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Abstract: The Chinese government has launched a guideline for carbon emissions up to the peak
(CEUP) in the 2030 target. The electric power sector has to make its own contributions to the national
CO2 emissions mitigation target. In this study, a patron–client interactive optimized (PCIO) model
is proposed to investigate the regional energy–water–carbon nexus optimization under the policy
background of the CEUP target. Inner Mongolia, the largest energy base in China, which is also facing
the prominent contradiction including the energy production and serious environmental problems,
is chosen as a case study. Multiple uncertainties, including the fuel price uncertainty and output of
the wind and solar power, are considered to make the optimization process more realistic. Results
show that coal-fired power will gradually be substituted by the gas, wind, and solar power in Inner
Mongolia to reach the CEUP target. The CO2 capture and storage technology and air-cooling systems
will play important roles, especially under the strict water policy scenario. However, the achievement
of the CEUP and water-saving target will be at the expense of high system costs. The PCIO model
makes it possible for the decision-maker to make flexible strategies to balance the CEUP target and
saving system costs. The results have demonstrated the validity of the PCIO model in addressing the
hierarchical programming problems.

Keywords: energy–water–carbon nexus; bi-level programming; uncertainty; carbon emissions peak

1. Introduction

China has announced to the world that in 2030, carbon emissions will reach their peak
so that it can make effective contributions to the global CO2 emissions target. This target is
China’s national pledge to reduce carbon emissions, which will further help China switch
the extensive economy mode to the low-carbon economy mode. To achieve this target,
all sectors should assume responsibility and undertake the corresponding systematic
reduction in CO2 emissions. The electric power industry is the major CO2 emissions
contributor in China, which is responsible for 44% of the total CO2 emissions in 2015 [1].
This amount is 1.5 times higher than that in the United States (US) and 2.5 times higher
than that in European Union (EU), while China’s electricity consumption per capita only
accounts for a quarter of that in the US and one-half of that in EU [2]. The electric power
industry in China needs to make great efforts to optimize its structure further and improve
the energy efficiency so that the CO2 emissions up to the peak (CEUP) target could be
achieved as scheduled.

Thermal power, especially coal-fired power, is still in the dominant position in China’s
electric power system (EPS). In 2017, the installed generating capacity rose by 7.6% to
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over 1770 GW; among them, over 60% was thermal power [3]. Although the Chinese gov-
ernment has promulgated a few enforced policies to remove inefficient generation units,
some studies have pointed out that there would be little CO2 reduction and large reduction
fees during 2015–2020, and a lock-in effect during 2015–2030 [4]. To guarantee the CEUP
target will be achieved by 2030, there are some key strategies: First, thermal power should
further promote energy efficiency and shut down the outdated production facilities [5].
Second, optimize the power supply structure further, and expand the application scope
of the renewable energy, such as wind and solar power, instead of the new installation
of thermal power [6]. Third, it is suggested that the CO2 capture and storage technology
(CCS) have vigorous development to assist the CO2 emissions mitigation target, for this
technology can safely capture and store about 90% of the CO2, which is a key measure for
the sustainable use of large-scale fossil fuels [7]. However, the high cost of CCS technology
poses the main barrier to its widespread application as the CO2 control strategy. So not
only for the power structure optimization but also for the application of CCS to achieve
the CO2 mitigation target in 2030, scientific planning is important and essential. In the
meanwhile, as the thermal power plants in China are mainly distributed in arid and semi-
arid regions, the water withdrawals of the thermal power plants have become a significant
issue. The regional contradiction between energy supply and water resource consumption
is prominent, especially in recent decades [8]. In this way, investigating a scientific frame-
work, including the regional electric power structure adjustment, CO2 emission mitigation,
and water withdrawal saving optimization, which is called the energy–water–carbon nexus
optimization under the 2030 carbon emission up to the peak target, is rather important.

