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Abstract: An integrated energy system interconnects multiple energies and presents a potential
for economics improvement and energy sustainability, which has attracted extensive attention.
However, due to the obvious volatility of energy demands, most existing integrated energy systems
cannot operate in a totally self-sufficient way but interact with the upper grid frequently. With the
increasingly urgent demand for energy saving and emissions reduction, renewable resources have
occupied a larger and larger proportion in energy system, and at last they may be dominant in
the future. Unlike conventional fossil fuel generation, the renewable resources are less controllable
and flexible. To ease the pressure and guarantee the upper grid security, a more independent
integrated energy system is required. Driven by that, this paper firstly reviews the optimal strategies
considering both independence and benefit from perspectives of individual efforts and union efforts.
Firstly, the general optimization process is summarized in terms of energy flows modelling and
optimization methods to coordinate supply—demand side and realize benefit maximization. Based
on that, handling with uncertainty of high-ratio renewable energy is reviewed from uncertainty
modeling methods and multi-stage operation strategy perspectives to make the strategy accurate and
reduce the adverse effects on the upper grid. Then, the hybrid timescale characteristics of different
energy flows are explored to enhance operation flexibility of integrated energy systems. At last, the
coordination among different participants is reviewed to reduce the whole adverse effect as a union.
Remarks are conducted in the end of each part and further concluded in the final part. Overall, this
study summarizes the research directions in operation optimization of integrated energy systems to
cater for a renewable energy dominated scene to inspire the latter research.

Keywords: integrated energy system (IES); operation optimization; renewable energy; multiple
energy flows; multiple participants

1. Introduction

At present, the energy structure worldwide is dominated by primary energy, which
raises a dilemma between the increasing demand and sustainable supply of limited energy
resources [1]. To face that, vigorous renewable energies (RE) have been explored as
alternative resources of fossil fuels [2], for instance, wind and solar generation. Since 2010,
the installed capacity of renewable energy has increased at an average annual rate of 8§%.
In 2015, the United Nations adopted two historically significant agreements including
the Paris Agreement [3] and the 2030 Agenda for Sustainable Development [4] to reduce
global pollutant emissions. In the meantime, a novel energy structure named integrated
energy system (IES) is proposed to integrate and coordinate electricity, gas, heat and other
energies in a comprehensive manner to enhance energy utilization efficiency [5]. In an
IES, multiple energies are interconnected and converted by various coupling components
to satisfy terminal demands. With reasonable operation strategy, the correlation and
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complementarity among different energy flows provide potential to carry out energy
storage and transformation in multiple temporal and spatial scales. To this end, the optimal
operation strategy is especially critical.

Since the IESs are always near to the end users, the multiple energy demands are
obviously volatile, and most existing IESs cannot operate in a totally self-sufficient way;,
but generally need to obtain extra assist from the upper grid. For the conventional upper
power system with large capacity controllable power supply, the demands from lower
IESs are relatively easy to satisfy and will not cause significant pressure. However, the
installed capacity of renewable energy has increased rapidly to face energy crisis and
environment protection. Under this context, some researchers proposed to establish an
RE-dominated energy system and even a 100% RE energy system for the future [6-8].
Unlike conventional fossil fuel generation, renewable resources are less controllable and
flexible. Hence, for an RE-dominated energy system in future, the frequent interactions
with multi-IESs will largely increase the adjustment pressure and may even cause some
security issues during the peak time. In this context, the consideration of the independence
of an IES is particularly significant when making an operation strategy.

To date, some review work has been conducted on the IES operation optimization.
Combined heat and power (CHP)/combined cooling, heating, and power (CCHP) systems
are regarded as typical IESs, which supply cooling, heat, and power simultaneously by
using cogeneration/trigeneration equipment [9,10]. Ref. [11] presented the working scheme
of CCHP and gave an introduction to related facilities. The research process on CCHP
configuration, operation optimization, and sizing technologies was reviewed, and the
development as well as barriers in the practical application of representative countries
were summarized. In Ref. [12], the CCHP modeling methods were summed up in terms
of prime movers, storage systems, loads, and RE. Planning and operation optimization
work was also reviewed in brief. With regard to operation optimization, Ref. [13] gave a
summary of common economic and economic-emission dispatch models for CHP operation,
Ref. [14] focused on the optimization techniques, Ref. [15] concluded all aspects of CCHP
optimization from problem formulation to algorithms selection systematically, and Ref. [16]
discussed the operation characteristics and application flexibility of CHP in IES. However,
CHP/CCHP systems are relatively basic and simple in terms of energy forms, system
composition, and energy interconnection.

With the development of IES, more devices, energies, and flexible resources are
involved to comprehensively utilize energy and improve the system performance in eco-
nomics, energy savings, and environmental protection. As for IES under a more compli-
cated structure, Ref. [17] introduced the concepts and evaluation indicators of IES and
Ref. [18] discussed essential aspects in modelling of grid-based IES and presented three
source modelling frameworks. A few works also reviewed the IES operation optimization
but were not sufficiently comprehensive. Ref. [19] introduced the basic concept and charac-
teristics of IES and moreover reviewed the IES operation methods under deterministic as
well as uncertain environment. However, the review was devoted to general optimization
problem formulation and analogous to that in a conventional power system. Ref. [20]
reviewed the optimal control and operation behavior of IES and gave more details in
modelling and constraints. Likewise, it only focused on the general optimization problem
and did not address the IES operation independence. Overall, though the study on IES
operation optimization is in its fast growth stage, there are only a few reviews in this field,
and more efforts are necessitated to summarize the research progress from different angles
and inspire the future directions.

To our best knowledge, there is no review work that concentrates on the IES particu-
larity and discusses the effort directions to cater for a renewable energy dominated future
scene in system operation optimization. To fill this gap, this paper aims to discuss the
optimal strategy of IES with consideration to both independence and benefit.

The reasons for IES dependence on the upper grid are concluded as follows:
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(1) The uncertainty brought by increasing high ratio RE in IES. It can be deduced that
the RE will account for an increasing proportion in IES over time, especially for an
RE dominated future scene. These intermittent weather-dependent energies bring
about uncertainties in IES operation optimization and inevitably cause deviation
from the original operation plan [21,22]. To maintain security and stability of the
system, the interactions with the upper grid are necessitated and hence the operation
independence is reduced.

(2) The flexibility limitation brought by strong coupling among multiple energy flows.
Due to the physical characteristics of energy generation and conversion devices, the
different energy flows are tightly interconnected and coupled, which means the sys-
tem cannot operate flexibly enough to face various multi-energy demands and have
strong RE accommodation ability under the security and stability constraints [23,24].

(3) The obvious volatility of multi-energy demands. The IESs are always established close
to the end users to satisfy their real-time demands in electricity, heat, and cooling.
Due to the human activities, the load profiles are volatile, and there may exist big
load peak and off-peak difference [25,26]. On some occasions, the system has to ask
for help for the sake of energy supply reliability and operation security.

The analysis for the causes of IES dependence provides insights for the effort directions
to increase independence and satisfy the future requirements. Aiming at each cause, the
corresponding measures are discussed. Firstly, since the high-ratio intermittent RE bring
great accommodation pressure and uncertainties for 1ES, efficient handling methods with
RE uncertainty will promote the accuracy of the optimized operation strategy and increase
the system independence. Secondly, breaking the strong coupling among multiple energy
flows will improve the system operation flexibility to face different requirements and then
reduce the external assistance from the upper grid. IES couples and coordinates multiple
energies, which have distinguishing dynamic process and topologies [27]. Aiming at its
particularity, some efforts can be made. Electricity travels at light speed with little time
delay and energy loss through power networks, while gas and heat transport in slow
speeds through pipelines [28,29]. The time-scale characteristics of these three main energy
products are distinctly different. For example, the time delay of temperature change from
the heat source to users can be minutes to even hours due to the long-distance pipes. That
means the supply and demand of energy flows with large inertia is not balanced in real
time, but with a time delay. If the dynamic characteristics of different energy flows are
considered, the unit will not adjust operation mode to follow the load variation rapidly for
the sake of satisfying the real-time balance, and it provides a buffer for system operation.
These transmission pipelines can store a certain amount of gas/heat and hence have virtual
storage ability. If the potential buffer is fully exploited, it will be beneficial to enlarge
the system operation flexibility and reduce support from the upper grid [30-32]. Thirdly,
reducing the adverse impact of volatile demands is another effort direction. The IES, upper
grid, and end users can be regarded as different participants who affect the final operation
strategy through energy transactions and interest coordination [33]. Hence, except for the
efforts from one single IES, the interest coordination among these parties can affect the
supply and demand relationship and then influence the IES operation strategy. For example,
during the peak load when the energy demand exceeds the generation, if increasing the
consumption payment in this period, the peak load shaving will be achieved in IES by
shifting the utilization time of the energy without varying the overall energy consumption,
and then the support from the upper grid can be reduced in the meantime [34-36]. With
the rational price signals, the load profile can be smoothed, and the benefits of these
participants can be increased. The cooperation of multiple participants provides a potential
win-win way to improve independence, especially for a future scene, where multiple
sub-IESs are conceived to interconnect an “energy internet” [37,38]. In this case, these
neighboring IESs share resources and exchange energies mutually. Since each IES has
its unique load characteristics, the interconnection among multi-IESs will contribute to
energy complementary at the IES level. The interaction among these IESs can reduce the
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independence of a single IES and relieve the upper energy system burden. On the basis of
the above discussion on effort directions, this paper aims to summarize the existing work of
each aspect in IES operation optimization and give our insights to inspire future researches.
To have a better illustration, the efforts directions in IES independence promotion are
displayed in Figure 1.

A future RE dominated scene:
IES independency and benefit promotion
Causes of dependency on the upper grid Efforts directions to improve independency
| | | |
| | e Uncertainty brought by increasing renewable '—>| o Efficient handling with RE uncertainty in |
| resources in IES. | | operation optimization. :
[ [
I I
| | o o e
| . |
B - i e b s Pl Ut1hzmg the hybrid time-scale chara.cterlstlcs I
| . . l of multiple energy flows as a buffer in
couplings among multiple energy flows. | . L |
I | | operation optimization. |
[ [
| : | | e Coordinating interest among multiple :
I'| e Obvious volatility of multi-energy demands. /| participants to change the supply and demand | |
: I : relation in operation optimization. I
L _________ .- ____________________/

Figure 1. The illustration of efforts directions in IES independence promotion.

IES is a promising energy utilization form to realize energy saving and economic

improvement. To cater for an RE dominated energy structure in future, the independence
improvement for IES has great significance. To our best knowledge, there is no related
review work conducted from this new perspective aiming at IES particularity and facing
the future scene. To fill this gap, this paper firstly discusses the effort directions in making
optimal strategy with consideration to both independence and benefit, and then reviews
the latest work of each aspect separately. The contributions of this paper are as follows:

)

)

®)

4)

This paper firstly analyzes the causes for dependence and discusses the effort direc-
tions to improve the IES operation independence from the perspectives of individual
efforts and union cooperation. On this basis, this paper aims to summarize the ex-
isting work of each aspect in IES operation optimization and give our insights. To
our best knowledge, this is the first time the IES operation optimization considering
independence improvement to cater for an RE dominated energy structure in future
has been focused on.

