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Abstract: The microbial enhanced oil recovery (MEOR) method is an eco-friendly and economical
alternative technology. The technology involves a variety of uncertainties, and its success depends
on controlling microbial growth and metabolism. Though a few numerical studies have been
carried out to reduce the uncertainties, no attempt has been made to consider temperature, pressure,
and salinity in an integrated manner. In this study, a new modeling method incorporating these
environmental impacts was proposed, and MEOR analysis was performed. As a result, accurate
modeling was possible to prevent overestimating the performance of MEOR. In addition, oil recovery
was maximized through sensitivity analysis and optimization based on an integrative model. Finally,
applying MEOR to an actual reservoir model showed a 7% increase in oil recovery compared to
waterflooding. This result proved the practical applicability of the method.

Keywords: microbial enhanced oil recovery (MEOR); microbial kinetics; temperature; pressure;
salinity; selective plugging; optimization

1. Introduction

Among various methods used to increase the productivity of the reservoir, chemi-
cal flooding, the gas injection method, and thermal methods are the most widely used
processes for enhanced oil recovery (EOR) [1–7]. In addition to these methods, there is
an alternative technology called microbial enhanced oil recovery (MEOR). The MEOR
method is a technology that uses microbial metabolism and products to improve oil pro-
duction [8,9]. This technology is eco-friendly in that the materials used are biodegradable,
and it is economical in that the cost to produce them is low. The MEOR process changes
the petrophysical and/or petrochemical properties of the reservoir system depending on
the microorganisms and the microbial materials [10]. Among the microorganisms used in
MEOR, Leuconostoc mesenteroiedes is a microbial species that produces a biopolymer called
dextran. It is used to block the high permeability zone, which decreases productivity due
to early water breakthrough after waterflooding. Dextran improves productivity by the
bypass effect for injected water by selective plugging in the reservoir.

Since the 1950s, MEOR has been applied in many countries in various ways, among
which selective plugging has also been used as a major mechanism to increase oil produc-
tivity. The North Burbank Unit in Oklahoma [11] and North Blowhorn Creek Oil Unit
in Alabama [12], USA, showed increased oil production through selective plugging. In
Canada, plugging by Leuconostoc was applied to the MEOR [13], and a similar method
was attempted for the fractured reservoir [14]. Dutch researchers also showed the result of
increasing oil productivity and improving water-oil ratio through the selective plugging
effect by Betacoccus dextranicus [15]. In addition, MEORs using selective plugging have
been applied in various fields in China, UK, Saudi Arabia, etc. [16]. However, for the
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result of applying MEOR, one out of ten was evaluated as ineffective [17] because proper
application failed due to uncertainty in the method.

Various environmental factors affect the growth of microorganisms [10,18–20]. Tem-
perature has the greatest influence on the growth of microbes [21–29], and there are a range
of possible growth temperatures and an optimum growth temperature depending on the
microbial species. The effect of temperature on the rate of microbial growth is similar
to the activity of an enzyme. The growth rate increases as the temperature increases to
a certain point where protein denaturation occurs. The growth rate begins to decrease
from the moment the temperature exceeds that temperature [30]. Pressure affects micro-
bial survival [31–34], and higher pressure conditions adversely affect microbial survival.
The destruction of microbial cells depends on the level of pressure and the time of expo-
sure to the pressure [35]. Salinity is also known to affect microbial growth [36–43]. Salt
concentration has a great influence on enzymatic catalysis [44]. In general, the salinity
range of the reservoir is known to be 100 mg/L to 300 g/L or more [45]. According to
Maudgalya et al. [46], successful cases of MEOR have been reported in a reservoir where
the temperature is below 200 ◦F and the salinity is above 1000 ppm.

