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Abstract: The formation of complex fracture networks through the fracturing technology is a crucial
operation used to improve the production capacity of tight gas/oil. In this study, physical simulation
experiments of hydraulic fracturing were conducted with a true triaxial test system on cubic shale
oil samples from the Yanchang Formation, China. The fractures were scanned by CT both before
and after the experiments and then reconstructed in 3D. The complexity of fracture networks was
investigated quantitatively by the fractal theory with topology. Finally, the effect of the horizontal
stress ratio, fluid viscosity, and natural fractures on the complexity of the fracture networks was
discussed. The results indicate that the method based on fractal theory and topology can effectively
characterize the complexity of the fracture network. The change rates of the fractal dimension (K)
are 0.45–3.64%, and the fractal dimensions (DNH) of the 3D fracture network after fracturing are
1.9522–2.1837, the number of connections per branch after fracturing (CB) are 1.57–2.0. The change
rate of the fractal dimension and the horizontal stress ratio are negatively correlated. However,
the change rate of the fractal dimension first increases and then decreases under increasing fluid
viscosities, and a transition occurs at a fluid viscosity of 5.0 mPa·s. Whether under different horizontal
stress ratios or fluid viscosities, the complexity of the fracture networks after fracturing can be divided
into four levels according to DNH and CB. Complex fracture networks are more easily formed under
a lower horizontal stress ratio and a relatively low fluid viscosity. A fracturing fluid viscosity that is
too low or too high limits the formation of a fracture network.

Keywords: shale oil; hydraulic fracturing; fractal theory; topology; 3D fracture networks

1. Introduction

Shale oil is an unconventional petroleum resource and has great potential for explo-
ration and development [1,2]. The global shale oil geological resources add up to 936.835
billion tons, with 61.847 billion tons of technically recoverable resources. In addition, the
shale oil reserve in China is abundant, with 4.393 billion tons of technically recoverable
resources, ranking third among all the countries worldwide [3]. Due to the ultralow perme-
ability of shale oil reservoirs, hydraulic fracturing is conducted to promote the break the
rock and form complex fracture networks, thereby increasing the fracture conductivity and
the production of unconventional gas/oil [4–7].

The conductivity of fracture networks after fracturing can be characterized by the
complexity of the fractures [8], and they have a positive correlation. Therefore, the quan-
titative characterization of the complexity of fracture networks after fracturing can be
used to obtain an index of reservoir reconstruction efficiency. Tracers [9,10], split rock
samples [11,12], and fluorescent methods [13] are used to characterize fracture networks in
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the laboratory. However, these methods can damage the rocks, causing secondary cracks to
form when these methods are used to characterize a fracture network, and it is difficult to
characterize a 3D fracture network with these methods. Acoustic emission [14,15] and CT
techniques are nondestructive ways of characterizing fracture networks. Due to the high
clay content and abundant natural fractures in shale samples, acoustic emission energy is
relatively weak during fracture propagation [16]. Moreover, the acoustic emission results
are composed of events, and it is difficult to combine these events to accurately describe a
fracture surface [17]. Generally, acoustic emission results can be verified by other methods,
such as CT. The main fracture directions predicted via CT scanning have been consistent
with the results of acoustic emission monitoring. Thus, the feasibility of acoustic emission
has been demonstrated by CT [18,19].

The CT scanning method has been widely used in rock damage experiments [20–22].
Some researchers have obtained a relatively high-accuracy spatial geometry of the fractures
and porosity in samples via the CT scanning technology [23–25]. In research on the initia-
tion, propagation and closure of fractures [26–29], the morphology and internal structure
of fractures have been observed by microscopy and CT scanning. These abovementioned
scholars reconstructed only 2D fractures and did not carry out 3D fracture reconstruction
and visualization. Two-dimensional fractures reflect only the fracture geometry along
a certain plane and cannot truly represent the morphology and distribution of fractures
in space. Some scholars [30,31] reconstructed and visualized 3D fractures in different
rock types. Jiang et al. [32] and Liu et al. [33] investigated the effects of in situ stress and
fracturing fluid on the propagation and distribution characteristics of hydraulic fractures
based on the 3D reconstruction technology. Even though the 3D reconstruction of fracture
networks was carried out in these studies, reconstruction has been performed mainly qual-
itatively. The quantitative characterization of fracture complexity can accurately describe
reservoir reconstruction efficiency [34]. Therefore, we need to introduce a quantitative
characterization method to investigate the 3D fracture network complexity.