To reduce the adverse impact from the RE on independence, the uncertainty handlings
are reviewed from the perspectives of uncertainty modelling methods and multi-stage
optimization strategy to improve the accuracy of optimization results and reduce
interactions with the upper grid.

To reduce the adverse impact from the strong couplings among multiple energy flows
in IES, this paper reviews the exploration of the potential buffer in heat and gas
pipelines. To our best knowledge, this is the first time the considerations of hybrid
timescale characteristics of multiple energy flows in IES operation optimization have
been comprehensively reviewed.

To reduce the adverse impact from the volatile multi-energy demands, this paper re-
views the coordination among different participants to smooth load profile with price
signals. The concept, mechanisms, and applications of game theory are introduced
under the scenes of single IES and multiple IESs in a future energy network. To our
best knowledge, this is the first time a review on the corporation of different interest
participants in these two scenes has been conducted.
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The rest of this paper is structured as follows: Section 2 reviews the unified IES op-
timal operation process to realize individual benefit maximization. Based on that, more
considerations can be added. Sections 3 and 4 introduce the directions of individual efforts
in independence promotion. Section 3 concludes the handling methods facing RE uncer-
tainties from two perspectives (i.e., uncertainty modelling and multi-stage dispatching)
to reduce the adverse impact of RE on operation optimization results. Section 4 intro-
duces the multiple time-scale characteristics of hybrid energy flows and separately reviews
their depiction approaches in operation optimization to explore the potential buffer and
increase system operational flexibility. Section 5 introduces the directions of union efforts
and reviews the coordination among different participants in resources and interest to
adjust the relation between supply and demand. The remarks and future directions are
respectively discussed at the end of each section, and the study is moreover concluded
with final remarks in Section 6.

2. General Formulation of IES Optimal Operation

The IES operation optimization problem is formulated based on mathematical model-
ing and optimization formulation. Firstly, the models of energy carriers and energy flows
are built to represent device physics characteristics, energy transformation, and coupling
relationship. Then, the objectives are developed as a baseline estimation in accord with
requirements and realized with some optimization techniques. To make the results feasible
and practical, constraints such as operation limits need to be considered. This part aims
to give an intuitive show of the basic process of IES operation optimization considering
individual benefit. Based on that, more considerations can be incorporated to promote
independence. The device modelling methods have already been summarized in Ref. [12],
and the other parts are summarized as follows.

2.1. Hybrid Energy Flows Modelling of IES

An accurate mathematical model is essential to depict and analyze the hybrid power
flows among different devices. In present, there are two mainstream methods in IES energy
flows modelling, i.e., bus based model and energy hub (EH) based model. In the operation
optimization of most basic IES, such as a local IES, the different characteristics of energy
flows are neglected, and the supply—demand relation is regarded as real-time balanced.

2.1.1. Bus Based Model

Bus based model [39-41] is the most commonly utilized hybrid energy flow modelling
method. It can explicitly reflect the entire process of energy flows and energy coupling
relationships. Its basic idea is to classify the bus according to energy transfer mediums (for
instance, electricity bus, heat bus, cooling bus, gas bus) and then list energy flow balance
equation in each bus node. Specifically, the main steps are the following:

Step 1: analyze the energy flow relationship of IES in detail.

Step 2: define variables and list energy flow expressions of each component.

Step 3: write energy flow balance equation in each bus node in accord with the principle
that the sum energy flows should be zero.

Figure 2 shows a typical IES framework based on bus structure. In this system,
electricity demand is satisfied by gas turbine unit and wind turbine jointly, while power
grid is as a supplement. The waste heat from gas turbine is recovered and supply for heat
load as well as absorption chiller driven. The output of absorption chiller is used to satisfy
users’ cool demand. Gas turbine, waste heat boiler, and absorption chiller realize energy
cascade utilization in IES and improve primary energy efficiency. Additionally, gas boiler
and electric cooler are set as auxiliary devices in case the heat or cooling load is greater
than the supply of trigeneration unit. Three kinds of storage devices including electricity
storage, cooler storage, and heat storage are used for peak load shifting and reducing
excess energy.
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Figure 2. Energy flow in a typical IES.

In the above IES, Pwrt, Pi, represent wind turbine output and input power from
the power grid. Ggr, Ggg denote input natural gas of gas turbine and gas boiler, re-
spectively. ¢ and n" represent electrical and thermal efficiency accordingly, while n<B
represents gas boiler efficiency. COPe., COP,}, are the performance coefficient of electric
cooler and absorption chiller. H,, represents the consumed heat power by absorption
chiller. Pgs, Prs, Pcs, respectively, denote power exchange with energy bus of these three
kinds of storage devices, where the subscripts ¢ and d indicate energy absorption mode
and energy release mode, respectively. L, Ly, Lc denote power demand of different load.
As aforementioned, there are three buses including electricity bus, heat bus, and cooling
bus. The energy balance equation in each bus is listed in Equation (1).

electricity : PWT + Pin +n¢Ggr + Pgsc = Le + Pec + PES,d
heat : n"Ggr +nPGgp + Prsc = Lp, + Hyp + Prsg (1)
cooling : COPeCPeC + COPabHab + PCS,C = L.+ PCS,d

2.1.2. Energy Hub Based Model

The concept of energy hub (EH) was put forward by Geidl et al. in 2007, and it was
defined as a unit that provided the features of input, output, conversion, and storage of
multiple energy carriers [42]. An EH consumes at the input ports and provides certain
energy to users at the output ports through internal various energy carriers. The proposal
of EH provides a new means of IES modeling and analysis [43]. The EH modeling method
emphasizes the output and input characteristics from the perspective of efficiency analysis,
while the internal complex structure is regarded as a black box. As shown in Figure 3 is a
universal model of EH, wherein the Lj(i = 1,2...m) and Pj(j = 1,2...n) denote the i-th
output energy power flow path and the j-th input energy power flow path, respectively.
A coupling matrix C is defined to reveal the conversion relation among output and input
ports wherein ¢;; is the relation coefficient. Specifically, the energy flow modelling can be
described as Equation (2).

Ly 11 €2+ Cln Py
L, 1 C» -+ Cop P;

- : RS : : &)

L Cml Cm2 °°° Cmn Pn
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Figure 3. Description of EH based model.

The EH based modelling method is from the angle of entirety to depict external
characteristics of IES, and the core point is to obtain the coupling matrix C. In general, there
are four steps for it:

Step 1: define input and output power variables, namely L vector and P vector.

Step 2: define dispatch factors v at input connection point of energy conversion device.
Step 3: denote the output of energy conversion device with its respective function.

Step 4: list the power balance equation at the output connection point and then arrange it
in standard matrix form.

An example is given in Figure 4, wherein vgr represents dispatch factor of gas turbine
and other variables are as the same as Figure 2. The corresponding energy flow model is
established in Equation (3).

Le | |1 n°ver Pin
[ Ly } B [ nP(1 —var) ] [ Gin } )

———p» Electricity = Heat
Power supply

Power — — — — — — — — )
P, | L
| Uer G |
Natural Gas : I :
G, | Gas i | L
| 1-y,, [Boil | Heat supply
- - J

Figure 4. An IES structure based on EH model.

The high integrity and compactness of EH-based modeling attract much attention,
and the coupling matrix has been expanded to combine more components, including de-
mand response [44], storage devices [45,46], plug-in electrical vehicles [47], and renewable
resources [48].

2.1.3. Remarks on These Two Modelling Methods

The bus based modelling method is conducted from the angle of locality to separately
model each device and energy system. It is a quasi-steady state model and is easy to
describe the system topology. The advantage is that it can explicitly reflect the entire
process of energy flows and energy coupling relationships. However, the modelling process
is based on the detailed analysis of energy flows to build balance equations in each bus. For
a simple system, it is easy to carry out and express clearly. As for a complicated IES with
more devices, energy types, and more intricate coupling relationships, the conventional bus
base modelling method will have low efficiency and may complex equation formulation,
reduce intuitiveness, and aggravate solving difficulty. In addition, some critical information
(for instance, the transmission characteristics and network losses) is simplified or ignored,
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min F = [f1(x),

and the results accuracy is influenced. Hence, it is more applicable for an IES with simple
structure.

As for EH based energy flow modelling method, it is conducted from the angle of
entirety and concentrates more on the relation between input and output instead of the
specified internal interconnections. It has better scalability and extensibility, which facilitate
the calculation process and are effective in system operation optimization. Due to these
advantages, it is especially applicable for the modelling of increasing complicated IESs. The
EH base modelling method has attracted many researchers’ attention and has grown rapidly
in recent years. However, the coupling matrix is not easy to obtain, especially with more
elements such as storage devices and demand response. Additionally, the standardized
modeling method contains dispatch factors and products of decision variables in coupling
matrix, and the operation problem becomes nonlinear with a high computation burden.
Hence, it proposes higher requirement for optimization techniques.

2.2. Operation Optimization of IES

As denoted in Equation (4), the IES optimal operation problem is essentially an
optimization problem with variables, objectives, operation constraints, and optimiza-
tion techniques. f;(x) denotes i-th objective function, x denotes n-dimensional decision
variables, m denotes the number of objective functions, and gj(x)(j =1,2,...,p) and
h(x)(k = 1, 2,...,q) represent the j-th equality and k-th inequality constraint function,
respectively. The decision variables include a number of operating devices, on-off signals,
output of each generation device, storage state at different time slots, etc. More detailed
description about optimization objectives, major constraints, and solving methods are
concluded separately as follows.

£(), 85309 . m()]"st.g;(6) = 0,j = 1,2,-+-,ph(x) < 0,k=1,2,---,q (4)

2.2.1. Objectives

From the whole system perspective, multiple objectives are presented in the optimiza-
tion model with different purposes. Aiming at different objectives, the optimization results
provide theoretical guidance for the system scheduling and transactions. The optimization
results change dramatically when the optimization objectives are different. Normally, the
operation economy is the most concerning issue to have a better market competitiveness
and benefit. The economy evaluation can be subdivided into cost reduction and benefit
improvement, and they are represented with corresponding functions. For the former,
it aims to minimize the total cost in the operation. In general, the main cost includes
operation cost (such as the fuel cost, start/off cost and maintenance cost) and purchasing
cost from external energy markets. To relieve the pollution, it is noted that the concern for
the environmental impact is growing. The excess carbon cost and penalty cost of wind
curtailment are also included for some scenes [49]. From the benefit perspective, it aims to
increase the potential income through energy transactions. The cost-benefit evaluation can
also be considered with the concept of net profit, which indicates the difference between
the total benefit and the total cost. With the pursuit of these economic objectives, the
cost and benefit balance can be achieved, and the optimal economic operation strategy is
obtained. The common economic indicators include the total operation cost, profit, social
welfare [50,51], and so on.