The nexus studies have gradually become the research hotspot in recent years. Many stud-
ies focused on the energy–carbon nexus or the energy–water nexus. Gao et al. [9] first un-
covered the CO2 emission trajectory of China’s pharmaceutical industry and then identified
the key driving forces of its emission growth. Anwar et al. [10] investigated the tourism and
natural resources in energy–growth–CO2 emission nexus for 51 “Belt and Road Initiative (BRI)
countries” over 1990–2016. Liu et al. [11] explored the energy saving/water saving of different
policies in Beijing in the future and its nexus effect based on 26 scenarios. Zhai et al. [12]
investigated the three main cereals (i.e., wheat, maize, and rice), their potential environmental
footprint and spatial variation, and key factors in 2017 in China. However, studies on the
energy–water–carbon nexus, especially the nexus studies in the EPS, are still limited. Most ex-
isting energy–water–carbon nexus studies focused on the food supply security [13], or the
ecological network system [14]. Although Liu et al. [15] and Wang et al. [16] studied on
the regional EPS planning concerning the energy–water–emission nexus, as their planning
target just served the regional electric power structure adjustment strategy, they could not
give effective guidelines and policy suggestions for the CEUP target of China. In this way,
investigating available ways for the regional energy–water–carbon nexus optimization under
the policy background of the CEUP target is important and urgent, for they can provide
scientific guidance for the path of realizing the CEUP target in China.

Most studies carried out on the regional nexus studies were based on the optimized
methods. Piao et al. [17] built a single-objective stochastic simulation–optimization model
to deal with the energy–emissions problems in Shanghai’s power sector, including the
energy supply uncertainty. Majid et al. [18] proposed a multi-objective mixed-integer
linear programming model to investigate the energy–water nexus in building a system.
However, the single objective cannot effectively deal with problems with conflicting ob-
jectives in the nexus studies. Although the multi-objective method has more than one
objective to represent different targets simultaneously, each objective is on the same level.
It also has difficulties in dealing with problems with the hierarchical structure. Differ-
ent from the multi-objective programming method, bi-level programming theory has the
advantages of being able to tackle interactive decision-making units within a predomi-
nantly hierarchical structure [19], which can effectively deal with dual conflicting objectives
in the regional energy–water–carbon nexus study. This paper proposes a patron–client
interactive optimized (PCIO) model based on the bi-level programming to explore the re-



Energies 2021, 14, 1067 3 of 21

gional energy–water–carbon nexus optimization under the background of the CEUP target,
and investigates the best tradeoffs in the regional EPS in China. Multiple uncertainties,
including the fuel price and the output of the wind and solar, are taken into consideration
in this study. Inner Mongolia, the largest energy base in China, is chosen as a case study to
verify the availability and efficiency of the proposed PCIO model.

2. Methodology
2.1. The Algorithm of PCIO Model

Bi-level programming (BLP) is a special kind of statical Stackelberg game with two
decision-makers at two different levels [8], a case of two-person, non-zero-sum, and full
information game. It has the superiority in tackling problems with a hierarchical framework
and helps to get a compromised solution between two levels [20]. The patron–client
interactive optimized (PCIO) model was formulated based on the framework of the BLP
model. The patron (upper) level of the PCIO model is to maximize the renewable power
penetration ratio in Inner Mongolia; The client (lower) level of the model is to minimize the
system cost. A fuzzy satisfaction degree method [21] is introduced to solve the PCIO model.
As the values of the decision variables and function of the patron (client) level will be the
in-put parameters of the client (patron) level to build the triangle membership function,
both levels will exert influences on the other level. Coupled with the carbon emission and
water withdrawals restraints in two level, the proposed PCIO model is applied to optimize
the energy-water-emissions nexus in Inner Mongolia. The flow chart of algorithm is shown
in Figure 1.

The algorithm of the fuzzy satisfaction degree method for the PCIO model is shown below:
The upper-level objective and its constraints:

Min f1(x1, x2) = C11x1 + C12x2 (1)

s.t (x1, x2) ∈ F1 = {(x1, x2)|A1x1 + A2x2 ≤ b, x1 and x2 ≥ 0} (2)

The lower-level objective and its constraints:

Min f2(x1, x2) = CT21
x1 + CT22

x2 (3)

s.t (x1, x2) ∈ F2 = {(x1, x2)|A1x1 + A2x2 ≤ b, x1 and x2 ≥ 0} (4)

µx1 =


[
x1 −

(
xU

1 − P1
)]

/P1, i f xU
1 − P1 ≤ x1 ≤ xU

1[(
xU

1 + P1
)
− x1

]
/P1, i f xU

1 ≤ x1 ≤ xU
1 + P1

0, otherwise

(5)