In previous studies, there are many ways to characterize the complexity of frac-
tures, such as fracture density [35], topology [36], anisotropic parameters based on wave
velocity [37], and fractal dimensions [38]. Among them, the fractal theory can quantita-
tively describe the distribution characteristics of fractures under the same fracture density.
Williams et al. [39,40] described the fractal characteristics of porous media and the fractal
phenomenon in the process of porous media transmission. Sahimi et al. [41,42] believed
that the fractal theory is a very effective method for calculating complex fracture networks.
Chilingarian [43] used a statistically significant self-similar fractal method to calculate the
fractal dimension of natural fracture distribution. Some domestic scholars have also carried
out many meaningful studies based on fractal reservoirs. In China, Xie [44] systematically
applied the fractal theory to the rock field. Many scholars [45–48] have begun to study the
fractal characteristics of rock pore structures obtained from mercury penetration, CT, and
low-pressure N2 adsorption. Simultaneously, the fractal theory has been used to charac-
terize fracture networks. Based on SEM results, Li et al. [49] evaluated the relationship
between fractal dimension, rock composition, and stress state. Based on CT scanning, some
scholars [50–52] characterized the fracture networks of coal rocks by the fractal theory and
discussed the effect of loading on its evolution. Zhao et al. [53] found that the trend of the
strength parameter decreased with the increase in the fractal dimension of reconstructed
fractures. Liu et al. [54] characterized the growth and distribution patterns of fractures in
media by combining the fractal theory and CT images.

However, the fractal dimension cannot describe the connectivity of fracture networks.
Topology is an area of mathematics that deals with the abstraction and generalization
of spatial relationships such as connectivity and continuity [55–57]. A description of the
fracture network connection can be conducted by means of topology to avoid the defects
of fractal theory [36]. Since topology cannot characterize the distribution and quantity
number of fractures, it is also inaccurate to describe the complexity of fracture networks
using only topology. Therefore, it is necessary to consider both fractal dimension and
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topology to characterize the complexity of fracture networks. In this study, the 3D fractal
characterization of a complex fracture network after the hydraulic fracturing of an oil shale
was investigated based on topology.

In this study, we quantitatively characterized the complexity of fracture networks
before and after hydraulic fracturing by the fractal theory and topology. To investigate the
effect of the horizontal stress ratio, fluid viscosity, and natural fractures on the complexity
of fracture networks in oil shale, hydraulic fracturing physical simulation experiments
and 3D fracture reconstruction were carried out. We focused on discussing the fractal
dimension change rate (K) and the number of connections per fracture branch (CB) before
and after fracturing under different horizontal stress ratios and fluid viscosities.

2. Materials and Methods
2.1. Sample Preparation

Shale oil samples were taken from the Triassic Yanchang formation in Tongchuan city,
Shaanxi Province, China. Chang 7 covers an area of approximately 100 × 103 km2, with
a burial depth range from 600 to 2900 m and thickness range from 70 to 130 m [58]. The
shale outcrop is shown in Figure 1a. The XRD (X-ray diffraction) test results of shale rock
samples are shown in Table 1, which illustrate the mineral composition of oil shale. The
collected Chang 7 shale has a tensile strength of 4.76 MPa, a Young’s modulus of 3.61 GPa,
and a Poisson ratio of 0.3336. The collected shale was processed into standard 100 × 100 ×
100 mm cubic samples by cutting, core drilling, and grinding to ensure that the opposite
faces were parallel. A simulated wellbore with a depth of 50 mm and a diameter of 12 mm
was drilled in the center of each sample. A high-strength steel pipe with a length of 50 mm,
an outer diameter of 8 mm, and an inner diameter of 4 mm was used to simulate the sleeve.
Then, the wellbore was sealed by a high-strength adhesive glue, as shown in Figure 1b.
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Table 1. Shale mineral composition measured by XRD.