On the basis of the economy pursuit, the concern of energy savings is also intro-
duced, sometimes faced with the energy crisis. The energy saving is evaluated from the
perspectives of energy generation [52,53], energy consumption [54], and energy utiliza-
tion efficiency [55,56]. Some typical energy saving indicators, including primary energy
consumption (PEC), primary energy ratio (PER), and primary energy efficiency (PEE),
are utilized to increase energy savings. Additionally, the environmental protection also
raises attention to reduce adverse impact on the environment during operation, such as to
minimize the NOx emissions [57], the carbon emissions [58,59], and the total emissions [60].
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With all these considerations from different perspectives, the objective may be multiple.
Common indicators are concluded as follows:

Faced with different demands and preferences, the optimization objectives are various,
and the optimal operation strategy varies greatly. The objectives may be multiple and
sometimes mutually exclusive. For instance, the improvement of environmental impact will
bring reduction of economic benefit. Thus, it necessitates an efficient coordination approach
to promote the development of multi-objective optimization. Additionally, the existing
indicators take the different grade energies equally, which is not reasonable from an energy
utilization perspective. Some exergy analysis methods can express the difference from
the second law of thermodynamics, yet are normally adopted in system thermodynamic
analysis [61,62] and seldom utilized in the IES operation optimization process. In summary,
a comprehensive and systematic evaluation system to better guide optimization directions
is lacking.

2.2.2. Constraints

Each component in IES has its operation characteristics and technical constraints,
which must be considered in dispatching to guarantee practicality and authenticity. When
associated with other parts in IES, additional constraints are imposed to satisfy device
physical conditions, and operators’ or users’ specific demand at a system level. The main
constraints in a single IES are concluded and listed as below.

e  Device physical operation constraints: power balance constraints, units power outputs
constraints, unit ramp/down speed constraints, unit startup/stop time constraints,
etc. [63].

e  Security constraints: transmission power flow limits, frequency deviation constraints,
etc. [64].
RE penetration constraints: least accommodation ratio of RE constraints, etc. [65,66].
Demand response constraints: quantity and time constraints of interruptible loads [67],
users’ satisfaction constraints [68], etc.

2.2.3. Optimization Techniques

The optimal IES operation has been studied extensively. Among them, the major
solution methods can be divided into mathematical optimization methods and heuris-
tic methods.

The conventional mathematical methods are designed with appropriate iteration
formulas and get the approximate solution finally after multiple iterations. They usually
start with a given initial point and calculate the next iteration point according to the
descending information such as gradient. Thus, they have fast convergence speed and
high searching efficiency. Many typical mathematical methods have been used in IES
operation optimization problems, such as the Lagrangian Relaxation (LR) method [69],
Generalized Reduced Gradient (GRG) method [70], Interior Point (IP) method [71] and
Benders Decomposition (BD) method [72]. The GRG is easy to implement but has poor
convergence, and hence it is not applicable for a complicated problem. The IP method
performs well in many aspects, but is not applicable for all problems. Likewise, the LR
method is also faced with the problem of computational complexity. Compared with
others, the BD method can reduce the computational complexity and is more effective
for a large-scale and complicated problem. However, it has slow convergence rate and
low efficiency. In general, the mathematical optimization methods have a long history of
developments and are relatively mature in theoretical research. Hence, they are easier to
conduct and implement, even though the computing cost of these methods are expensive,
especially when solving a complex problem. Additionally, they require more information,
which is not always known beforehand. Hence, they are more applicable to a small-scale
IES operation optimization problem with fewer devices and interconnection relationships.

Intelligent methods are a kind of experience-based approach, which have been rapidly
developed and implemented on various optimization problems. They are inspired by
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behaviors, reactions, and communication mechanisms in nature and imitate the process
to seek the optimal solution in a more effective group search way. The most extensively
utilized intelligent methods include Genetic Algorithm (GA) [73], Particle Swarm Optimiza-
tion (PSO) [74], Bacteria Foraging Algorithm (BFA) [75], Dance Bee Colony Algorithm [76],
etc. The GA method has good diversity of solutions. Since it is easy to implement, it is
extensively utilized. However, it is probable to lose the optimal solutions and needs long
time for convergence. To solve more complex problems and improve calculation efficiency,
many algorithms derive into many improved forms, for instance, Non-dominated Sorting
Genetic Algorithm (NSGA) and NSGA-II [77]. Compared with GA, the PSO method is
easier to find the global optimal solutions, yet it is not sure to be strictly convergent and is
probable to be immersed in local optima in multi-modal problems. Some improved vari-
ants also appeared like multi-objective PSO(MOPSO) [78], and Adaptive Multi-Objective
Particle Swarm Optimization (AMOPSO) [79]. The SA method is more probably to find
the global optimal solution, but it is time consuming and may be constrained by initial
conditions. Compared with classical mathematical methods, intelligent methods need
neither extra initial points nor gradient information of objective functions, and additionally
have dominant superiority in universality, parallel computing ability, and possibilities of
global optimization solution obtained. Thus, they are more suitable and efficient for an opti-
mization problem with little information/large-scale/high-dimension/multiple objectives.
However, the conventional intelligent methods are easy to fall into local optimum and the
convergence speed is expected to be improved. Detailed mechanism description can be
found in Ref. [80], and the comparison of different optimization methods are concluded in
Table 1.

Table 1. Comparisons of common optimization algorithms.

Category Algorithms Advantages Disadvantages
GRG .Apphcable to nonhnea.r problems, §1mple to Poor convergence
implement, and need little preparation work.
P Fast speed, high accuracy, good performance in Not applicable for a problem with many
. robustness and convergence local minima.
Mathematical methods
BD Reduce complexity of problems to be solved Slow convergence rate and low
calculation efficiency.
More flexible and aiming at searching for a May appear oscillation or singularity in the
LR - : d . .
coordination to reduce duality gap error. iteration process and be suboptimal.
Little information needed, simple scheme of fitness Qb]e;t{ve functlon. design a.nc.i adap t.able
GA . . individual selection are difficult, high
arrangement, easy to realize parallel computing .
computation stress.
. . . . Performance is relevant to initial conditions
Intelligent methods SA More possible to find global optimal solution set, slow convergence speed
Easy to obtain global optimal solution, fast Probable to get local optima, weak in local
PSO . . . . s
computation speed, feasible adjustment. searching ability
BFA Simple, high efficiency, easy to jump out from local Poor adaptability to complex problems,

optimal solution

sensitive to external environment change

From the comparison of different methods, it is found that there is no one that per-
forms the best in all aspects. Although there are already many studies and continuous
developments, there still exist difficulties to be solved or performance to be improved. With
the fast development of IES, it tends to combine more energies and devices, which will com-
plex the operation optimization problem in both calculation burden and difficulty. Hence,
the computation complexity remains to be reduced, and computation time shortened, and
computation efficiency needs to be improved. Decomposing the original complicated
problem into some small sub-problems or using some dimensionality reduction techniques
is a promising direction, yet the implementation in mathematics is the most difficult part.
Additionally, from the comparison in Table 1, it can be seen that each method is unique with
distinct features. The calculation performance relies on the characteristics of optimization
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problems, i.e., objectives, variables types (continuous, discrete, or integer), and constraints
forms (linear or nonlinear), as well as convexity of problem. At present, the selection of
the optimization algorithm for a concrete operation optimization problem often relies on
expert knowledge or production experiences and existing previous research. To assess the
performance of application optimization results, a standard or benchmark is necessitated.
Even though some indexes such as convergence, computation time, and uniformity are
normally adopted, a comprehensive and systematic evaluation method is still lacking.

3. Handling Uncertainty of High Accommodation Renewable Energy in IES

To reduce pollutant emission and faced with the fossil energy crisis, the installed
capacity of renewable energy is rapidly growing worldwide, and an RE-dominated system
is proposed for the future. In this context, renewable resources will also account for an
increasingly high ratio in IES. However, the power generation of renewable resources such
as wind and solar is weather-dependent and with strong uncertainties. Normally, the
output of RE is estimated based on prediction means and then incorporated into the IES
operation optimization problem. Inevitably, errors exist between predicted and real value,
which reduces the accuracy of results and causes adverse impact on the interaction with
the upper grid. Compared with uncertainties from other issues, such as loads and device
technical performance deviation, the RE has the greatest uncertainty, especially for a high
RE proportion IES. Different from single power system, the uncertainty is easy to expand
through strong coupling and interconnections among different energy flows and various
energy conversion devices in IES. The uncertainty cascade will influence the energy supply
stability and cause serious safety problems, especially for an IES with less controllable units.
In addition, the IES will require more support from the upper grid to maintain normal
operation. Therefore, the consideration of RE uncertainty is particularly vital in making
IES operation strategy, and the effective handling method will be a direction of individual
efforts to promote IES independence and benefit. Some measures have been taken to
tackle with that, and it is categorized in this paper into three terms including (1) increasing
prediction accuracy, (2) modelling RE uncertainty, and (3) step-wise eliminating the adverse
influence by multi-stages optimization. As the first category is restricted to technical level,
the last two are respectively reviewed in this paper.

3.1. Uncertainty Modelling Methods

To obtain enough information, many uncertainty modelling methods have been
applied to depict RE output with considerations of uncertainty in the operation problem.
The most common approaches are probabilistic approaches, wherein uncertain parameters
(for example, output of wind unit and photovoltaic) are modeled by probability density
functions (PDFs) and dealt with probabilistic strategies such as Monte Carlo simulation
(MCS) [81,82], scenario-based analysis (SBA) [83], and point estimate method (PEM) [84].
The core ideas of these three common methods are described as follows.

e  MCS utilizes PDFs of input uncertain variables (i.e., wind speed) to calculate objective
functions on the basis of input-output relationship and select the best individual at
different iterations as optimal solution. The more the number of trials is, the more
accurate result is achieved, but computational time increases. Overall, MCS is simple
to implement but computationally expensive.

e  SBA method subdivides the PDF curve of uncertain input variables into several
regions. The probability of falling each region can be calculated and expressed based
on PDF and then the expected value of output is represented with the total sum of
the product of probability and corresponding value in each region. Likewise, higher
number of scenarios increases the accuracy of the achieved results. Hence, SBA
method is also a technique with high computational burden.

e PEM works based on the statistical information provided by the first few central
moments of an input random variable on K points for each variable. With these points
and the function, which reveals the relation between input and output variables, the
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information about the uncertainty associated with problem output random variables
can be obtained [85]. Similar to MCS, PEM method uses deterministic routines for
solving optimization problems with uncertainty. As it provides an approximate
description of the statistical properties of random variables, it can significantly reduce
the calculation times. However, the PEM methods cannot describe the correlation
between different uncertain inputs.

These conventional probabilistic approaches are conducted based on the assumption
that the random variables accord with the given PDFs (for example, wind speed prediction
obeys the Weibull distribution [86], solar irradiation obeys beta distribution [87]).

With the increasing penetration of renewable resources in IES, more renewable energy
generation units with different power generation characteristics in time and space scale
may be integrated in the system, and these existing PDFs are not fairly applicable and
sufficiently accurate. To solve that, some data-driven improved probabilistic approaches
are imposed. In this paper, they are subdivided into three categories as follows.