µ f1( f1(x)) =


1, i f f1(x) > f U

1[
f1(x)− f ′

1

]
/
[

f U
1 − f ′

1

]
, i f f ′1 ≤ f1(x) ≤ f U

1

0, i f f1(x) < f ′1

(6)

µ f2( f2(x)) =


1, i f f2(x) > f L

2

[ f2(x)− f ′2]/
[

f L
1 − f ′2

]
i f f ′2 ≤ f2(x) ≤ f L

2

0 i f f2(x) < f ′2

(7)

Max λ

s.t A1x1 + A2x2 ≤ b[(
xU

1 + P1

)
− x1

]
/P1 ≥ λ[

x1 −
(

xU
1 − P1

)]
/P1 ≥ λ

µ f1( f1(x)) =
[

f1(x)− f ′1
]
/
[

f U
1 − f ′1

]
≥ λ (8)
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µ f2( f2(x)) =
[

f2(x)− f ′2
]
/
[

f L
2 − f ′2

]
≥ λ

x1 and x2 ≥ 0, λ ∈ [0, 1]

where (xU
1 ,xU

2 , f U
1 ) is the optimized solution of Equation (1). (xL

1 ,xL
2 , f L

1 ) is the optimized
solution of Equation (3). P1 is the maximum tolerances around xU

1 . f ′1/ f ′2 is the re-
sult when the optimized decision variables of Equation (3)/Equation (1) is put into
Equation (1)/Equation (3). µx1 ,µ f1( f1(x)) and µ f2( f2(x)) are three membership functions,
which is built to restrain the minimum acceptable degrees of satisfaction λ. If the upper-
level decision maker is satisfied with the solution in [22], a satisfactory solution is reached.
Otherwise, new membership functions for the decision variables and the objective function
will be generated and the computation process is repeated until a satisfactory solution
is reached.
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Figure 1. The flow chart of the PCIO model.

2.2. The PCIO Model

The functions, decision variables and parameters are presented in Table 1. The detailed
information of each variable and parameter are shown close to the PCIO model.
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Table 1. The decision variables and parameters of the PCIO model.

Functions Decision Variables Parameters

PRSjt Pelejt PRSjt YCjt
fcos t ηjt ERCjt ECGjt

AESit Ljt Pit
γjt CPWpt WFjptk

µe(ω1) µjt OCTjt
RE ECGjt PCIth
ω2 YCCjt CETt

AWSpt GOCEjt FSjt
δjtk BGCjt CIt
Pth TELit TWLpt

SOEth FTCit DEMth
TRjt SDjt CEm2005

WCEpjt TSWpt
EPPjt

2.2.1. Patron Objective

The patron-level objective emphasizes the maximization of renewable power penetra-
tion during the planning periods in Inner Mongolia, which is stated as:

Max frep =
4

∑
j=3

Pelejt/
4

∑
j=1

Pelejt (9)

Pelejt = (PRSjt + ηjt ×YCjt)× Ljt (10)

where frep denotes renewable power penetration in the electric power system. Pelejt denotes
the amount of electricity generated by power conversion technology j. j = 1, 2, 3, and 4 rep-
resent coal-fired power, gas-fired power, wind power, and photovoltaic power, respectively.
PRSjt denotes the pre-regulated installed capacity of the electricity schemes (MW). ηjt denotes
the binary variables to identify whether a capacity expansion action of power conversion tech-
nology j should be executed. YCjt denotes the expansion capacity for conversion technology
j (MW). Ljt is the utilization hours of conversion technology j (hour).

Considering the relationship between the path of achieving the carbon emissions peak
and the harmonious development of the local economy, constraints of the environment–
economy performances are taken into account at the patron level:

Coordinated constraints for the environment–economy performances [23]:

µ =
√

µe(ω1) · µc(ω2) ≥ µmin (11)

where µ and µmin denote the optimal and the minimum regional harmonious development
index, respectively, in which the predetermined value of µmin was 0.8 in this model [23].
Details about the synergetic relationship for the environmental and economic performances
of the systems are presented as follows:

Membership function µe(ω1) denotes the coordinated degree between electricity
supply and demand:

µe(ω1) =

{
1 ω1 ≥ 1

exp
{
−2 · (ω1 − 1)2

}
ω1 < 1

(12)

where ω1 is defined as the ratio of total power generation to power generation amount in
2005, which is expressed as:

ω1 =
4

∑
1

Pelejt/Pele2005 (13)
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where Pele2005 denotes the power generation amount of Inner Mongolia in 2005.
Membership function µc(ω2) denotes the coordination degree between regional eco-

nomic performance and carbon emissions level, stated as:

µc(ω2) = exp
{
−4 · (ω2 − 1)2

}
(14)

where ω2 is the ratio of carbon emissions to regional economic performance, presented as

ω2 =
RE/REO
RC/RCO

(15)

where REO and RCO denote the reference coefficients for the carbon emissions and the
economic cost of the systems. In this study, the carbon emissions and the economic cost of
Inner Mongolia’s electric power system in 2005 were chosen as the reference coefficients,
respectively. RE and RC denote the actual value of carbon emissions and system cost in
different years.

Constraints for total CO2-emissions are as follows:

RE =
2

∑
j=1

(Pelejt × ERCjt)×
(
1− γjt × µjt

)
(16)

RE ≤ DLCt, ∀t (17)

Pelejt × ERCjt ×
(
1− γjt × µjt

)
≥ ECGjt, ∀j, t (18)

where ERCjt denotes CO2-emissions rate by power conversion technology j in period
t (tonne/MWh), µjt is the CO2 reduction efficiency through the CCS technology in period
k (%). γjt is the proportion of the thermal power plants with the CCS devices (%). DLCt is
the CO2 emission limit from the thermal power plants in period k. ECGjt is the excess CO2

generated from power conversion technology j in period k (103 t)

2.2.2. Client Objective

Min fcos t = (1) + (2) + (3) + (4)− (5) + (6) + (7) (19)

The system cost contains seven sectors, including the purchasing cost for energy and
water resources, the cost for capacity expansion and electricity transmission, the cost for
CO2 emissions mitigation, etc.

where (1) the cost for purchasing energy and water withdrawals:

I

∑
i=1

Pit × AESit + CPWpt × AWSpt (20)

AWSpt =
2

∑
j=1

WFjptk × (PRSjt × δjtk) +
2

∑
j=1

WFjpt3 × ηjt ×YCjt (21)

(2) the operating cost for power generation:

J

∑
j=1

Pelejt ×OCTjt (22)

(3) the penalty for power shortage:

H

∑
h=1

Pth × PCIth × SOEth (23)
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(4) the cost for capacity expansion:

J

∑
j=1

Ljt ×YEjt ×YCjt ×YCCjt (24)

(5) the revenue for electricity transmission:

J

∑
j=1

Pelejt × CETt × TRjt (25)

(6) the cost for CO2 capture and storage:

CIt ×
2

∑
j=1

(PRSjt + ηjt ×YCjt)× γjt +
2

∑
j=1

Pelejt × BGCjt × γjt − FSjt (26)

(7) the penalty for excess CO2 emissions:

2

∑
j=1

H

∑
h=1

Pth × ECGjt × GOCEjt (27)

where i denotes the type of energy, i = 1, 2 for coal and natural gas, respectively. AESit denotes
the amount of energy supply from source i in period t (PJ), Pit is the price of coal and natural
gas in period t (106 RMB¥/PJ). CPWpt denotes the cost for water in period k (106 RMB¥/tonne),
AWSpt is the number of water withdrawals in period t under the water supply policy scenario
p (tonnes). p denotes the water supply policy (flexible and strict). WFjptk denotes the water

withdrawal factor of different power generating technologies (m3/MWh). k is the type of
cooling technologies, k=1,2,3 denotes the cycling cooling, one-through, and air-cooling system,
respectively. δjtk is the kth proportion of cooling technologies (%). (2) OCTjt denotes the

operating cost for power conversion technology j (106 RMB¥/PJ). (3) Pth denotes the prob-
ability of different electricity demand-level h (%). PCIth is penalty cost for power shortage
(103 RMB/MWh). SOEth is the amount of power importing from other regions when the
power shortage occurs (MWh). (4) YCCjt denotes the expansion cost for conversion technology

j in period t (103 RMB¥/MW). (5) CETt denotes the revenue per unit of electric power transmit-
ted to other regions. TRjt denotes the transmission ratio of total power generation (%). (6) CIt
is the construction investment for carbon capture and storage (CCS) technology (RMB/MW).
BGCjt is the benchmark technology cost for CCS technology (RMB/MWh). FSjt denotes the
financial subsidy in period t. (7) GOCEjt denotes the operating cost for excess CO2 released

from power conversion technology j in period t (106 RMB¥/tonne).
The constraints for resource availability:

0 < AESit ≤ TELit, ∀i (28)

0 < AWSpt ≤ TWLpt, ∀p, t (29)

TELit and TWLpt denote total energy resource supply level to generate electricity
in period t (tonne) and total water resource supply level to generate electricity in period
t (tonne), respectively.