A few numerical studies on selective plugging by bacteria have been conducted. Early
models described microbial growth based on the Monod equation, and oil recovery was
calculated using a simple fluid flow model [47–49]. Delshad et al. [50] depicted MEOR using
UTCHEM, and Stewart and Kim [51] simulated the selective plugging effect using a biofilm
evolution-removal model. Vilcáez et al. [52] and Surasani et al. [53] studied Leconostoc
mesenteroides growth and plugging phenomena using a model called CrunchFlow. Recently,
selective plugging simulation and oil productivity analysis have been performed using
CMG STARS [54,55]. These previous studies have not been able to simultaneously reflect
the effects of temperature, pressure, and salinity on the growth of microorganisms, and
have not performed optimization considering these environmental factors.

Most of the earliest studies were limited to describing microbial metabolism in sim-
ple transport models. They were not suitable for analyzing oil productivity for complex
reservoir conditions in filed scale. Only a few recent studies have attempted to analyze
MEOR effects in the reservoir scale. However, studies that have evaluated and optimized
considering the subsurface environment are not available yet. A typical reservoir environ-
ment is high temperature, high pressure, and high salinity, which are fatal to the growth of
microorganisms. If these factors are not considered, it is impossible to accurately evaluate
the MEOR performance. Therefore, this study attempted to perform an MEOR simulation
considering three environmental variables at the same time.

The first objective of this study was to develop a microbial growth model that compre-
hensively considers the effects of temperature, pressure, and salinity through the Arrhenius
equation. Experimental results were used to verify the proposed model, and comparisons
with previously developed models were made. Oil recovery was compared between the
models with and without reflecting the environmental impact to accurately predict the
MEOR result. Optimization was performed to maximize oil recovery. This process em-
ployed a response surface methodology, and the injection scenarios were set as design
parameters. In addition, the sensitivity of each parameter to oil recovery was analyzed.
Finally, the MEOR results for the actual heterogeneous reservoir were shown to represent
the applicability of the technology.
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2. Methods
2.1. Fluid Flow in Permeable Media

In this study, the multiphase and multicomponent flow in permeable media is calcu-
lated through the conservation equations as follows [56]:

∂
∂t

[
ϕ

NP
∑

j=1
ρjSjmij + (1− ϕ)ρsmis

]
+
→
∇ ·

[
NP
∑

j=1

(
ρjmi

→
u j − ϕjSjρj

→
→
K ij ·

→
∇mij

)]
= ϕ

NP
∑

j=1
Sjrij + (1− ϕ)ris, i = 1, · · · , NC

(1)

Here, subscript i is the component, subscript j is the phase, subscript s is the stationary
phase, NP is the number of phases, NC is the number of components, ϕ is the porosity, S

is the saturation, m is the mass fraction,
→
u is the superficial velocity,

→
→
K is the dispersion

tensor, and r is the kinetic reaction rate. The first term on the left side is the accumulation,
the second term is the flux, and the right side is the source term.

Under spatially discretized conditions, CMG STARS used in this study calculates the
conservation equation of flowing component i as follows:

∂
∂t

[
Vf
(
ρwSwwi + ρoSoxi + ρgSgyi

)]
=

n f

∑
k=1

[
Kwρwwi∆Φw + Koρoxi∆Φo + Kgρgyi∆Φg

]
+

n f

∑
k=1

[
ϕDwiρw∆wi + ϕDoiρo∆xi + ϕDgiρg∆yi

]
+ρwqwkwi + ρoqokxi + ρgqgkyi

Here, subscripts w, o, g, k are water phase, oil phase, gas phase, and layer k, respec-
tively. The wi, xi, yi are mole fractions of component i in water phase, oil phase, and gas
phase, respectively. n f is the number of neighboring regions or grid block faces, K is the
transmissibility, Φ is the potential, Dji is the component dispersibility, and qjk is the phase
rate in layer k.

2.2. Stoichiometric Equations

The model bacteria used in this study were Leuconostoc mesenterioides. They generate
a polysaccharidic biopolymer known as dextran under sucrose-rich conditions. Their
metabolic mechanisms are well known, and modelling in this study was performed based
on experimental results [57,58]. Reactions that happen during microbial metabolism were
divided into four steps: (1) microbial growth, (2) sucrose hydrolysis, (3) dextran production,
and (4) microbial decay.

