growth modeling) results by UINc and UIMc.
Here, it stands for a special example of hierarchical linear modeling or multilevel modeling
with time as a first level variable. Instead of explaining all models in the two tables, we
select one model from each table as an example: GRR under UINc and GGP under UIMc.
The model with GRR as a dependent variable in Table 12, particularly, indicates that (a)
the average GRR is estimated to be about −68% in the middle of the time points, implying
that COVID-19 has a significantly negative impact on mobility, (b) GRR has improved
by about 7% each time point, and (c) in the case of nations with public health insurance
systems (i.e., INS = 1), a one-unit increase in UINc is associated with about 45% increase in
mobility when holding all other variables constant. The model with GGP as a dependent
variable in Table 13 points out that (a) the average GGP is estimated to be about −11% in
the middle of the time points, implying that COVID-19 has a significantly negative impact
on mobility (but not so much as GRR under UINc), (b) GGP has improved by about 16%
each time point, and (c) a one-unit increase in UIMc is associated with about 28% increase
in mobility when holding all other variables constant. Overall, in the two models with
a focus on the mobility at retail and recreation and grocery and pharmacy, we find that
COVID-19 response performance is positively related with mobility measures and public
health insurance system can play a significant role in changing mobility measures.

Table 12. LGM analysis results: UINc.

Model Parameters GGP GPK GRD GRR GTS GWP

Fixed Effect

For Intercept

Base −12.758 −0.391 13.712 *** −68.450 *** −53.974 *** −39.934 ***

INS −19.610 −29.807 2.154 1.540 −8.128 −2.716

For Growth Rate

Base 15.584 *** 19.905 *** 0.096 6.932** 6.102 ** 3.646

INS −5.085 −15.872 ** 1.198 −5.270 * −4.248 −5.910 **

For UINc slope

Base 18.703 32.078 3.139 −36.522 7.463 −12.937

INS −6.162 14.170 −12.278 45.025 * 10.258 31.695

Random Effect

Intercept 330.560 *** 1149.094 *** 25.276 *** 341.119 *** 154.423 *** 141.535 ***

Level-1 error 133.883 185.719 7.039 27.144 29.981 25.813

Note: *** = statistically significant at 1%, ** = 5%, and * = 10%. INS: health insurance system (0 = private; 1 = public).
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Table 13. LGM Analysis Results: UIMc.

Model Parameters GGP GPK GRD GRR GTS GWP

Fixed Effect

For Intercept

Base −10.704 * 3.733 13.585 *** −67.212 *** −52.910 *** −39.545 ***

INS −21.590 *** −33.298 2.228 0.266 −9.115 −3.067

For Growth Rate

Base 15.653 *** 19.894 *** 0.208 5.674 ** 6.077 ** 3.211

INS −4.327 −12.656 * 0.483 −3.489 −3.066 −4.270 *

For UIMc slope

Base 27.668 *** 50.097 2.571 −30.960 12.115 −11.186

INS −18.430 −31.884 −9.350 41.045 * 2.154 28.228

Random Effect

Intercept 319.450 *** 1232.379 *** 23.628 *** 312.607 *** 145.253 *** 113.155 ***

Level-1 error 134.885 194.047 7.105 26.670 28.937 25.127

Note: *** = statistically significant at 1%, ** = 5%, and * = 10%. INS: health insurance system (0 = private; 1 = public).

7. Conclusions and Future Extensions

The COVID-19 became a global pandemic and has deep impacts on our economic and
social systems, including healthcare, mobility, and energy/environment. In this context,
this study sought to better understand the relationships among them. Particularly, we
aimed to explore how health insurance systems of OECD nations were associated with
their COVID-19 response performance and then how the performance scores were related
to their mobility scores. Drawing on the statistical examination of those relationships,
we attempted to consider policy implications about the link to clean/sustainable energy
transition. The future or success of the transition (and broader sustainable development)
may depend upon how efficiently nations can prevent and control COVID-19.

The two implications are summarized as follows: First, we tested a null hypothesis
that there was no difference in the unified efficiencies/indexes across nations or among the
three time windows (4, 10 and 16 April 2020). We also looked into the role of the health
insurance systems among OECD nations in coping with the COVID-19 pandemic. The
examination of the first hypothesis indicated that there was a significant difference in the
performance scores across countries but no major difference among the three periods. We
found that the COVID-19 response performance scores were static rather than dynamic,
implying that the performance (e.g., resulted from governments’ strict measures) tended
to be path-dependent and it was critical for nations to take appropriate initial response.
We also found that there were significant differences in the performance among groups of
nations decomposed by their health insurance systems. Specifically, countries with higher
public coverage (e.g., UGHS, UPIS, and UPPS) outperformed those with lower public
coverage (e.g., UPHS and NUIS).