Test
Number

Mineral Content (%)

Quartz Potash
Feldspar

Plagio-
Clase Dolomite Pyrite Clay

Minerals
Parank-

Erite Siderite

A 18.61 31.42 6.45 1.77 0.64 21.68 13.49 6.94
B 20.10 31.12 5.53 0 0.63 19.75 16.53 6.34
C 20.91 32.93 4.49 0 0.69 20.70 13.29 6.99

2.2. Experimental Scheme

The shale hydraulic fracturing experiments were mainly performed to consider the
influence of the horizontal stress ratio and fluid viscosity on the complexity and morphology
of the fracture networks after shale fracturing. The wellbore direction was designed to be
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perpendicular to the bedding planes. According to the in situ stress data in the Triassic
Yanchang Formation, Ordos Basin, the maximum vertical principal stress σ1 is approximately
40 MPa, and the maximum horizontal principal stress σ2 and minimum principal stress σ3
are 25.8–31.5 MPa and 22.5–25.8 MPa, respectively. The specific experimental parameters
are shown in Table 2. In addition, tests H1 to H4 were conducted to investigate the effect of
different horizontal stress conditions on the resulting fracture networks under a fluid viscosity
of 17.1 mPa·s. Tests F1 to F4, and H2 were conducted to investigate the effect of different fluid
viscosity conditions on the resulting fracture networks under a horizontal stress ratio of 1.353.
The hydraulic fracturing liquid is a solution of guar gum and clear water.

Table 2. Experimental parameters.

Sample
Number

Triaxial Stress
(Mpa)

(σ1/σ2/σ3)

Horizontal
Stress Ratio

(σ2/σ3)

Fluid Viscosity
(Mpa·S)

Pumping Rate
(Ml/S)

H1 40/24.3/24.3 1.000 17.1 0.06
H2 40/33/24.3 1.353 17.1 0.06
H3 40/37.2/24.3 1.529 17.1 0.06
H4 40/40/24.3 1.647 17.1 0.06
F1 40/33/24.3 1.353 1.3 0.06
F2 40/33/24.3 1.353 3.2 0.06
F3 40/33/24.3 1.353 5.0 0.06
F4 40/33/24.3 1.353 31.6 0.06

2.3. Experimental Apparatus and Procedure

The large-scale true triaxial physical model test system was used to carry out hydraulic
fracturing simulation experiments. The industrial CT, in the Key Laboratory of Deep
Underground Science and Engineering (Sichuan University), Ministry of Education, was
used to characterize the fracture networks before and after fracturing. A scanning voltage
of 250 kV and a scanning current of 200 µA were selected to ensure that the resolution was
less than 80 µm. For each sample, the experimental procedures were as follows:

1. All the samples were scanned before fracturing so that the further development of
the natural fractures could be discussed.

2. After sealing the wellbore, a sample was placed in the true triaxial hydraulic fracturing
experimental apparatus. To avoid damage to the samples as the confining pressure
was applied, the stresses in the three directions are first loaded to σ3, two are then
further loaded to σ2, and one is finally further loaded to σ1.

3. Before fracturing, a pressure of 0.5 MPa was applied to the wellbore to check whether
the sealed sample would leak. A hydraulic pump was used to load the sample to
failure with a flow rate of 0.06 mL/s.

4. The shale samples were also scanned after fracturing, and the 3D fracture networks
were reconstructed to study the complexity of the fracture network.

2.4. Reconstruction of 3D Fractures

The 3D morphology of each fracture network was reconstructed by means of the
software Mimics (http://biomedical.materialise.com/mimics (accessed on 17 February
2021), Materialise company, Belgium) based on a set of 2D images. To accurately extract
the fractures, it was necessary to identify the threshold value of the shale components. The
fracture, shale matrix, and mineral composition can be represented by different gray values
in the CT images [32].

A section line was used to determine the threshold value of the fractures, shale
matrix, and high-density minerals. Natural fractures, hydraulic fractures, and high-density
minerals were observed along the section line, as shown in Figure 2a. The corresponding
gray value curve clearly shows two peaks and two troughs in Figure 2b. High-density
minerals have large gray values, while the gray values of fractures are relatively small.

http://biomedical.materialise.com/mimics
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Moreover, the amplitude of the gray values of the natural fractures were significantly larger
than those of the hydraulic fractures, which also indicates that natural fractures are easier
to observe. The larger the fracture is, the smaller the corresponding gray values. Based on
this principle, the fractures observed in the CT slices scanned before and after fracturing
can be segmented, and then 3D fracture networks can be reconstructed according to the
regional growth, morphological expansion, and corrosion technology.
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Figure 2. The section line and gray value curve of sample H3. (a) The section line of sample H5
(794th layer slice). (b) The gray value curve of the 794th layer slice.