The stoichiometric equation for microbial growth is described as follows [52]:

0.2083C12H22O11 + 0.2NH+
4 + 0.341HCO−3

bacteria−−−−→
0.2C5H7O2N + 0.14076C6H12O6 + 0.0705CH3CHOHCOO−

+0.0705CH3COO− + 0.01408C6H14O6 + 0.0705CH3CH2OH
+0.4184CO2 + 0.7259H2O

(2)

Here, C12H22O11 is sucrose, C5H7O2N is the model bacteria, C6H12O6 is fructose,
CH3CHOHCOO− is lactate, CH3COO− is acetate, C6H14O6 is mannitol, and CH3CH2OH
is ethanol.

The sucrose is hydrolyzed into glucose and fructose by microbial enzymatic reactions
or is converted into dextran by the linking of glucosidic chains. The hydrolysis reaction is
as follows:

C12H22O11 + H2O + C5H7O2N
enzyme−−−−→

C6H12O6(glucose) + C6H12O6(fructose) + C5H7O2N
(3)
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and the dextran formation is as follows [59]:

nC12H22O11 + C5H7O2N
enzyme−−−−→

(C6H10O5)n + nC6H12O6(fructose) + C5H7O2N
(4)

The molecular weight of dextran measured in this study was 10,053 lb/mole, and
based on this, n was assumed to be 6.2.

To account for the microbial decay reaction, we followed Bültemeier et al. [60], who
assumed that the dead microbes did not participate in the chemical reactions but were
changed to water as follows:

Bacteria→ 6.283Water (5)

2.3. Microbial Reaction Rate

In this study, the rate of microbial reactions was described using the Arrhenius equa-
tion. It is mainly used in chemical reactions instead of the Monod equation, which is widely
used in environmental engineering. By adding a division factor to the general Arrhenius
equation, the role of sucrose as a limiting factor is described as follows:

r =
FFreq

Fdiv
exp

(
−Ea

RT

) nc

∏
i=1

ci =
FFreq

(1 + Acsucrose)
B exp

(
−Ea

RT

) nc

∏
i=1

ci (6)

Here, r is reaction rate, FFreq is the frequency factor, Fdiv is the division factor, Ea is the
activation energy, R is the gas constant, T is temperature, nc is the number of components,
ci is the concentration of component i, csucrose is the sucrose concentration, and A and B
are constants.

The microbial decay rate is expressed as a function related to the frequency factor and
the microbial population as follows:

rdecay = FFreq

nc

∏
i=1

ci (7)

where rdecay is the reaction rate for bacterial decay.

2.4. Environmental Factor Effects on Reaction Rate
2.4.1. Temperature

The cardinal temperature model proposed by Rosso et al. [61] is expressed as follows:

rtemp = roptγ(T) (8)

γ(T) =
(T − Tmax)(T − Tmin)

2(
Topt − Tmin

)[(
Topt − Tmin

)(
T − Topt

)
−
(
Topt − Tmax

)(
Topt + Tmin − 2T

)] (9)

Here, rtemp is the reaction rate as a function of temperature, ropt is optimum reaction
rate, Topt is the optimum temperature for microbial growth, Tmax is the upper limit for
growth temperature, and Tmin is the lower limit for growth temperature.