(1) Non-parametric probability distribution models

Non-parametric probability distribution models are with no restricting assumption on
the distribution of random parameters but abstract statistics information from samples, and
hence they can obtain more accurate probability distribution of random variables. Ref. [88]
adopted non-parametric optimization method to operate and plan energy storage units in
power distribution grids. The results were compared with conventional deterministic and
parametric stochastic approaches based on Gaussian approximation, and it was proved to
significantly release computation burden. Kernel density method was proposed in Ref. [89]
for wind speed distribution model, and it was demonstrated to be more accurate and more
superior in adaptability using three years’ actual wind speed data at ten wind farm sites.
Based on that, Ref. [90] presented an improved diffusion-based kernel density method
(DKDM) to estimate wind speed probability distributions with consideration on both band
width selection and boundary correction. The statistics of goodness of fit tests of DKDM
were smaller than the conventional methods in most stations, and its practicality was
demonstrated.

(2) Stochastic process model

Stochastic process model is normally adopted in prediction of renewable resources out-
put, and recently it is extended to model uncertain parameters in dispatch optimization by
some researchers. Ref. [91] quantified the uncertainty of uncertain wind power in stochastic
economic dispatch with the proposed method, which was on the basis of Karhunen-Loeve
expansions and historical data at each wind farm. The experiments showed that the pro-
posed method was one to two orders more efficient than Monte Carlo-based estimates.
However, it faced a curse-of-dimensionality challenge.

(3) Scenario generation methods based on artificial intelligence technologies

Scenario generation methods based on artificial intelligence (AI) technologies take the
advantage of strong data mining ability to directly generate uncertain scenarios with actual
data instead of fitted probability distribution density functions. Hence, they are more
accordant with the real characteristics of random variables. Ref. [92] utilized generative
adversarial networks to capture renewable energy production patterns in both temporal
and spatial dimensions for a large number of correlated resources. In Ref. [93], artificial
neural networks (ANNs) were proposed to generate scenarios to account for various
stochastic variables including electric load, PV, and wind production, and it applied this
method to an optimal participation problem of a PV agent in day-ahead market. The
percentage difference of ANN-based model with respect to perfect forecast could be up
to —0.78%, —1.64%, and —4.47% in three scenarios, and it showed its accuracy compared
with other methods.

Compared with conventional probability distribution density functions, these data-
driven methods depict the variation characteristics of renewable resources more accurately
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and hence improve system operation strategy. Nonetheless, the performance of these
methods strongly relies on the external manifestation of samples, which may influence
the results of dispatch. Additionally, these methods are investigated in the conceptual
stage and most are applied in simple power system to validate their effectiveness. As for
an IES with plenty of different variable types and complex coupling relations, the size
of optimization problem is much larger, and their shortness in computation efficiency
problem will aggravate.

Another normal uncertainty modelling method is robust optimization method (RO).
The conventional RO considers the worst-case condition and yields a conservative schedul-
ing in which the uncertain variables allow change within a given range around their
forecasted values. The dispatch problem based on RO can be expressed as Equation (5),
where f(x) is the objective functions, x is the robust feasible solutions of the decision vari-
ables, A and b represent the constraint vector in robust model, and D is the uncertainty set.

min f(x)s.t. Ax <b,VA € D )

It should be noted that the set of range D significantly influences the optimization
results. At present, the most commonly utilized uncertainty set is polyhedral uncertainty
sets, as shown in Equation (6). The subscript of w denotes uncertain variable d, which
constitute a set ), d,, represents the value of d, and D!, and DY, are the upper and lower
limit of d,.

D:{d:D(ﬂ,gdwgng,vcueQ} )

It is easy to understand and implement, yet the simple consideration on upper and
lower limits cannot truly reflect the variation range of uncertain variables and furthermore
leads to a conservative solution from mechanism. To face that, some other uncertainty sets
are introduced, represented by ellipsoidal uncertainty sets [94,95] and extreme scenarios
based uncertainty sets [96-98]. Though these methods reduce the conservativeness and
guarantee the robustness of optimal decision scheme, they are still on the basis of worst
scenarios, and the over-conservative problem exists. Probability distribution of random
variables is combined into the RO method to make up for the deficiency. The core idea of
data driven robust optimization (DRO) methods is to establish an ambiguity set based on
probability distribution with data and make the optimal decision under worst scenario in
ambiguity set. By fully utilizing the statistical information of uncertain parameters, the
conservativeness can be reduced. It should be noted that the key point of this method is
to establish the ambiguity set. The two most commonly utilized methods are statistical
moment based [99,100] and distance based [101] ambiguity sets. Ref. [99] demonstrated
that the conventional RO method was too conservative, while the DRO method could
greatly reduce the redundant cost by over-conservativeness. Ref. [101] designed a distance-
based ambiguity set to capture uncertainty of wind power distribution in a two-stage UC
problem. The results showed that the cost decreased from $4.9131 x 104 with data size
50 to $4.6850 x 104 with data size 5000, and that the conservativeness of the problem
could be controlled by adjusting the data size and confidence level. However, the average
calculation time was over 5700 s for a practical system. Overall, the statistical moment
based DRO methods reflect the statistical information of random variables through data
analysis, which is easy to implement and achieve. On the other hand, it cannot fully
mine the statistical information and leads to a respectively conservative result, while the
distance-based method builds empirical probability distribution based on data and defines
the distance between the actual and established empirical one. It needs fewer data and
thoroughly excavates information. Nevertheless, the optimization problem may have
difficulties in solving, and even cannot be solved with the expansion of the scale. To have
an intuitive comparison, the advantages and disadvantages of these above uncertainty
modelling methods are summarized in Table 2.
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Table 2. Comparisons of uncertainty modeling approaches.

Category Method Advantages Disadvantages
Simple to implement, use deterministic A oreat number of scenarios ar
MCSs routines to solve the problem in & e; h'uh er of scena (l)sba ed
each simulation. generated, high computational burden.
Conventional probabilistic methods SBA Simple to implement High computational burden.
Lower calculation pressure, applicable to The computational burden and
PEM problem with little perfect knowledge of probability of obtaining infeasible

probability functions

solutions raise with increment of points

Conventional RO method

Useful in the case lacking in
full information

Conservative and hard to obtain
optimal strategy

Data driven probabilistic methods

Non-parametric probability

distribution models More accurate probabilistic distribution

The solution scale is large and needs

Less data d. d
€58 data deman sufficient data

Stochastic process model

Scenario generation methods
based on Al

No probability distribution
density function

Data driven RO methods

The statistical information of data
cannot be fully mined, and the results
are relatively conservative.

Statistical moment based
ambiguity sets

Easy to implement and can reduce
conservativeness to some degree

Mine the statistical information better and

Distance-based ambiguity sets .
can reduce conservativeness

Difficult to solve for a complex problem

Additionally, some other stochastic methods including possibilistic methods, hy-
brid probabilistic—possibilistic methods, interval optimization (IO), and information gap
decision theory (IGDT) are also extensively employed in handling uncertainties of RE
generation output in IES operation optimization. The specific description of these methods
can be found in Refs. [102,103], and they are not deeply reviewed in this paper. In general,
all these methods are trying to seek an expression form to quantify the effect of uncertain
inputs on the optimization results. Their main difference reflects on the uncertainty depic-
tion techniques. Based on these methods, the uncertain variables are represented with a
stochastic form in objective equations and constraints equations, and the non-deterministic
dispatching problem is usually converted to a deterministic one so that the adverse effects
brought by uncertainties can be reduced.

3.2. Multi-Stage Optimization Strategy

In uncertainty modelling methods, the information of RE output forecast values are
estimated by probability distribution or other forms before the operation horizon begins
and the uncertainty level is contained to be used in later system operation optimization.
These methods are efficient on the condition that the RE penetration is relatively low, and
hence the negative impact of deviation between predicted and real values is not great on
the IES as well as upstream main grid. For a large-scale RE incorporated IES, the error
between expected and actual values become larger and then may affect the results accuracy.
Moreover, the impact of IES on the upstream main grid is expected to be minimized to
reduce penetration and release power grid pressure. Thus, more efforts are required,
especially for a renewable-rich IES.

It is obvious that the prediction error is getting smaller as time goes on. Multi-stage
operation optimization is therefore proposed to successively mitigate uncertainty of RE
at different time scales and then reduce adverse influence on the IES optimal operation.
Generally, the process can be divided into three stages including day-ahead dispatch
(DA), intra-day scheduling (ID), and real-time control (RT) corresponding to timescale as
illustrated in Figure 5. DA is the first stage to determine the operation strategy of each
device in IES with 24 h forecasting data of loads and REs output obtained at time t — At,
wherein t presents the DA dispatch start time and usually sets as 0:00, and At denotes
the time delay due to communication or calculation. The dispatch horizon of DA stage is
24 h (AT4,) and corresponding resolution is 1 h (ATj). Model predictive control (MPC)
based rolling optimization has been extensively applied in intra-day scheduling [104,105].
In MPC-based ID stage, the time horizon is ATjq, the start time is ty, the corresponding
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resolution is ATy, and the rolling window is AT;. In the rolling process, only the first
interval scheduling plan is implemented, and the optimization process will be repeated at
time ty — &t + ATj. The time-scale of ID is always 15 min level, while RT is always in the
time scale of second /millisecond. The control resolution is denoted as AT, and dt is the
time delay of measurement devices.

24h Forecasting data
. Horizon:AT ,=24h,Resolution:ATy=1h , DA
| Delay I i >
t-At t t+ATy,
Horizon:AT;4,Resolution: AT
ID
I I Delay | l >
t0-|8t ty t0-6t+AT1 t()""ATl toTAT;y
Rolling window AT,=AT;
Real-time data Real-time data RT
| Delay | | Delay >
to totdt tytAT,  ty+AT,+dt
|

|
Control resolution:AT,

Figure 5. Framework of multi-stage optimization strategy [106].

Each optimization stage has different functions and objectives, as illustrated in
Figure 6. In the DA stage, based on day-ahead input information and devices’ physi-
cal models as well as the energy flows model, the optimal decision is made. Since it is
a relatively long-term scheduling, it always pursues economic or environmental perfor-
mance maximization. The DA stage provides a base operation decision of variables for
the following ID stage, and the uncertainty of RE can be considered, utilizing uncertainty
modelling method. After that, ID strategy is optimized with the almost same process as DA
but based on short-term prediction information. It should be noted that the ID stage aims
to adjust the optimization strategy to eliminate the adverse impact from RE generation
output prediction error between long-term DA stage and short-term ID stage. Hence, the
optimization objective is always to maintain the IES, a controllable individual from the
perspective of upper power grid. With the time approaching, the main characteristics
of RE generation output are captured, and the operation strategy obtained can mostly
satisfy the actual condition. However, deviation between predicted and real values still
exists. As the electricity power is real-time matching, some fast fluctuations may sometimes
cause safety problems. Hence, the RT stage optimization is usually integrated from the
perspective of reactive power adjustment to mitigate the voltage fluctuation caused by RE
variability utilizing real-time data to guarantee the network security. Through coordinating
optimization objectives in multiple operation optimization stages, the renewable resources
fluctuation and uncertainty can be eliminated step by step.