Figure 3 depicts the 3D reconstructed fractures of sample H3 and shows a picture of
the sample taken after the hydraulic fracturing experiment. In the reconstructed model, the
natural fractures are represented by red, the hydraulic fractures are represented by blue,
and the wellbore is represented by white. The 3D reconstructed fractures closely match
the fractures on the surface of the samples, and the fractures that cannot be observed on
the surface of the samples are reflected in the reconstructed model. The reconstruction
results can be used to visually observe the morphology of natural fractures and hydraulic
fractures inside the shale sample.
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3. Experimental Results and Discussion
3.1. Fractal Method and Network Topology
3.1.1. Fractal Calculation Method

For digital images of 3D fractures, the fractal dimension can be calculated by the cubic
covering method [47]. The digital image of a 3D fracture (Figure 4a) consists of a series of
pixels in sequence. Each pixel has a corresponding color, and a 3D digital image of size
m × n × h pixels can be regarded as a matrix of size m × n × h. The space is divided into
cubes of different sizes (Figure 4b).
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Through image preprocessing and binarization, a 3D fracture image is obtained. The
voxel value is 0 or 1, respectively, and the value of 1 represents the fracture. The entire
3D fracture space is traversed to obtain the total number of cubes Nk under different cube
lengths δk. For each value of δk, the corresponding Nk can be calculated, and a series of
data pairs (δk, Nk) can be obtained. Equation (1) can be obtained by linearly fitting the data
points (lnNk, lnδk ) in the scale-independent region by the method of least squares, and the
slope is the fractal dimension D of the 3D fracture:

ln Nk = D · (− ln δk) + b (1)
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3.1.2. Network Topology

In the two-dimensional fracture network, the fracture is composed of a series of
lines, nodes, and branches. Each fracture in the plane has its own fracture trace and two
terminal nodes. In addition, if the fracture crosses other fractures, there will be more
nodes. According to the research of Manzocchi [59], three types of nodes (I-nodes; X-nodes;
Y-nodes) can be recognized, as shown in Figure 5a. In the 3D space, any fracture system
will consist of a number of finite planes, and also contain three types of nodes, as shown in
Figure 5b.
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The number of different node types can be used to calculate the average number
of connection points of the branch, a topological parameter that can characterize the
connectivity of the fracture network. Each branch will have two nodes, with an I-node
contributing to one branch, a Y-node to three branches and an X-node to four branches [36].
Hence, we can derive the number of branches (NB) where:

NB =
1
2
(NI + 3NY + 4NX) (2)

X-nodes and Y-nodes are the connection points of branches. Each Y-node belongs to
three branches, and each X-node belongs to four branches, since an average number of
connections per branch (CB) can be derived, where:

CB = (3NY + 4NX)/NB (3)

CB = (6NY + 8NX)/(NI + 3NY + 4NX) (4)

According to Equation (4), when the fracture network is dominated by I-nodes, the
value of CB tends to 0. When the fracture network is dominated by Y-nodes and X-nodes,
the value of CB tends to 2, and the corresponding fracture network has greater connectivity.

3.1.3. Fractal Character and Topology of Typical Fractures

In the characterized reconstruction effect of fracture networks after hydraulic fractur-
ing, the connectivity of fractures must be considered. To illustrate that the fractal dimension
cannot accurately characterize the complexity of fracture networks, the connectivity calcu-
lation of multiple fracture plane combination models (Figure 6) is carried out. Figure 7 is
the relationship between the fractal dimensions (D) and average number of connections
per branch (CB) of different fracture plane combination models.
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According to Figure 7, models A and B have almost the same fractal dimension, and
the distribution of fracture networks is also pretty similar. However, the CB value of
model B is greater than that of model A, which means that model B has better connectivity.
Therefore, when the fracture networks have the same fractal dimensions, it is necessary to
utilize the connectivity to comprehensively evaluate the complexity of fracture networks.

3.1.4. Fractal Character and Topology of Fracture Network after Fracturing

Based on the fractal method, the fractal dimension of the fractures in the samples before
and after the hydraulic fracturing experiments can be calculated for different horizontal
stress ratios and different fluid viscosities. The calculation results of the fractal dimensions
of all the 3D reconstructed fractures before and after the hydraulic fracturing experiments
are shown in Figure 8. The change rate K of the fractal dimension of the fractures in a
sample before and after the fracturing experiment is defined by the following Equation (5).