This temperature model is described by modifying the exponential term of the Arrhe-
nius equation as follows [62]:

f
(
Tj
)
= exp

(
Aj −

Ea,j

RTj

)
(10)

Aj −
Ea,j

RTj+1
= Aj+1 −

Ea,j+1

RTj+1
(11)
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where Aj is the constant of the j-th step, Ea,j is the activation energy of the j-th step, and Tj
is the temperature of the j-th step. The final form of the equation reflecting the temperature
effect is given as:

rtemp =
FFreq

Fdiv
f
(
Tj
) nc

∏
i=1

ci =
FFreq

(1 + Acsucrose)
B exp

(
Aj −

Ea,j

RTj

)
nc

∏
i=1

ci (12)

2.4.2. Pressure

Basak et al. [35] developed a decay model of L. mesenteroides as a function of
pressure. The population of microbes followed first-order kinetics during the pressure-
hold time as follows:

ln
(

N
No

)
= −αtp (13)

where No is the initial number of microbes, N is the number of surviving microbes, α is
the rate constant, and tp is the pressure-hold time. The time taken to reduce the number of
microbes to one tenth is defined as a decimal reduction time (D), and Equation (13) is as
D = 2.303/k. The relationship between pressure and decimal time is as follows:

log

(
Dj

Dj+1

)
=

pj+1 − pj

zp
(14)

where Dj is the decimal time of the j-th step, pj is the pressure of the j-th step, and zp is
the negative reciprocal slope of log D vs. p. Experiments showed that log D and p have
a linear relationship. Through this relationship, α in Equation (13) can be estimated and
microbial destruction due to pressure can be calculated.

In this study, the frequency factor in Equation (7) is determined as a constant by
pressure as follows:

rdecay,p = FFreq,pcbacteria (15)

where rdecay,p is the reaction rate as affected by pressure, and FFreq,p is the frequency factor
for each pressure step. FFreq,p is then used as a matching parameter for history match, and
the value for each pressure step is derived.

2.4.3. Salinity

Leroi et al. [63] presented the reaction rate as a function of NaCl concentration based
on the cardinal model as follows:

rNaCl = roptγ(cNaCl) (16)

γ(cNaCl) =
(cNaClmax − 2cNaClopt + cNaCl)(cNaClmax − cNaCl)

(cNaClmax − cNaClopt)
2 (17)

where rNaCl is the reaction rate as a function of NaCl concentration, cNaCl is NaCl con-
centration, cNaClopt is the optimum NaCl concentration for microbial growth, and cNaClmax

is the upper limit of NaCl concentration for microbial growth. Since the optimal NaCl
concentration of the model bacteria was close to zero [64–66], Equation (16) can be defined
as follows:

rNaCl = ropt − ropt

(
cNaCl

cNaClmax

)2
(18)

In this study, the growth inhibition by NaCl is described as the backward reaction of
Equation (2), and the rate is expressed as follows:

rNaCl,backward =
FFreq

(1 + Acsucrose)
B (cNaCl)

n (19)
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where rNaCl,backward is the backward reaction rate by NaCl, and n is a constant.

2.5. Permeability Reduction Model

The generated dextran is insoluble, and it is adsorbed or trapped in the pores, which
lowers the permeability of the reservoir. In this study, dextran was assumed to be a solid
phase, and the change in pore volume caused by the produced dextran affected the change
in permeability as follows:

ϕ = ϕo

(
1− cs

ρs

)
(20)

k = ko exp
[

kmul

(
ϕ− ϕo

1− ϕo

)]
(21)

where ϕ is the changed porosity, ϕo is the initial porosity, cs is the concentration of the solid
phase in pore space, ρs is the density of the solid phase, k is the changed permeability, ko is
the initial permeability, and kmul is the multiplier factor. cs/ρs represents the volume of the
solid phase in the pore space. When the volume occupied by the solid phase in the pores
increases, the porosity decreases, which leads to a decrease in permeability.

2.6. History Matching Error

The history matching error means the relative difference between the measured data
and simulation results for each objective function. The matching error can be estimated as
follows [62]:

E =

√
telap

∑
t=1

(Yts −Ytm)2

s
× 100% (22)

Here, E is the history matching error, t and telap are time and elapsed time, respectively,
Ys

t is the simulated result, Ym
t is the measured result, and s is the normalization scale. In

this study, the normalization scale is the maximum of the following quantities:

∆Ym + 4Merr,
0.5min(|max(Ym

t )|, |min(Ym
t )|) + 4Merr,

0.25max(|max(Ym
t )|, |min(Ym

t )|) + 4Merr

(23)

where ∆Ym is the measured maximum change, and Merr is the measurement error. The
value of Merr means that if the simulated result is between (measured value − Merr) and
(measured value + Merr), the result of this matching is satisfactory. That is, Merr is half the
absolute error range.