The multi-stage optimization strategy is originated from the power system and was
applied to IES operation optimization recently. Ref. [107] proposed a two-stage operation
optimization scheme, wherein the first stage was based on probability analysis before the
renewable output is not realized, and the second stage was set after the uncertainty has
been observed in a high-penetrated distribution system. The results demonstrated that the
energy loss could be reduced from 110.3 to 54.9 kWh, and the voltage violation could be
eliminated. Based on that, a three-stage operation optimization scheme consisting of DA,
ID, and RT was presented for a renewable-rich system to promote RE consumption and
mitigate the system uncertainty in Ref. [106], wherein the dispatch horizons for multiple
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stage were 24 h, 2 h, and real time, with corresponding resolution of 1 h, 15 min, and
15 s. The above researches are faced with a distributed power system, and only electricity

is considered.

Day-ahead estimation Day-ahead estimation ~Devices physical

values of renewable values of multiple ~ models and energy
resources outpout demands ﬂOWi model

DA: obtain day-ahead results of unit output and

exchanged power with upper grid

Objectives:
e Reduce operation cost
e Promote RE consumption

Short-term estimation Short-term estimation Devices physical
values of renewable values of multlple models and energy

resources outpout demands flows model
v v —
> ID: adjust strategy based on day-ahead

optimization results

Real-time renewable Real-time multiple
resources outpout demands

Objectives:

e Adjust operation strategy
based on short-term forecasts
to minimize deviation from
DA results and adverse impact
to the upper grid

Objectives:
* Respond to fast RE fluctuations
and guarantee network security

v Vv ¥

Satisfy multiple energy demands with excellent performance in economics,
environmental protection and etc., and make IES a controllable individual
from upper grid perspective while maintaining network safety.

Figure 6. Flowchart of multi-stage IES optimization process.

Faced with system integrated multiple heterogeneous energy resources, Ref. [108]
conducted a two-stage operation to smooth out the RE fluctuations and follow the load
variations in an electricity—cooling coupled IES system. In the day-ahead stage, hourly
generation schedules of each MG component based on the forecasted electricity and cooling
demands of the next day were determined with expectation of minimizing operation cost.
The uncertainty of RE was characterized to provide reference for the following rolling
process. In the real-time stage, necessary generation was adjusted on the basis of wind and
solar short-term power predictive values to reduce the discrepancy of exchanged power
with the main grid and minimize possible penalty to IES. Ref. [109] formulated a day-ahead
and real-time coupled energy optimization model for a heat-electricity IES and proposed an
event-triggered-based distributed algorithm to solve the distributed optimization problem.
The real-time dispatch was divided into hourly timescale dispatching (1 h) and minute
timescale dispatching (15 min) according to real-time dynamic variations of heat and
electricity power features. The former was to make the intra-day dispatching results
track the DA results and to accommodate variations of heat load along with solar water
heater, while the latter was aiming at accommodation fluctuations of RE and electricity
loads. In Ref. [110], a multi-time scale framework of coordinated optimization strategy was
presented including multi-objective DA dispatch, two-layer ID dispatch, and emergency
control aiming at a typical IES. To consider dynamic characteristics of heterogeneous
energy resources under different time scales, the ID dispatch was divided into intra-day
cooling-heat dispatch and intra-day electricity dispatch with time span of 2 h and 1 h, time
interval of 1 h and 5 min, respectively, in the rolling process. The case results showed that
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the multi-stage operation optimization could effectively stabilize fluctuations of wind and
solar generation and had the least cost compared with conventional strategies.

From the existing work review, it can be concluded that the application of multi-stage
operation optimization in IES is still in the relative initial stage. Most literatures adopt the
same research routine as power system and subdivide the stage into two or three stages,
as aforementioned.

3.3. Challenges and Prospects

In IES, renewable resources are a significant part, and the ratio is increasing. The
uncertainty and fluctuation characteristics of RE may cause a cascade effect through strong
couplings among energy flows, and devices bring challenges to IES operation strategy
making and increase the interactions with the upper grid to maintain normal operation. To
relieve the upper grid burden and promote IES independence, effective handling methods
with RE uncertainty are significant. The latest work is reviewed from the uncertainty
modelling methods and multi-stage optimization strategy perspectives. Based on that, the
existing challenges and prospects are given as follows:

(1) Deep study in the novel uncertainty modelling methods. To solve the limitations in
conventional methods, some novel data-driven approaches are proposed and are demon-
strated to be effective. However, these methods are mostly applied in a simple case and
seldom extended to the IES scenario. Accounting for the complex coupling relations and
various variable types in IES, some work needs to be further conducted.

e  Novel uncertainty modelling methods with consideration of temporal-spatial correla-
tion of different RE generation output.

e  Novel uncertainty modelling methods with consideration of coupling of various types
of variables, such as continuous and discrete types.

e  Deep sensitivity analysis of the impact of some crucial parameters on the dispatch
results and how to select them or optimize them when facing different demands.
For instance, the uncertainty set D is an important parameter that influences the
conservativeness of DRO method directly. Most work sets it according to experiences
and there is a lack of theoretical study.

(2) Stage subdivision accounting for multiple energies flows characteristics in IES. The
majority of literatures adopt the same dispatching interval as the power system. More
concretely, 1 h resolution for the day-ahead, 15 min interval for the intra-day, and 15 s
resolution for the real-time stage. However, different energy systems have great difference
in dynamic characteristic, equipment control, network response process to the dispatching
command, and load pattern. For instance, power generation units need to carry on intraday
schedule on a 5 to 15 min interval to accommodate intermittent resources, while heat load
is respectively stable in the short time-scale, and consequently it is unnecessary for heat
units to regulate as frequently as power generation units. Frequent movements of devices
have adverse impact on both unit life and operation economy. Therefore, further studies
are essential on the optimum dispatch period selection for IES optimal operation with
considerations of distinguishing dynamic characteristics of energy flows.

4. Utilizing the Hybrid Time-Scale Characteristics of Multiple Energy Flows as a Buffer
4.1. The Time-Scale Characteristics of Different Energy Flows

Electricity, heat, natural gas, and other energies are integrated and comprehensively
utilized in IES to enhance efficiency on the whole. They are tightly coupled as they share
the same transport paths and are transferred to others from production to utilization
process. Remarkably, the dynamic characteristics and topologies of multiple energies are
significantly different from each other. Electricity travels at light speed with little time delay
and energy loss, and hence it is possible to be transported over long distances, while gas
and heat transport at a slow speed through pipelines and are applicable for short-distance
transportation to reduce friction loss. Additionally, though the dynamic characteristics
of gas and heat are similar to some degree, there remain some unneglected differences in
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practical process. Different energy flow characteristics are summarized in Figure 7, and
they can be attributed to response timescale differences in essence.

Energy A
Small inertia,quick response
Electircity TranAsiAent StaAtiAc Egonomic Ux}it
stability stability dispatch commitment
Large inertia,slow response,long-distance supply
Natural gas
Dynamic process Hydraulic process  Virtual Storage
Larger inertia,slower response,short-distance
supply
Heat : : :
Dynamic hydraulic ~ Dynamic thermal Vel Sismaze
process process
p Time scale
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Figure 7. Time-scale characteristics of different energy flows.

The different dynamic characteristics of hybrid energy flows are non-negligible. The
transmission delay, losses, and virtual storage characteristics under complex topology
of heat/gas networks change heat/gas balance between supply and demand, and con-
sequently affect the electricity balance even further to the whole IES operation through
coupling devices. Compared with a single power system, the multi-timescale character-
istics of hybrid energy flows make them nontraditional and challenging in IES operation
optimization. On the other side, the different dynamic characteristics of these energy flows
can be regarded as a potential energy storage option to coordinate the real-time supply and
demand relation and guarantee the feasibility of optimized solutions. These characteristics
can be utilized to exploit potential in decoupling restriction among multiple energies.
Compared with introducing additional storage devices, the potential storage capacity in
existing pipelines is almost costless. Hence, the adjustment of fluctuating wind power, as
well as volatile load, can be improved by concerning flexibility, and then the independence
on the upper grid and benefit can be promoted.

4.2. Thermal Dynamic Characteristics Considerations

Heat and electricity are usually provided simultaneously by cogeneration or trigener-
ation units to improve energy utilization efficiency, and their coupling presents a typical
IES. For the strong coordination between power generation and heating supply, many
researchers investigate the combined operation optimization of integrated electricity and
district heating systems (IEHS). District heating networks (DHNs) are the major component
of a DHS, which deliver heat from generation sources to users through thermal mediums
(usually flowing water).

The general formulation for the joint of power system and district heating system
is similar to the process in Section 1, but with additional heating system constraints and
modelling of IEHS. The additional constraints include heating network constraints, node
balance constraints, heat loss constraint of the pipe section, pipe input and output con-
straints, heating power output constraints, etc. The modelling of IEHS is categorized based
on whether dynamic characteristics of the heat transfer process in DHSs are considered
and how to depict it.

In general, researchers have developed data-driven methods and model-driven meth-
ods. For the first category, the temperature quasi-dynamics of pipelines are described
with a black box, which is estimated and validated by massive data. Ref. [111] proposed
a black-box compact physical model to calculate IES power flow, and Ref. [112] estab-
lished an individual model to depict the dynamic heat process. Data-driven methods are
easy to implement, yet need numerous data in training and are not general in different



Energies 2021, 14, 1103

19 of 36

networks structures or operating conditions. Model-driven methods are based on charac-
teristics of heating system and physical knowledge, which are readily adaptive to changes
in system and possess more accuracy. They can be further subdivided into three main
classifications according to model complexity. That is, the steady-state method [113-115],
node-method [31,116-118], and delicate dynamic network modelling methods [99-101],
ranked from low complexity to high.

The heat transfer process in DHN steady-state model is described holistically as
Equation (7) shown. Tj, and Toyt signify the inlet and outlet temperature of a pipe; T,
represents the ambient temperature; m is the mass flowing into the pipe; L is the pipe
length; ¢, denotes the specific heat of water at constant pressure; A denotes heat transfer
coefficient of a pipe per unit length; m is the water mass flow rate in pipeline. In the
steady-state model, the temperature drop along pipelines is described, but the temperature
distribution in DHN and time delay effect are neglected. Ref. [113] exploited the flexibility
of DHSs with a steady-state model in IES operation stage. Aiming at profit maximization
in heat-power spot market, Ref. [114] established both the hydraulic and thermal model
of DHN and proposed a two-step decomposition algorithm to solve the nonlinear and
nonconvex optimal problem. Ref. [115] detailed the supply and return networks, and
additionally considered the variation of mass flow rates as well as flow directions in a
heat—electricity IES economic dispatch problem. The comparison showed that the cost was
reduced, but the network limits were violated in several periods if the heat transfer process
was ignored.