K = (DNH − DN)/DN × 100% (5)
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where DN is the fractal dimension before the fracturing experiment and DNH is the fractal
dimension after the fracturing experiment.
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Figure 8. Fractal calculation results for all the samples. (a) Before and after the fracturing experiment.
(b) Fractal calculation of sample H2 before and after the fracturing experiment. (c) Fractal calculation
of sample H3 before and after the fracturing experiment. (d) Fractal calculation of sample H4 before
and after the fracturing experiment. (e) Fractal calculation of sample F1 before and after the fracturing
experiment. (f) Fractal calculation of sample F2 before and after the fracturing experiment. (g) Fractal
calculation of sample F3 before and after the fracturing experiment. (h) Fractal calculation of sample
F4 before and after the fracturing experiment.
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Table 3 shows the fractal dimensions of 3D reconstructed fractures before and after
fracturing, and the number of connections per branch of each fracture network after
fracturing. The fractal dimensions of the final 3D fracture network after the fracturing
experiments (DNH) are 1.9522–2.1837. However, the fractal dimensions of just the natural
fractures (DN) are 1.9434–2.1473, which are smaller than the fractal dimensions of the
corresponding final fracture networks after the fracturing experiments. The change rate
of the fractal dimension (K) is 0.45%–3.64%, indicating that the complexity of the fracture
network increased due to fracturing. The number of connections per branch (CB) are
1.57–2.0, which indicates that the fracture networks have a different connectivity after
fracturing. When both K and CB are maximum, the reconstruction efficiency of the fracture
network after fracturing is the best. However, it is generally impossible that both of them
achieve the maximum value at the same time.

Table 3. The fractal dimensions and topological parameters of 3D fractures.

Sample
Number

DN DNH K
Number of Nodes

CB
I Y X

H1 2.0661 2.1194 2.58% 9 9 5 1.68
H2 2.0872 2.1289 2.00% 10 7 4 1.57
H3 1.9990 2.0326 1.68% 0 1 4 2.00
H4 1.9434 1.9522 0.45% 2 0 6 1.85
F1 2.1473 2.1795 1.50% 9 9 6 1.70
F2 2.1437 2.1837 1.87% 6 7 4 1.72
F3 2.0524 2.1271 3.64% 4 6 5 1.81
F4 2.0219 2.0810 2.92% 4 3 2 1.62

3.2. Effect of the Horizontal Stress Ratio on the Complexity of Fracture Networks

Samples H1, H2, H3, and H4 were tested at horizontal stress ratios of 1.000, 1.353,
1.529, and 1.647, and the fractal dimensions of the fracture networks after fracturing were
2.1194, 2.1289, 2.0326, and 1.9522. In addition, the number of connections per branch after
fracturing were 1.68, 1.57, 2.00, and 1.85, respectively. Figure 9 shows the fractal dimensions
of the fracture networks and the change rate of the fractal dimensions at different horizontal
stress ratios before and after fracturing. The change rate of the fractal dimension ranges
from 0.45% to 2.58% under different horizontal stress ratios. There is always a negative
correlation between the fractal dimension change rate and the horizontal stress ratio. For a
horizontal stress ratio less than 1.529, the change rate of the fractal dimension decreases
slowly with the increase in the horizontal stress ratio. Once the horizontal stress ratio
exceeds 1.529, the rate of change in the fractal dimension decreases sharply. This result
implies that when the horizontal stress ratio increases, the growth and complexity of the
fracture network gradually decreases.

Figure 10 shows the distribution of fractal dimension (DNH) and the number of con-
nections per branch (CB) of fractures under different horizontal stress ratios after fracturing.
DNH is 1.9522–2.1289 and CB is 1.57–2.00, and fracture networks after fracturing have
different complexities which can be divided into four levels. The samples with a fracture
network complexity in the first to fourth levels are respectively H1, H2, H3, and H4, and
the fracture network at the first level is the most complex. When a fracture network has
both relatively large DNH and CB, that is, its coordinates are located in the upper right
corner of the coordinate axis, the fracture network is more complicated. Therefore, the
complexity of the fracture network of samples H1 and H2 is greater than that of sample H3.
In addition, DNH and CB of the fracture network of sample H3 are larger compared with
that of sample H4, which means that the complexity of the fracture network of samples H3
is greater. The results show that it is more conducive to the formation of complex fracture
networks at a low horizontal stress ratio.
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When the horizontal stress ratio is 1.000, the change rate of the fractal dimension
is the largest, which means that the fractures formed during the fracturing experiment
are the most developed. For a lower horizontal stress ratio, deflection easily occurs, so
the fracturing fluid tends to permeate and propagate along the natural fractures to form
complex hydraulic fractures, as in shown Figure 8a. The fracture network complexity
of sample H1 after fracturing is at the first level, and has a large DNH and a small CB
(Figure 10). Under this condition, the number of fractures are the most, the connectivity of
fractures is relatively good, and the fracture network is the most complicated.