2.7. Proxy Model for Sensitivity Analysis and Optimization

In this study, an optimization process was performed using the response surface
methodology (RSM) to maximize the oil recovery. The RSM is a method to search the
correlation between input parameter and response (objective function). The main idea is
to use a proxy model to represent the original simulation result. Linear or quadratic form
is mainly used to make a proxy model, and the latter is applied in this study. This proxy
model is also used to analyze the sensitivity of each parameter to the objective function. A
quadratic polynomial method was applied to build a proxy model. The quadratic model is
expressed as follows [62,67]:

y = a0 +
k

∑
j=1

ajxj +
k

∑
j=1

ajjx2
j + ∑

i<j

k

∑
j=2

aijxixj (24)
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Here, y is the objective function (response), xj expresses the linear effect of parame-
ters, x2

j are the quadratic effects of the parameters, xixj indicate the interaction effects of
parameters, a0 is the intercept, aj are the coefficients of linear terms, ajj are the coefficients
of quadratic terms, and aij are the coefficients of interaction terms.

The sensitivity indicates how much a parameter change affects the objective function
change. The greater the value of coefficient a (effect estimate), the greater the sensitivity
of the parameter to the objective function. At this time, each parameter must have scale
invariance. All parameters have an average value of zero and are set to vary from −1 to 1.

3. Results
3.1. Batch and Sandpack Model Simulation

The results of microbial growth, dextran formation, and the subsequent decrease in
permeability were taken from previous studies [54,58]. Verification of the microbial growth
and dextran production was performed through the batch model shown in Table A1.
Verification of the permeability reduction was performed using the sandpack simulation
shown in Table A2. The batch simulation was performed under the conditions of 1 atm
and 30 ◦C for a total volume of 1 L. The initial sucrose concentration in the batch model
was 15 g/L, and the growth was carried out for 24 h. In the sandpack simulation, sucrose
injection and soaking were conducted 20 times for 44 h. The concentration of the injection
was 15 g/L, and the flow rate was 0.018 bbl/day. The detailed process of the simulations
was referenced from Jeong et al. [54].

The reaction rates of the four types of microbial metabolism are calculated using
Equations (6) and (7), and the history matching for the experiment was performed with
matching parameters FFreq, A, and B. The values of the variables minimizing the matching
error are shown in Table 1. Figure 1a,b describes the microbial growth and dextran
production, respectively. The pressure difference measured in the pressure measurements
shown in Table A2 is shown in Figure 1c, and the simulation results are matched with the
experimental data. The matching parameter in this simulation was kmul in Equation (21),
and it was calculated to be 244.8. The history match errors measured in the batch model
and sandpack model are 1.6% and 4.6%, respectively.

Table 1. Batch model for bacterial growth and dextran generation.

Microbial
Growth

Glucose
Generation

Dextran
Production Bacterial Decay

FFreq 235 124,538 17,030 4.635

A 64,958 34,538 11,657 -

B 1.4 0.6 1.1 -
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Figure 1. Results of batch and sandpack model simulation: (a) bacterial growth, (b) dextran generation, (c) pressure increase
due to decrease in permeability.