_ AL
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The second category, node-method, is a commonly utilized dynamic approach to
describe temperature distribution in pipelines. Its principle is to estimate the outlet tem-
perature preliminarily from the inlet temperature with regard to flow time from one node
to another and then evaluate the heat loss of the pipe as well as outlet temperature. The
schematic diagram is illustrated in Figure 8, and the pipeline outlet temperature of mass
flow is calculated by Equation (8). The DHNSs are finally embedded as a set of mixed-
integer constraints into the combined dispatch model. In Ref. [116], a general dispatch
method considering heat dynamics of DHNs under quality regulation mode was built up,
wherein the transfer process constraints were emphasized and an iteration method was
proposed to handle nonlinear constraints. A comparison with the case ignoring the DHN
storage capacity, considering both storage capacity and detailed heat transfer process, and
only considering storage capacity was conducted, and the coal use values were 3383.4,
3372.4, and 3348.7 ect. The results demonstrated that the slow characteristics of heating
could reduce cost and provide additional flexibility for IES dispatch, whereas the flexibility
might be overestimated, and the optimization results were not practical the heat transfer
process was not fully considered. Ref. [117] established a fully nonlinear model of DHN
under quantity regulation mode to exploit storage potential and solved by a deterministic
method. Based on that, a linear model of DHN was proposed under quality regulation in
Ref. [118] to relieve the calculation burden brought by various constraints and variables in
heat transfer. Ref. [31] utilized the thermal inertia of DHN to improve system flexibility for
wind power integration, and quantitatively evaluated the thermal state of DHN to present
its dispatch potential.

t—n—1
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These blocks represent a sequence of water masses that flow into the pipeline at
consecutive periods. ms; represents the water mass flow rate, At is the time step, and
ms¢-At denotes the mass of water flowing into the pipe at period t. t —n and t —m,
respectively, denote the index of the last period whose mass outflows the pipeline before
period t and period t — 1, wherein n and m are corresponding time delay. W represents
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the total water mass contained in the pipeline, while X represents total mass flowing into
the pipeline from period t —n to t, and Y represents that from t — m to t. With the above
equation, the outlet temperature Toyt+ at current time step t can be estimated by the average
temperature of the dark red part weighted by water mass.

ms;-At

Mass flow
———————— - ms; At | ms.-At| ms,At| e o o [ ms. At ms At

W
=
Y

Figure 8. Illustration of the node method.

For the third category, delicate dynamic network modelling methods, they fully
consider heat dynamics in DHN with multiple differential equations. These dynamic
methods have been widely studied; nevertheless, the detailed information of DHNs, such
as topology data and pipeline parameters, greatly aggravates computational complexity in
operation optimization. Hence, most studies are conducted with many simplifications or
assumptions and meanwhile devoted to exploiting a feasible solving method. Driven by
this, some equivalent methods are derived to represent the complicated physical model
and release computational stress in recent years. Ref. [119] proposed a water mass method
for pipeline thermal inertias by removing the integer variables and differential equations to
make the combined dispatch model tractable. In Ref. [120], the thermal inertias of DHNs
were represented by an outer approximation from likewise the state-of-charge formulation
of thermal storage devices or batteries. The additional savings of several thousand Euros
per day were achieved using the thermal inertia of a heating grid as storage. Ref. [121]
presented an equivalent representation of DHNs from electrical-analogue perspective,
wherein the input information from DHS was regarded as a black-box. Comparison
experiments were conducted in the cases of no consideration of heat transfer dynamics
and with consideration of heat transfer dynamics (the pipeline transfer delays were 24
and 48 min). The wind curtailment was reduced considering slow dynamic characteristics
of heating, and the slower the storage, the greater was the potential. These equivalent
methods are efficient in the research case, but generality is not sufficiently strong.

Moreover, the thermal inertias in the end-user side are also studied to explore the
potential of heat inertia in overall efficiency improvement. Ref. [122] proposed a virtual
energy storage system model based on the characteristics of buildings for the heat load. In
Ref. [123], a building indoor temperature calculation model was established, and the re-
sponse ability of buildings in dispatch was relevant to the set indoor temperature boundary.
With simultaneous consideration on transmission delay in DHN and the storage capacity
of buildings, the cost could be reduced by 9.3% and the wind power consumption was
improved by 44.6%. Ref. [124] detailed the buildings” heat load model with additional
consideration of building characteristics” diversity as well as outdoor ambient tempera-
ture variation. To release calculation burden and protect privacy, Ref. [116] introduced
an equivalent building model based on entransy dissipation-based thermal resistance
theory, and Ref. [125] proposed synchronous response model of buildings on the basis
of the first-order equivalent thermal parameter (ETP) model. Considering the influence
among adjacent buildings under different regulation modes, Ref. [126] studied the different
thermal capacity of buildings and their impact on IES operation optimization separately.
Similar to DHNSs, physical models with some simplifications of buildings” heat load are
adopted. Generally, the concrete heat transfer between pipelines and indoor air is ignored,
and only the indoor temperature variation is concerned to indicate actual heat load and
potential for heat storage. Additionally;, it is noted that most existing work assumes the
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buildings are with the same structure and response behavior. That is, the comfortable
indoor temperature range is fixed among all buildings and all time periods, and different
buildings as virtual energy storage show identical charge/discharge state. It may be a
future research direction for higher practicability.

4.3. Gas Dynamic Characteristics Considerations

The natural gas is environmentally friendly and effective with no production of SO,
and substantially less NOy compared with other fossil fuels. Hence, it promotes the
utilization of some gas-related furnaces such as gas-fired generators and gas boiler, as
well as the development of some new technologies like power-to-gas (P,G). Systems
containing these devices and technologies impose a linkage between gas and electric power
transmission system and hence can be regarded as an IES.

Conventionally, power systems and gas systems are separately considered, and it is
assumed that the supply from the gas network is always well sufficient. On this condition,
the IES operation optimization is conducted, neglecting gas flow characteristics as well as
their impact on the whole system. It simplifies the optimization process; nevertheless, it is
not practical with the increasingly tighter interconnection between two systems. Specifi-
cally, the power system flexibility is limited to gas networks” ability to meet requirements
of gas-fired units and fast change of gas load. Facing that, many scholars focused on two
systems’ interdependence assessment. They researched the intrinsic characteristics of gas
networks evaluation, and determined possible limits in terms of constraints on operation
flexibility and security of power system during a period of time in the operation optimiza-
tion process. Ref. [127] proposed an integrated model to assess the impact of natural gas
networks on power system operation, and incorporated these security constraints into
the unit commitment optimal problem with the objective of minimizing cost. The natural
gas networks model was represented by various bound constraints on pipelines, plants,
contracts, and so on. Ref. [128] characterized natural gas transmission and then studied the
system operational flexibility under these security constraints. On this basis, Ref. [129] and
Ref. [32] extended it to the economic dispatch of a system with more energy forms. The
former targeted a CHP-based system and proposed a general model to schedule all energy
sources with considerations of gas losses. As more factors were involved, which complexed
the problem, an advanced PSO technique was adopted to solve it more efficiently. The
latter studied a system with both gas-fired generation and heating sectors. For the strong
coupling between these furnaces and gas networks, detailed discussion was conducted on
system operation flexibility under different heating scenarios.

The above studies emphasized the limits brought by the interconnection between
two systems and incorporated them into the optimization model to find the optimal
solution that can meet security constraints. However, the slow response characteristic of
the gas system is neglected. Figure 9 shows the framework of a natural gas system and
transmission system. Gas is transported from the source to the load side through long
pipelines with a slow speed. The large inertia decides that gas cannot realize real-time
balance like electricity. With increasing RE incorporation, gas-fired units are utilized to fast
adjust load conditions to accommodate more RE, and it in turn leads to a fluctuation of
the gas load. If the slow dynamic characteristics of the gas system are disregarded, the
dispatch results are not accurate and practical. Hence, some scholars tried to depict the gas
network model and schedule two systems jointly from a holistic angle.

Attributed to the Weymouth function, the general steady-state equation for gas flow
models can be illustrated as Equations (9) and (10), which is widely utilized in most
researches. f, represents the gas flow value from node m to node n. wy, and wy, are the gas
pressure at these two nodes; sgn(wm — wy) represents the gas flow direction; “1” means
from node m to node n, while “—1” means from node n to node m; Cy, is a constant,
which is determined by the pipeline characteristics and natural gas compositions. Ref. [130]
represented the natural gas reservoir storage capacity in a given bound and modelled the
gas flow in a steady-state way in a co-optimized problem. Likewise, based on the steady-
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state relation of gas pressure and flow, Ref. [131] estimated the upward and downward
line pack utilizing nodal pressure limits, and optimized the system operation with more
energy forms (combined cooling, heat, and power) and more objectives (economic benefits,
safety, and efficiency). Steady-state gas flow models are easier to implement and bring less
challenge in calculation, but they cannot depict the dynamic process and are demonstrated
to be less accurate in weighing the flexibility of the gas system to provide for gas-fired
generation units in case of a contingency [132].
frn=sgn(w ,, — wn)-Cmny/ |w 2 — wn?| )
Lwm = wn

_1/ Wm S Wn (10)
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Figure 9. Framework of a typical natural gas transmission system.

Driven by this, some dynamic network models are developed. Ref. [133] established a
detailed dynamic gas flow model with multiple partial differential equations (PDEs) by
applying the laws of conservation of mass and energy, and the laws of momentum, to
characterize the important parameters tendency with time and position. It also compared
the results with the steady gas flow model, and found that the results with the steady-
state and transient-state gas models yielded two distinct results. Hence, it is necessary to
consider gas dynamics to obtain practical results and suboptimal schedules. To handle
the challenging computational tractability of numerous PDEs, Ref. [134] approximated
the complex PDE constraints with the reduced network flow (RNF) and studied joint
optimization problem for different coordination scenarios. Comparison experiments were
conducted, and the results showed that the steady-state gas transmission model would
cause pressure violations, while the consideration of gas slow dynamic characteristics
could remove pressure violations, but the generation dispatch cost was increased.

Additionally, the gas slow dynamic characteristics make it possible to store gas in
large quantities within pipelines, and the potential storage capacity can be explored in
short term or some contingencies (i.e., insufficient production, congested networks, or
price fluctuations) to guarantee the adequacy and improve system flexibility. The gas
stored in pipelines in a period is known as line pack. Except for economics improvement,
coordinated operation optimization is also explored with considerations of RE variability
to fully utilize the line pack as a buffer and guarantee system reliability. In general,
increasingly high penetration of intermittent RE inevitably leads to frequent fast condition
change of gas-fired units and then affects gas demand from networks, which may cause
security problems in both systems. Based on the steady-state gas flow model, Ref. [135]
and Ref. [136] took the uncertainties of RE generation into the co-scheduling model to
ensure the optimization results were within the security boundary, wherein the interval
optimization and stochastic approach were adopted to depict the wind uncertainties. In
Ref. [137], a two-stage coordinated dispatch problem was proposed based on distributional
robust optimization model, and the line pack was utilized to improve system operation
flexibility. Despite the capability of line pack in gas networks, Ref. [138] also took the P,G
technology into account to alleviate the effects of RE in the operation of gas and electricity
systems. The gas line pack was as a buffer, and the PtGs transformed the surplus energy of
wind generations to gas network during peak times.
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The steady-state gas flow model is still the most extensively adopted at present for
its better operability. Dynamic models are proven to be more accurate. However, these
precise modelling methods based on multiple PDEs involve numerous variables and more
dimensions. They are mainly solved by various finite element numerical methods with a
huge calculation burden. Additionally, the analyses of gas and electricity networks are not
unified and impose a barrier on the integrated operation optimization problem.