For the horizontal stress ratio of 1.353, compared to the results for a horizontal stress
ratio of 1.000, the change rate of the fractal dimension is smaller, and the complexity of the
fractures formed during the fracturing experiment is reduced. Natural microfractures also
exist in the location where the hydraulic fracture develops in sample H2, which promotes
the formation of a single fracture. The formation of a single hydraulic fracture in Figure 8b
is beneficial in terms of the communication with the natural fractures to form a complex
fracture morphology. However, apart from the formation of the main hydraulic fracture,
there are no additional fractures that extend along the natural fractures and bedding planes.
The fracture network complexity of sample H2 after fracturing is at the second level, and
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has the largest DNH and smallest CB. At this time, there are many fractures, the connectivity
of fractures is the worst, and the fracture network is relatively complicated.

When the horizontal stress ratio increases to 1.529, the change rate of the fractal
dimension also decreases. The fracture network complexity of sample H3 after fracturing is
at the third level, and has the relatively small DNH and largest CB. There are relatively more
fractures, the best fracture connectivity, and the simple fracture network at this horizontal
stress ratio. When the horizontal stress ratio increased to 1.647, hydraulic fractures were
less likely to form and extend in sample H4 during the fracturing experiment. The fracture
network complexity of sample H4 after fracturing is at the fourth level, and has the smallest
DNH and a large CB. In addition, there are relatively few fractures, excellent fracture
connectivity, and the simplest fracture network.

3.3. Effect of Fluid Viscosity on the Fractal Dimension and Complexity of Fracture Networks

Samples F1, F2, F3, H2, and F4 were tested at fluid viscosities of 1.3, 3.2, 5.0, 17.1, and
31.6 mPa·s, and the fractal dimensions of fracture networks after fracturing were 2.1795,
2.1837, 2.1271, 2.1289, and 2.0810. In addition, the number of connections per branch
after fracturing were 1.70, 1.72, 1.81, 1.57, and 1.62, respectively. Figure 11 shows the
relationship between the fractal dimension, the change rate of the fractal dimension, and
the fluid viscosity. The change rate of the fractal dimension varies from 1.50% to 3.64%
under the different fluid viscosities tested. There is a transition in the change rate of the
fractal dimension of the fracture networks before and after fracturing. The fluid viscosity
of 5.0 mPa·s separates the change rate of the fractal dimension into two parts. The change
rate of the fractal dimension at the fluid viscosity of 5.0 mPa·s is the maximum value. For a
fluid viscosity less than 5.0 mPa·s, the change rate of the fractal dimension increases with
the fluid viscosity. However, when the fluid viscosity is over 5.0 mPa·s and less than 17.1
mPa·s, the rate of change in the fractal dimension slowly decreases. In addition, due to the
differences in the natural fracture distribution, the change rate of the fractal dimension at
the fluid viscosity of 31.6 mPa·s is greater than that at the fluid viscosity of 17.1 mPa·s. The
results show that a fracturing fluid with a low viscosity is favorable for the generation of
an effective fracture network, but a fracturing fluid viscosity that is too low or too high will
limit the formation of a fracture network.
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The distribution of fractal dimension (DNH) under different fluid viscosities is 2.0810~2.1837,
and the number of connections per branch (CB) is from 1.57 to 1.81, as shown in Figure 12.
Similarly, the complexities of fracture networks after fracturing can be divided into four
levels. The samples with the first level of fracture network complexity are F1 and F2, the
second to fourth levels are respectively F3, H2, and F4. Compared with sample F1, sample
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F2 has both larger DNH and CB, which indicates that the fracture network of sample F2 is
more developed after fracturing. It also shows that that too low fluid viscosity (1.3 mPa·s)
is not conducive to complex fracture network formation. The fracture networks of samples
F3 and H2 have roughly the same fractal dimensions, but the CB of the fracture network of
F3 is significantly larger than that of H2. Therefore, compared with sample H2, the fracture
morphology of sample F2 is more complicated. By the similar method, it is easy to get that
the fracture network of F3 is more than that of F4. The results show that the high viscosity
fluid is not conducive to the formation of complex fracture networks.
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The change rate of the fractal dimension at the viscosity of 1.3 mPa·s is smaller than
that at a viscosity of 3.2 mPa·s, which implies that too low of a viscosity prevents the
formation of a larger fracture network. The influence of the flow rate and viscosity of the
fracturing fluid on the morphology of hydraulic fractures can be expressed as the product
of the parameter q·u, whose unit is N·m [24]. Therefore, too low of a fracturing fluid
viscosity, considering the same flow rate, leads to a pressure rate which is insufficient to
induce the propagation of hydraulic fractures. Similarly, the change rate of the fractal
dimension at a viscosity of 3.2 mPa·s is smaller than that at a viscosity of 5.0 mPa·s. After
fracturing, the fracture network complexity of samples F1 and F2 is at the first level, with
extremely large DNH and CB. These two samples have the most fractures, excellent fractures
connectivity, and the most developed fracture network.