3.2. Verification of Models Reflecting Environmental Factors

The previous batch model was simulated under constant temperature, pressure, and
salinity conditions. Comparisons with existing methods were conducted after applying the
proposed environmental factor reflection model to this model. The reaction rate calculated
by the proposed model was compared with the result calculated by the cardinal model,
and the results are depicted in Figure 2a. Microbial growth temperature conditions for
calculating Equation (9) were referenced in previous studies [55]. It was shown that f

(
Tj
)

in Equation (10) could accurately calculate the γ(T) of the cardinal model. Figure 2b
shows the result of calculating the microbial decay as a function of the pressure step
using Equations (13) and (14). This graph shows the microbial decay rate according to the
pressure used in this study, and the same result is calculated with Equation (15). Microbial
growth behavior as a function of NaCl concentration is depicted in Figure 2c. As shown,
the salinity effect on bacterial growth was described using Equation (19). Like the existing
model, the proposed model was able to derive results that well reflected microbial growth
and decay reactions according to temperature, pressure, and salinity.
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Figure 2. Results of environmental factor reflection model: (a) temperature effect, (b) pressure effect, (c) salinity effect.

3.3. Optimization of MEOR

The conditions of the reservoir used for the MEOR process are indicated in Table A3.
The reservoir had a high probability of a conformance problem because of the high transmit-
tance channels. Production was assumed to continue for three years. After implementing
waterflooding during the first year, MEOR treatment was performed for eight weeks, and
then waterflooding was implemented again. The model that did not reflect the environmen-
tal impact was named the “ideal case”, and the model accounting for the environmental
impact was named the “real case”. Before the optimization, the injection rate in both cases
was 50 bbl/day, and the sucrose concentration was 0.005 (mole fraction). In the real case,
the temperature of the injected water and the NaCl concentration were set to 75 ◦F and
1%, respectively. These no-optimization models were used as a base case for each case. As
shown in Figure 3, the model considering environmental factors tended to decrease the
productivity of oil by 21% compared to the ideal case. Nevertheless, it could be seen that
the oil recovery of MEOR in the real case was 25% higher than that of waterflooding.
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Figure 3. Oil recovery prediction results for the ideal case and real case.

To maximize oil recovery, the ideal and real case injection scenarios were optimized
using a proxy model created by the RSM. The proxy model set the oil recovery as the
objective function and calculated design parameters that maximize the oil recovery. The
design parameters for optimum injection included sucrose concentration, treatment period,
injection rate, temperature, and salinity. The detailed ranges of all parameters and the
optimum designs calculated by the proxy model are listed in Table 2. The optimal injection
design differs in the two cases, especially in sucrose concentration and injection tempera-
ture. In addition, the optimum temperature for injection was measured somewhat lower
than the optimum temperature for microbial growth, i.e., 86 ◦F [55]. The influence of each
design parameter on oil recovery could be explained based on the sensitivity analysis.

Table 2. Range of design parameters and optimization results.

Ideal Case Real Case

Parameter Range Optimum Value Parameter Range Optimum Value

Sucrose concentration
(mole fraction) 0.001–0.01 0.005 0.001–0.01 0.003

Treatment period (weeks) 4–12 12 4–12 12

Injection rate (bbl/day) 10–100 100 10–100 100

Injection temperature (◦F) - - 50–100 83

Injection salinity (%) - - 0–3 0

Figure 4 shows a tornado plot resulting from the sensitivity analysis of the design
parameters. The values in figures called effect estimates are the expected change of the
oil recovery when the scaled parameters travel from −1 to 1. In other words, the larger
these values are, the greater the influence on oil recovery change. The sensitivity analysis
showed that there were differences in the priority of parameters affecting oil recovery in
both cases. In both cases, the quadratic effect of the treatment period had the greatest effect
on recovery. However, the quadratic effect of injection temperature had the second largest
effect on recovery in the real case. The maximum oil production predicted through this
optimization is shown in Figure 5. The maximum oil recovery for the ideal case was 48.3%,
which was a 33% increase over the no-optimized model. The recovery of the optimized
real case was 41.8%, which was a 47% increase over the no-optimized model. These results
showed that it was important to consider environmental effects for the accurate prediction
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and optimization of productivity. The actual proxy models used for optimization are the
same as Equations (A1) and (A2).
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Figure 4. Sensitivity analysis for microbial enhanced oil recovery (MEOR): (a) ideal case and (b) real case.
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Figure 5. Optimization results for oil recovery: (a) ideal case and (b) real case.