4.4. Challenges and Prospects

An IES incorporates many forms of energy flows with distinguishing characteristics
via multiple energy carriers, which provide a potential buffer. It can be regarded as an
effort direction to increase IES operation flexibility and promote individual independence
as well as benefit for a future RE dominated energy system. The considerations of distin-
guishing characteristics of multiple energy flows bring new challenges and difficulties to
the original IES operation optimization problem. From the literature review, it is noted
that the majority focus on coordinated optimization of either heat—electricity IES or gas-
electricity IES with considerations of time-scale characteristics of different flows. They
are devoted to modelling the transmission in networks and incorporating them into the
dispatching model.

Studies considering both heat and gas inertia have emerged, yet are still in their
infancy. Ref. [139] optimized operation of an islanded electricity-heating—gas IES with
the objective of minimizing operation cost, and the storage capability of gas pipelines
was demonstrated to be effective in increasing system scheduling flexibility against RE
uncertainties. It also verified that the results might not be optimal if neglecting the built-in
storage capabilities of pipelines and the slow travelling of gas flows. However, the heat
inertia was ignored. Ref. [140] established both the thermal and natural gas network model
to consider practical constraints and their impact on results. The electricity-thermal-natural
gas networks were steady-state based and the energy flow characteristics of heat and gas
were disregarded. Ref. [141] considered both heat and gas dynamic characteristics with
different inertia time constants in the optimal operation model establishment, and adopted
a linearization method to make the problem tractable with the objective of minimizing the
total operation costs.

On the whole, the most challenging issues in existing work are formulating hybrid
energy flows and solving the nonlinear nonconvex optimization problem in a tractable
and efficient way. A detailed dynamic model to depict gas or heat inertia is conducive
to improving the rationality of optimization results and providing potential to increase
system operational flexibility. However, the networks bring plenty of limits and multi-type
variants into the optimization model, which increase computational stress and difficulty
greatly. To handle that, the existing work concentrates on assuming simplifications like the
steady-state model, or developing a linearization approximation, or seeking an equivalent
model. Nonetheless, they are merely applicable to an identified problem and lack of
sufficient generality and extendibility.

In future, a more detailed and unified dynamic network model for both gas and
heat is necessary. Additionally, a more efficient solving method needs to be exploited
simultaneously. An equivalent representation may be an alternative and feasible way to
ease contradictions between model accuracy and computation stress, wherein its reliability
and generality must be considered. Additionally, the existing work cannot realize unified
analysis of different energy flows and leads to barriers in IES operation optimization.
Intuitive and unified modelling method and theory analysis framework of hybrid energy
networks can be further explored in future. In terms of joint optimization, it is critical to
exploit a reasonable time resolution for each energy system in the dispatch modeling to
properly coordinate the difference in dynamic characteristics.
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5. Coordinating among Multiple Participants from a Union Perspective
5.1. Interest Coordination among Multiple Participants

One of the main reasons for IES’ strong dependence on the upper grid is the volatile
multi-energy loads. When the energy demand exceeds the supply capability of IES, the
system has to ask for help from the upper grid to keep operation reliability. Since the IES
is always close to users and the multiple energy is volatile, the interaction between the
upper grid is frequent and increases its adjustment pressure. In a smart grid scenario, IES
can manage the load demand effectively based on the formula of high consumption-high
payment during peak hours and low payment for the valley periods. Since the load pattern
is smoothed, the single IES can better satisfy the demand side without or with less external
help. The energy price from the upper grid can also be formulated according to actual
supply—demand state. In that case, IES can act as both a price-taker and a price-maker. From
a union effort prospective, the coordination among these participants provides potential to
enhance IES independence without reducing individual benefit.

With the development of information and communication technologies, a large-scale
IES is conceived to consist of many lower-level sub-IESs under the interconnected energy
internet framework in the future vision. As shown in Figure 10, an IES is equipped with
energy generation and conversion devices to satisfy diverse end demand, and it can also
obtain energy supply from the upper public network such as power grid and natural gas
network. Beyond a certain IES, there are many parallel autonomous IESs with diverse size
and configurations. Though these sub-IESs can act as a self-regarding entity in terms of
operation strategy decision and price responsiveness, the decision of an individual IES is
usually tightly coupled with others’ choices. The reasons are as follows. The local market
retail energy prices depend on both the time of energy consumption and the total demand
of all IESs to provide better incentives for energy users to adjust their usage pattern and
alleviate network pressure. Hence, the decisions of each IES can affect the market prices,
and the purchase cost will affect other IES’s operation strategy decisions. Additionally,
the limited transmission capacities of networks lead to limits on the supply of upper
gas/electricity energy systems to these sub-IESs. That is, the total dispatchable energy of all
sub-1ESs is constrained globally. For the aforementioned interconnections in the IES cluster,
it is crucial to consider the impacts from other neighboring IESs when determining its own
operation strategy. Since each pursues a better interest, it poses the emerging problem of
how to coordinate all the participants who have effects on the final decision.

Game theory is introduced to provide resolution for interest conflicts among these
interacting parties and seek an optimal result. Game theory is a formal analytical as well
as conceptual framework with a set of mathematical tools enabling the study of complex
interactions among independent rational players [142]. The main components involved
in a game model include the set of players, the action sets, and the utility functions. Each
player adjusts their own strategy to maximize their objectives in accord with others’ choices.
The equilibrium is achieved when no player can benefit more by unilaterally changing
their strategy.

The non-cooperative game model represented by Stackelberg game has been exten-
sively utilized in the interest coordination among multiple participants for designing
operation strategies, especially with the trading process between energy provider and
users. It stresses the autonomous decision of one individual behaving selfishly to seek
their own interest maximization. The basic Stackelberg game model ¥ is displayed in
Equations (11)—(13).

Y= {N U -i/ {Sn}neN/ {Sk}ke‘ll Wleader,nr Ufollower,k} (11)

e XU Tis the player set. X is the set of leaders, while T denotes the followers. They
represent all the participants associated with the problem. For instance, IES operator
and lower energy users.
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e s, and S are, respectively, the strategies space of each leader and follower, which are
feasible sets of actions that the players can take. For example, the scheduling strategy
of generation units of IES and the user’s energy usage plan.

®  Wieader,n and Ugopiomer x denote payoff functions, which are the objectives each player
pursuing to evaluate the efficiency of selected strategy, such as profit.
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Figure 10. The future pattern of multiple IESs interconnection.

When no player can increase his utility by choosing a different strategy other than
s,/ S, the Nash equilibrium is obtained. s}; and S represent the optimal strategy of leader
n and follower k. s* , and S*  represent the optimal operation strategy of the leaders and
followers except for leader n and follower k.

sjl = argmaxwleader,n (saninr S;c() (12)

S;: = argmaxllfo”ower,k (Sk,Sik, S:l) (13)

Stackelberg game clearly differentiates all the participants into leaders and followers
according to the sequence of their actions [143]. The leaders have the priority to make
decisions and the followers adjust their strategies based on that. Several leader—follower
models have been developed for analyzing the interactions between the energy suppliers
and consumers, which can be categorized into single-leader multi-follower (SLMF) and
multi-leader multi-follower (MLMF) models. Ref. [144] introduced a multi-party operation
optimization framework based on SLMF Stackelberg game theory for an IES consisting of
CHP operator and PV prosumers. The results demonstrated that the model could effectively
determine the time-of-use (TOU) prices scheme and optimize the net load characteristics.
Ref. [145] adopted SLMF model in a bi-level IES programming model including upper
energy generation level and lower load level. The optimal dynamic pricing scheme was
obtained to motivate consumers to participate in load profile adjustment. SLMF model is
always adopted in single-energy provider with consumers. Compared to SLMF model, the
MLMEF models could better simulate the real energy market transactions. In Ref. [146], the
MLMF model was utilized for analyzing the multiple energies trading problem in IESs.
A number of distributed IESs lead the game and decide the unit prices of energies they
generated, while multiple energy users perform as followers. The profits of all participants
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were optimized to realize maximization in a competitive energy market. The results showed
that even one participant was provided more resources, its profit was almost unchanged.
That is, the equilibrium strategies of all participants were obtained. Ref. [147] studied the
optimal operation of all market participants in a three-level IES, which was composed
of utility companies, IESs, and users. The optimal operation of each market participant
was obtained under a dynamic pricing electricity mechanism. The results showed that
the profit tends to decrease with the increment of energy hubs, and therefore IES should
devote to raise its market competition so as not to be crowded out. Additionally, with
the rational interest coordination among different participants, the load profile could be
flattened, which was a benefit for intermittent renewables generation accommodation. In
Refs. [148,149], a non-cooperative Stackelberg game was utilized to solve the duck curve to
increase solar penetration. Likewise, Ref. [150] identified the best interactions between a
grid and buildings with Stackelberg game. The results showed that the net profits increased
by 8% and the demand fluctuation was reduced by about 40%.

Considering the diversity of configurations and demands in different IESs, it is possible
in the future that adjacent IESs can exchange energy and jointly optimize their operation
strategy to increase operational flexibility, reduce waste of surplus energy, and improve
comprehensive utilization energy efficiency. The concept of energy network is therefore
imposed, which aims to reduce the independence of a single IES and relieve the upper
energy system burden [37,38]. With the communication technology advancement, it is
possible for an IES to collaborate with neighboring IESs and complement spatio-temporal
difference between supply and demand in a global win—-win way. The upper retail energy
price as well as operation cost may also be decreased by the total demand reduction in the
region. Under this background, these IESs will have potential collaboration, and the above
autonomous non-cooperative game theory is not well applicable. In consideration of the
future energy network transaction mode, cooperative game theory has been introduced
in some work recently. The cooperative theory stresses the maximization of the collective
interest of coalition and that any individual in the coalition is increased or at least not
damaged compaired with in non-cooperative mechanism. To this end, the distribution
mechanism of reduced cost is particularly vital.

The Shapley value is a frequently used method for the profit allocation in the coopera-
tive games [151]. It is based on the participants” marginal contribution to the alliance in the
cooperation and can allocate profit in a fair way. The marginal contribution of player a;
to the cooperative alliance S is the cost or benefit of the alliance increased by participants
ijoining the cooperative alliance. It can be calculated with Equation (14). The alliance A
contains n players, and denoted as A = ay,--- ,a, . w(S;) is the probability of forming
a cooperative alliance S containing the subject a;. v(S;) denotes the cooperative surplus
of the alliance S with the participant a;. S; — 4; denotes the remaining game alliance in S
after removing a;, and the v(S; — 4;) is the cooperative surplus of the alliance without the
participation of 4;. The Shapley value ¢;(v) represents the benefit allocating to 4; for the
alliance including n participants. With that, the surplus benefit can be distributed fairly
according to the contribution of a certain participant in a quantitative way.