The constraints for energy supply and electricity generation:

I

∑
i=1

AESit × FTCit ≥
2

∑
j=1

Pelejt, ∀t (30)

FTCit denotes the unit of electricity generation per unit of energy carrier for energy
i (GWh/PJ).
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The constraints for power demand-supply balance:

J

∑
j=1

(
Pelejt − SDjt

)
≥ DEMth, ∀j, h (31)

SDjt denotes power loss for power conversion technology j in each planning period,

DEMth denotes the electricity demand in Inner Mongolia in each period (103 GWh).
The constraints for realizing CO2 emissions peak:

2

∑
j=1

Pelejt × ERCjt × (1− γjt × µjt) ≤ CEm2005 (32)

CEm2005 denotes the CO2 emissions of Inner Mongolia from the electricity industry in
2005 (103 tonne).

The mass balance for water withdrawals:

J

∑
j=1

WCEpjt × Pelejt ≤ TSWpt (33)

J

∑
j=1

WCEpjt × Pelejt = AWSpt (34)

WCEpjt denotes the water withdrawals per unit of electricity generation (tonne/GWh),
TSWpt is the total water resource supplies underwater withdrawal policy p (tonne).

The constraints for expansion capital:

ηjt ×YCjt ×YCCjt ≤ EPPjt, ∀j, t (35)

YCCjt denotes the expansion cost for conversion technology j in period t (103 RMB¥/GW),

EPPjt denotes the power plants expansion fees in period t (106 RMB ¥).
The constraints for the interval-integer variables:

ηjt

{
= 1 i f capacity exp ansion is executed
= 0 i f otherwise

, ∀j, t (36)

2.3. Uncertainty Analysis
2.3.1. Measuring the Fuel Price

The fuel price here includes two kinds of fuels, coal and natural gas. We assumed that
both of their prices pF followed the Geometric Brownian Motion [24]:

dpF = αF pFdt + χF pFdz (37)

where pF denotes the fuel prices; αF is the drift parameters; χF is the variance parameter,
and dz denotes the independent increments of the Wiener process.

dz = γt
√

dt (38)

The discrete approximation to (1) is as follows:

pF(t + ∆t) = pF(t) exp(αF∆t + χF(∆t)1/2γt) (39)

where γt is a random variable, and γt ∼ N(0, 1), E(γi, γj) = 0, ∀i, j, i 6= j.
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2.3.2. Measuring the Output of Wind Power and PV

(1) The output of wind power
It is well established that wind speed distribution follows the Weibull probability

density function (PDF) [25,26]. The probability of wind speed v (m/s) following Weibull
PDF with shape factor (k) and scale factor (c) is given by:

fv(v) = (
k
c
)(

v
c
)
(k−1)

e−(v/c)k
for 0 < v < ∞ (40)

The mean value of Weibull distribution is defined as:

Mwbl = c · Γ(1 + k−1) (41)

where gramma function Γ(x) is described as:

Γ(x) =
∞∫

0

e−ttx−1dt (42)

In this study, the empirical values of the Weibull shape (k) and scale parameter (c) in
three planning periods are different. In this way, the wind power output in three periods
can be simulated. The function of wind speed (v) is described as:

Pw(v) =


0, for v(vin and v) vout

Pwr(
v− vm

vr − vm
) for vin ≤ v ≤ vr

Pwr for vr < v ≤ vout

(43)

where vin, vr, and vout are the cut-in, rated, and cut-out wind speeds of the turbine,
respectively. Pwr is the rated output power of the wind turbine. The various speed values
were vin = 3 m/s, vr = 16 m/s, and vout = 25 m/s. Figure 2 was obtained through Monte
Carlo simulation by the sample size of 10,000.
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(2) The output of solar power
The output of the solar power depends on the solar irradiance (G), which follows the

lognormal PDF [27]. The probability of solar irradiance (G) following lognormal PDF with
mean µ and standard deviation σ is:

fG(G) =
1

Gσ
√

2π
exp

{
−(ln x− µ)2

2σ2

}
for G > 0 (44)