3.4. Field Application

To evaluate the effectiveness of MEOR through the developed model, the process
was applied to the highly-heterogeneous actual field model based on logging data from
King Island [53]. The reservoir conditions are shown in Table 3. Since the reservoir depth
was approximately 5000 ft, the reservoir pressure was assumed to be 2500 psi, which was
calculated using a typical pressure gradient of 0.5 psi/ft. The reservoir pressure was also
assumed to be 100 ◦F. Waterflooding and MEOR treatment were applied in the same way
as the previous models, and the injection temperature and salinity were 80 ◦F and 1% NaCl,
respectively. Figure 6 represents the influence of the MEOR process on the oil recovery
and water-oil ratio (WOR). The recovery factor of MEOR was 36.4%, which was improved
by 2.6% compared with waterflooding. WOR was also reduced by the MEOR, which was
decreased by 11%. The distribution of dextran produced in the reservoir and the resulting
permeability reduction in the highly permeable zone are shown in Figure 7. Most of the
injected fluid flowed through the highly permeable layers, and it was found that most
of the dextran was generated near the injection well. At this time, even if dextran was
formed in the high permeability layers as shown in Figure 7a, the effect of reducing the
permeability was not very large, as shown in Figure 7b.
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Table 3. Initial conditions of the King Island reservoir.
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Particularly in layered systems, the results of 2D and 3D models will not show a
significant difference. However, some differences may occur due to the curvilinear flowline
in the 3D model. To confirm this, the extension of the 2D model to the 3D heterogeneous
model was shown in Figure 8a. Though the average permeability of each layer was the
same as in the previous 2D model, the permeability distributions in the horizontal direction
were geostatistically generated to have a Dykstra–Parsons coefficient of 0.4 (Figure 8b).
This coefficient can be calculated as follows [68]:

VDP =
k50 − k84.1

k50
(25)

where VDP is the Dykstra–Parsons coefficient, k50 is the mean permeability at 50% proba-
bility, and k84.1 is the permeability at 84.1% probability. This coefficient is the most widely
used to describe permeability variability in the petroleum industry. When it is zero, it
means a homogeneous reservoir, and the closer to 1, the higher the heterogeneity.
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The injection conditions were also the same as the previous model, except that the
injection rate increased by 9.8 times to 490 bbl/day in consideration of the increase in
the reservoir volume. The results are shown in Figure 9. The oil recovery increased 3.2%
in MEOR compared to waterflooding (Figure 9a). This result explained that when the
reservoir was heterogeneous even in the horizontal direction, the effect of MEOR also
increased compared to waterflooding. In addition, it was confirmed that a lot of dextran
was generated in the vicinity of the injector in high permeable zones (Figure 9b). There
was a slight difference between 2D and 3D results. Since the overall trend of the results
was the same, subsequent optimization analysis was conducted on a 2D layered model
that was advantageous in terms of computation time.
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The optimization process was also applied to maximize oil recovery in this field. The
range of design parameters for optimal injection and results are listed in Table 4 (the proxy
model used is shown in Equation (A3)). Optimization increased the oil recovery to 37.8%,
which was a 7% increase over waterflooding (Figure 10). Figure 11a shows the permeability
reduction due to the use of MEOR. The permeability reduction in the high permeability
zone was up to 18% in the no-optimization model and up to 41% in the optimized model.
The oil saturation distribution of each layer is depicted in Figure 11b. Comparing the
waterflooding and optimized models, oil saturation was reduced by up to 16% in some
high permeability layers and up to 10% in some low permeability layers. Due to very large
permeability contrast, the permeability of the high permeable zones was still larger than
that of the low permeable zones even after plugging. This explains why the oil in the low
permeable region was not swept sufficiently.

Table 4. Range of design parameters and optimization results for actual field.