When the fluid viscosity increases from 5.0 to 17.1 mPa·s, the fractal dimension and the
change rate of the fractal dimension both decrease gradually. The high-viscosity fracturing
fluid reduces the propagation of fractures and induces the formation of a single hydraulic
fracture (Figure 8g). The low-viscosity fracturing fluid can increase the fluid loss to these
fractures and expand the fluid flow channel. Simultaneously, the low-viscosity fracturing
fluid more easily enters the natural fractures and bedding planes, promoting the formation
of more complex fracture networks. The fracture network complexity of sample F3 after
fracturing is at the second level, with extremely large DNH and CB. There are many fractures
in sample F3, the best fracture connectivity and the relatively complicated fracture network.

When the fluid viscosity increases to 17.1 mPa·s, the change rate of the fractal dimen-
sion decreases to the lowest. The fracture network complexity of sample H2 is at the third
level, with larger DNH and smallest CB. In addition, the sample has many fractures, which
are the worst fracture connectivity and relatively simple fracture network.

The natural fracture distribution of sample F4 is concentrated at the bottom of the
sample, and the hydraulic fractures extend from the top to the bottom, which leads to a
large variation in fractal dimension, as shown in Figure 8h. Therefore, the change rate of
the fractal dimension with a viscosity of 31.6 mPa·s is greater than that with a viscosity
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of 17.1 mPa·s. The fracture network complexity of sample F4 after fracturing is at the
fourth level, and has the smallest DNH and relatively small CB. At this time, these are the
least fractures with a relatively good fracture connectivity, and the fracture network is the
simplest.

4. Conclusions

Based on true triaxial hydraulic fracturing experiments and 3D reconstruction/visualization
techniques, this study quantitatively investigates the complexity of fracture networks be-
fore and after hydraulic fracturing in shale. The influences of the horizontal stress ratio,
fluid viscosity, and natural fractures on the fracture morphology and propagation are also
discussed. The following conclusions are drawn:

1. According to the results of fracture plane combination models, the fractal dimension
cannot accurately characterize the complexity of fracture networks. The method based
on the fractal theory and topology can more effectively characterize the complexity of
the fracture network.

2. Different horizontal stress ratios change the fractal dimension of the fracture network
at a rate of 0.45–2.58%, in which a greater horizontal stress ratio tends to correspond
to a lower change rate, and vice versa. Under different horizontal stress ratios, DNH
is 1.9522–2.1289 and CB is 1.57–2.00, and the complexities of fracture networks after
fracturing can be divided into four levels. The result shows that complex fracture
networks are more easily formed under a lower horizontal stress ratio.

3. Under different fluid viscosities, the fractal dimensions of fracture networks have
a change rate of 1.50–3.64%, where a transition emerges at the fluid viscosity of 5.0
mPa·s. After fracturing, DNH is 2.0810–2.1837 and CB is 1.57 to 1.81. Similarly, the
complexities of fracture networks after fracturing can be divided into four levels. A
complex fracture network tends to be stimulated under the conditions of a low fluid
viscosity: The fluid viscosity must not be too low or too high.
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