Second, we examined another null hypothesis that there was no relationship between
COVID-19 response performance and mobility measures. We considered two different
types of efficiency/index measures (UENc/UINc vs. UEMc/UIMc) and mobility measures
depending on six different types of locations (retail and recreation, groceries and pharma-
cies, parks, transit stations, workplaces, and residential). Testing the second hypothesis
resulted in statistically significant relationships between the COVID-19 performance and
mobility measures in our study nations. Specifically, there were positive relationships
between the performance measures and mobility measures at all locations, except for
residential (which had negative relationships with the performance measures). The results
imply that outperforming nations are returning to the normal while underperforming ones
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are still stagnating in terms of mobility. The mobility measures of underperforming nations
are also more vulnerable to external shocks such as governments’ COVID-19 regulations.
Additionally, the results of linear growth models reaffirmed that there were statistically sig-
nificant relationships between COVID-19 response performance, health insurance systems,
and mobility measures.

At the end of this section, this study notes two drawbacks. One of the two is that this
study documents the DEA-EA practicality in offering policy implications about restruc-
turing the healthcare system [5] and preparation for clean/sustainable energy transition
post-COVID-19 [30], which has some limitations. We have discussed health insurance
systems as a different condition at a national level, believing that healthcare access or
coverage is a key to the better COVID-19 response performance. We know that there are a
multitude of factors, such as social distance practices, government actions, and national
cultures [39], which make some nations, stand out from others. The other is that our
DEA-EA analysis time windows were short. While April 2020 is meaningful in terms of
the WHO announcement, COVID-19 progression, and government lock-down measures, it
would be desirable if we could extend the analysis timeframe. A possible future direction
of this study may be found in [40,41].

In conclusion, it is hoped that this study makes a contribution to DEA-EA applied to
COVID-19 and energy studies. We look forward to seeing future extensions as specified in
this study.
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Appendix A

(a) Abbreviations on DEA-EA (Data Envelopment Analysis-Environmental Assessment)
are summarized as follows:
DMU: Decision Making Unit.
DTS: Damages to Scale.
GDP: Gross Domestic Product.
RTS: Returns to Scale.
R (superscript): Radial measurement.
c (subscript): Constant RTS or DTS.
UENR

c : Unified Efficiency under Natural disposability and Constant RTS.
UEMR

c : Unified Efficiency under Managerial disposability and Constant DTS.
UINR

c : Unified Index under Natural disposability and Constant RTS, and
UIMR

c : Unified Index under Managerial disposability and Constant DTS.

(b) Nomenclatures are summarized as follows:
xij: an observed i-th input of the j th DMU (i = 1, . . . , m and j = 1, . . . , n),
grj: an observed r-th desirable output of the j th DMU (r = 1, . . . , s and j = 1, . . . , n),
b f j: an observed f -th undesirable output of the j th DMU (f = 1, . . . , h and j = 1, . . . , n),
dx

i : an unknown slack variable of the i-th input,
dg

r : an unknown slack variable of the r-th desirable output,
db

f : an unknown slack variable of the f -th undesirable output,
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λj: an unknown j-th intensity (or structural) variables,
εs: a prescribed very small number and J: a set of all DMUs.

(c) Kruskal-Wallis Rank Sum Test: To examine the null hypothesis (a group of obser-
vations distributes randomly among multiple groups), we use the Kruskal-Wallis
rank sum test. The entire observed data is separated into T groups. To compute
the Kruskal-Wallis statistic (H), we combines all observations (n = ∑T

t=1 nt) in T
groups. Then, we rank them from the greatest to the least by these efficiency/index
scores. Let Rjt denote the rank of the j-th nation in the t-th group. The rank sum of
all plants in the t-th group is Rt = ∑nt

j=1 Rjt. Then, the statistic (H) is determined by

H = 12/n(n + 1)∑T
t=1 [R

2
t /nt − 3(n + 1)]. The statistic follows the χ2 distribution

with a degree of freedom (df = T − 1). See Sueyoshi & Goto [31] that have discussed
how to use the H statistic to DEA results.

(d) Linear Growth Modeling: For LGM, we use the following formula based on the
assumption that mobility measures are associated with time, COVID-19 response
performance, and health insurance system:
Level-1 model:
MOBILti = π0i + π1i*(TIMEti) + π2i*(PERMti) + eti
Level-2 Model:

π0i = β00 + β01*(INSi) + r0i

π1i = β10 + β11*(INSi) + r1i

π2i = β20 + β21*(INSi) + r2i

where MOBIL = mobility measures at six different locations: Grocery & Pharmacy
(GGP), Parks (GPK), Residential (GRD), Retail & Recreation (GRR), Transit Stations
(GTS), and Workplaces (GWP); TIME = time points on April 4, 10, and 16 in 2020;
PERM = performance measures (UINc and UIMc); INS = health insurance systems
(1 = public insurance, and 0 = private insurance); π = level-1 parameters; β = level-2
parameters; e = level-1 error term; and r = level-2 error term.

References
1. Rashedi, A.; Khanam, T.; Jonkman, M. On Reduced Consumption of Fossil Fuels in 2020 and Its Consequences in Global

Environment and Exergy Demand. Energies 2020, 13, 6048. [CrossRef]
2. Alkhraijah, M.; Alowaifeer, M.; Alsaleh, M.; Alfaris, A.; Molzahn, D.K. The Effects of Social Distancing on Electricity Demand

Considering Temperature Dependency. Energies 2021, 14, 473. [CrossRef]
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