Parameter Range Optimum Value

Sucrose concentration (mole fraction) 0.001–0.01 0.00235

Treatment period (weeks) 4–12 12

Injection rate (bbl/day) 10–100 100

Injection temperature (◦F) 50–100 82

Injection salinity (%) 0–3 0Energies 2021, 14, x FOR PEER REVIEW 15 of 21 
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4. Conclusions

In this study, a new MEOR model incorporating environmental influences was devel-
oped to describe microbial metabolism in actual field conditions. An MEOR optimization
method was discussed based on this model. The existing microbial growth models for
temperature, pressure, and salinity were integrated using the Arrhenius method. To verify
the proposed method, the batch model and sandpack model were employed, and the
environmental impacts on microbial growth were successfully accounted for using the
proposed method. The importance of these environmental models was that they could
accurately analyze MEOR productivity. Based on our analysis of ideal and real cases
for the hypothetical reservoir, the productivity of MEOR was overestimated when the
environmental impact was not considered. Additionally, a sensitivity analysis showed that
the temperature effect had a great influence on the oil recovery in a real case. In particular,
it was found that the injection temperature should consider both the reservoir temperature
and the optimum temperature for microbial growth. Optimization showed that the optimal
design of nutrient injection could further increase oil recovery. The King Island model,
which was an actual reservoir, also showed that it was possible to predict the improved oil
recovery accurately using the MEOR method that reflected environmental factors. This
study showed that the MEOR analysis could be performed more accurately through the
proposed method, and optimization for improved recovery efficiency was also essential.
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Abbreviations

A constant a0 intercept
aij coefficients of interaction terms Aj constant of the j-th step
aj coefficients of linear terms ajj coefficients of quadratic terms
B constant ci concentration of component i
cNaCl NaCl concentration cNaClmax upper limit of NaCl concentration for

microbial growth
cNaClopt optimum NaCl concentration for microbial growth cs concentration of the solid phase
csucrose sucrose concentration D decimal reduction time
Dj decimal time of the j-th step Dji component dispersibility (j = w, o, g)
E history matching error Ea activation energy
Ea,j activation energy of the j-th step Fdiv division factor
FFreq frequency factor FFreq,p frequency factor for each pressure step

K transmissibility
→
→
K dispersion tensor

k changed permeability k50 mean permeability at 50% probability
k81.4 permeability at 84.1% probability kmul multiplier factor
ko initial permeability N number of surviving microbes
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n constant NC number of components (or nc)
nf number of neighboring regions or grid block faces No initial number of microbes
NP number of phases Merr measurement error
mi mass fraction of component i pj pressure of the j-th step
qik phase rates in layer k (j = w, o, g) R gas constant
r kinetic reaction rate rdecay reaction rate for bacterial decay
rdecay, p reaction rate as affected by pressure rNaCl reaction rate as a function of NaCl
rNaCl,backward backward reaction rate by NaCl ropt optimum reaction rate
rtemp reaction rate as a function of temperature S saturation
s normalization scale T temperature
t time telap elapsed time
tp pressure-hold time Tj temperature of the j-th step
Tmax upper limit for growth temperature Tmin lower limit for growth temperature
Topt optimum temperature for microbial growth

→
u superficial velocity

VDP Dykstra–Parsons coefficient Vf volume of fluid phase
wi mole fraction of component i in aqueous phase xi mole fraction of component i in oil phase
xixj interaction effects of parameters xj linear effect of parameters
xj

2 quadratic effects of the parameters y objective function
yi mole fraction of component i in gas phase ∆Υm measured maximum change
Yt

m measured result Yt
s simulated result

zp negative reciprocal slope of log D vs. p
Subscript
g gas phase k layer k
o oil phase s solid phase
w water phase
Greek
α rate constant ρ density
Φ potential φ porosity
φo initial porosity

Appendix A

Table A1. Batch model for bacterial growth and dextran generation [54].
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Table A3. Description of the initial conditions of the target reservoir [54].
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