¢i(v) = Y w(Si)[v(S;) — v(S; — a;)] (14)

Ref. [152] adopted a cooperative game model and Shapley value to deal with multi-
ple IESs cooperation optimal operation. The results showed that the pollutants emission
and peak load were reduced by 45.59% and 27.06%, while all IESs had profit increment,
and the total profit was increased by 53.54%. Similarly, Ref. [153] studied the optimal
operation strategy of distributed PV systems with an externality-corrected mathematical
model based on Shapley value and gave a benefit analysis. However, the Shapley value
based allocation mechanism will be computationally complex and time-consuming when
there are a number of participants. Some simplified methods are therefore introduced in
view of that. Ref. [154] employed the bilateral Shapley value (BSV) model in the opera-
tion optimization of multiple prosumers integrated in a grid-connected IES. BSV solved



Energies 2021, 14, 1103

27 of 36

combinatorial explosion via bilateral-marginalization of coalition, and the results showed
that BSV could reduce calculation numbers effectively compared with the Shapley value
model. Ref. [155] proposed a simplified profit allocation method based on the contribution
of each prosumer’s participation in additional profit compared with non-cooperative mode
from the upper management perspective. Compared to the non-cooperative mode, the pro-
sumers’ costs were reduced by 4%. These simplified methods are effective in the research
cases, yet their generality is not sufficient, and the mainstream is still the conventional
Shapley value methods.

Game theory is extensively implemented into the collaborative operation optimization
of multiple neighboring sub-IESs to handle the potential interconnections in both energy
and market price. It is verified that game theory-based methods are effective in the
coordination optimization problem and provide a promising way for sub-IES operators to
realize the individual maximized interest considering others” effect.

It is noted that the market environment plays an essential role in the operational deci-
sions. Energy companies can determine different prices for different periods to motivate
consumers to adjust their consumption. Normally, the market-driven idea to coordinate
resources is mainly employed in the power system. By now, the pricing schemes for
electricity trading mainly focus on two aspects: dynamic (time-varying) pricing and static
(pre-determined) pricing. The conventional static pricing scheme can be subdivided into
the step wise pricing [156], time-of-use pricing [157], and critical peak pricing [158]. Today,
the dynamic pricing becomes a hotpot, since it can effectively enhance participation moti-
vation of consumers with market driven. It is proven that reasonable pricing mechanism
can help in easing the strain on the electricity networks during peak periods and reducing
the cost [159].

Currently, the electricity market, natural gas market, and heat energy market are
operating separately. For heat and natural gas, they are conventionally considered as a
natural monopoly product whose price is regulated by the government instead of load
variation. That is, they are commonly fixed. However, some studies show that the market-
driven pricing policy is also beneficial for the gas market and heat market in peak shaving
and cost reduction [160]. Moreover, due to the tight coupling of multiple energies in IES
through various energy conversion devices, the original separate markets are not beneficial
to realize optimal allocation of energy market sources and the greatest social benefits. For
instance, when the electricity price is high in the wholesale market while the gas price
is low, the IES operator can choose to generate power through the internal gas-driven
generation units to satisfy users’ electricity demand. In this case, the cost is reduced,
and the peak burden from upper power system is released as well. Driven by that, the
multi-energy trading market has recently drawn some researcher’s attention.

For the gas—electricity market, Ref. [161] proposed a TOU gas pricing strategy for an
IES. Gas storage, gas-fired absorption chiller, and gas-driven combustion driven engine in
IES play an important role in the operation strategy adjustment according to price signals.
The results showed that the production cost of the IES dropped by 20.54%, and meanwhile
the utility went up to 5407.02 Yuan with TOU gas pricing compared with the fixed gas
pricing. It indicated that the TOU gas pricing was more economical. In Ref. [162], an energy
management model for IES based on dynamic energy pricing for electricity and natural
gas was proposed.

Multiple trading of heat and electricity markets was also considered in some recent
work, and the benefits are proven. Ref. [163] proposed an electricity-heat coordinated
double auction retail energy market framework. By price signals guiding, the penetration
ratio of wind power was more than 80%, and the energy expenditure could be reduced by
18.76% without sacrificing users’ comfort. In Ref. [164], the conventional TOU electricity
pricing was expanded to a multiple energies TOU pricing scheme (i.e., TOU heating
pricing, TOU cooling pricing, and TOU electricity pricing) to explore the IES potential.
In comparison with fixed pricing, the load curves were smoothed. The loads of cooling,
heating, and power decreased by 0.719, 0.971, and 10.989 MW, respectively, during the
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peak period, and the difference between the peak and valley decreased by 0.121, 0.496, and
1.687 MW, respectively. Ref. [165] proposed a multi-energy market considering gas, heating,
and electricity trading simultaneously and compared the results under four different market
mechanisms (i.e., three independent energy markets, electricity—gas market, electricity—heat
market, and the proposed multi-energy market). It demonstrated that the multi-energy
market led to more profit, better end-user satisfaction, and flatter loads fluctuations.

In summary, the multiple-energy market has proven to be effective in mining potential
of peak shaving, energy saving, and profit increment by price signals from the above work.
As a medium that connects the upper energy systems and the lower end-users, IES plays a
critical role through adjusting its operation strategy. However, the multiple-energy market
concept is still in the preliminary stage of theoretical research. The various energy supply
paths, strong couplings, and varying price signals dramatically complex the problem.
There is a long way to go in transaction mechanism, pricing schemes for different energies,
privacy protection, etc.

5.2. Challenges and Prospects

The volatile multi-energy loads largely increase the dependence of IES on the upper
grid. The energy price signal is a promising method to motivate users to change their usage
pattern. From a union perspective, it provides a potential to enhance IES independence.
Since there are many participants who affect the strategy making and pursue a better
individual benefit, such as the upper grid, the multiple IESs, and end-users, the key point
lies in how to coordinate them and make an optimal strategy considering other’s effect.

Game theory is introduced to solve interest coordination among multiple IESs. Non-
cooperative game theoretic methods are employed with SLMF and MLMF model and have
been well developed. Recently, cooperative game is introduced to account for potential
cooperation among sub-IESs in a future energy network. Some challenges and prospects
are summed up as follows.

e  Models based on cooperative theory are still in their preliminary stage and some
promotions are required. A rational and fair profit allocation mechanism is vital in
cooperative games. The existing work is mostly based on the Shapley value method.
However, it is not applicable to a complex problem. Some efficient and simplified
allocation mechanism should be researched.

e  Market operation mechanism has a critical impact on the interconnection among
multiple IESs through price scheming and trading mode. In present, the trading rules
of energy trading among the internal sub-IESs are not formed. Trading mechanism
in both internal energy trading and upper transactions with networks needs further
study. The dynamic pricing scheme is a tendency to inspire more participation, and
hence novel approaches such as the real-time game model may be in need to better
satisfy the practical demand.

e  Except for electricity, the markets for heat and gas, which are conventionally regulated
by the government instead of load variation, have been proven to be effective in
mining potential of peak shaving, energy saving, and profit increment by price signals.
However, they are still in the preliminary stage of theoretical research. More work
is needed, especially in the transaction mechanism, pricing schemes for different
energies, and privacy protection.

e  The above studies concentrate on the mutual influence of IESs on energy retail prices
and assume the supply from upper energy networks are always sufficient. To obtain
more practical and accurate results, the supply limits from upper input energy systems
should be considered.

e  The users’ characteristics can be comprehensively depicted. The existing work mostly
focuses on the interest coordination among a group of IESs with identical configura-
tions and load curves, while IESs group with various types is more in accord with
practice. Diversity of sub-IESs may be considered in future research. Additionally,
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the preference and uncertainty of users and their impact on the final optimal IESs
coordination strategy are always disregarded.

6. Conclusions

Integrated energy systems combine multiple energies to improve comprehensive
efficiency and present a potential to face the energy crisis. However, due to volatile energy
demands and restricted adjustment ability internal strong couplings, most of the existing
integrated energy systems are dependent on the upper grid and cause a large pressure.
The frequent interactions between integrated energy systems and the upper grid cause
greater burden, since the renewable resources have occupied a larger and larger proportion
in the energy system and at last may become dominant to reduce the fossil utilization.
These weather-dependent generations are less controllable and flexible, and the system
security and stability are hence more easily influenced by load fluctuations. To have better
adaptability and relieve the grid burden, it requires the integrated energy system to increase
independence and reconcile benefit.

This paper summarizes the existing work, which contributes to this aim from both
directions of individual efforts and union efforts. More concretely, this study has systemati-
cally reviewed three aspects including the general formulation of integrated energy system
optimal operation (individual benefit pursuit), individual efforts (i.e., handling methods
with high proportional renewable energies to reduce interactions and exploiting the stor-
age potential of multiple timescale characteristics of different energy flows to improve
flexibility), and union efforts (coordination among multiple participants to manage load
profile and exchange resources to realize energy complementary at the IES level).

(1) In terms of uncertainty handling, uncertainty modeling methods and multiple time-
scale dispatching strategy are utilized to jointly eliminate the adverse impact. At
present, the data-driven uncertainty methods are emerged and fast developed to
solve the problem of probability density distribution deficiency and the over con-
servativeness in conventional methods. Deep theoretical study is needed on the set
of some critical parameters. For time-scale strategy, this is the optimum dispatch
period selection for integrated energy system optimal operation with considerations
of distinguishing dynamic characteristics of energy flows.

(2) In terms of hybrid energy flows characteristics, gas—electricity integrated energy
systems and heat-electricity integrated energy systems, as well as heat-gas—electricity
integrated energy systems are reviewed. The main work focuses on the depiction
of networks to reflect slow response characteristic of heat and gas. For both, the
steady-state model is easy to implement and can be utilized when the accuracy is not
concerned. Dynamic models will also be encouraged, as if it can be formulated in
a tractable form. Some simplified or equivalent models seem to be efficient, which
strike a balance between the tractability and accuracy, while the general form and
verification need to be further explored.

(3) In terms of multiple participants’ efforts, game theory is adopted for the interest
coordination problem. Cooperative optimization operation of different integrated
energy systems is a trend for the urgent need under an energy network scenario
in future. A rational and fair allocation mechanism is critical, and more work is in
need. Additionally, the market operation mechanism plays an important role in the
process. The dynamic pricing scheme is promising to encourage more flexible sources
participants. More work can be done under this framework, especially with a multiple
energies trading market.

Overall, the integration and interconnection of multiple energies in an integrated
energy system greatly complicate the operation optimization problem, especially under a
diversified complex trading market environment. This paper firstly aims at the uniqueness
of integrated energy systems, concluding the effort directions considering independence
and benefit to cater for a renewable energy dominated energy structure. This paper makes
a thorough survey of each aspect to draw on our sights in possible solutions to existing
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barriers and future directions. Through this paper, researchers are able to master the process
of the most concerning issues in this field and be inspired for further research orientations.
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