In this paper, µ = 6 σ = 0.6 and G = 483 W/m2 were based on [28].
The mean of the lognormal distribution is defined as:

Mlgn = exp(µ +
σ2

2
) (45)

The solar irradiance (G) to energy conversion for solar PV is given by [29]

Ps(G) =

{
Psr(

G2

GstdRc
) for 0 < G < Rc

Psr(
G

Gstd
) for G ≥ Rc

(46)

where Gstd is the solar irradiance in a standard environmental set as 800 W/m2. Rc is a
certain irradiance point set as 120 W/m2. Psr is the rated output power of the solar PV unit.
Similarly, Figure 3 was obtained through Monte Carlo simulation by the sample size of
10,000 [28].
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3. Scenario Setting

This study mainly concerned three key time nodes in the path of achieving the carbon
peak of China during the energy–water–carbon nexus optimization in Inner Mongolia,
including 2021, 2025, and 2030. Different non-renewable and renewable technologies were
taken into consideration to meet not only the electric power demand and the CO2 emis-
sions mitigation target but also the water conservation goals. As the Chinese government
announced that by 2020, China’s CO2 emissions intensity targets would fall by 40%~45%
based on 2005’s level, by 2030, the CO2 emissions intensity targets would fall by 60%~65%
based on 2005’s level, and the carbon emissions peak of China would be achieved. In this
study, we assumed that the upper bound of these targets could be achieved as scheduled.
Three CO2 emissions mitigation scenarios were set based on this official statement in these
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planning periods. The CO2 emissions’ intensity in 2005 was the baseline. For example,
GHG intensity will decrease by 45% of that in 2005 in period t = 1 (2021), and it will be 60%
and 65% of the baseline in the next two periods, respectively. Meanwhile, three different
electricity demand levels (low, medium, and high) with different occurrence probability
were designed to cover different electricity supply likelihoods. As Inner Mongolia is lo-
cated in a typical semi-arid region with drought-stressed water resources, two possible
water conservation policy scenarios were taken into account, including three main cooling
technologies in each scenario. The mix of these scenarios will help investigate the energy–
water–carbon nexus during the achievement of the carbon emissions peak path in 2030.
The detailed, flexible, and strict data were based on the national water intake standard:
Water Quota Part I: Thermal Power (GB/T18916) [30] and Water Saving Enterprise: Ther-
mal Power Industry (GB/T26925-2011) [31], which is shown in Table 2. The pre-regulated
installation capacity of each power technology is presented in Table 3. The key parameters
of the PCIO model are shown in Table 4.

Table 2. The water withdrawal factor of different technologies under two scenarios (m3/MWh).

The Cooling Form of
Different Technologies

Unit Capacity ≤ 300
MW

Unit Capacity > 300
MW

The flexible scenario
The cycling cooling system 1.85 1.68

The one-through system 0.41 0.33
The air-cooling system 0.45 0.37

The strict scenario
The cycling cooling system 1.7 1.49

The one-through system 0.36 0.29
The air-cooling system 0.39 0.31

Table 3. The pre-regulated installation capacity in Inner Mongolia (MW) [32].

t = 1 t = 2 t = 3

Coal-fired power 34,632 32,900.4 31,255.38
Gas-fired power 665.2 700.5 753.46

Wind power 12,984.21 15,364.34 20,136.54
Solar power 3658 5000 5600

Table 4. Economic and technological data for different power plants.

Time Period

t=1 t=2 t=3

Cost to purchase domestic energy carrier (103 RMB¥/TJ) and water resources (RMB¥/Tonne)
Coal products 32.24 41.75 48.53

Coal gas 52.34 60.73 65.53
Water resources 5.5 6.2 10.4

Cost for the operation of electricity conversion technology (106 RMB¥/MWh)
Coal-fired 16.52 18.43 20.12
Gas-fired 22.18 24.32 25.25

Wind-power 77.32 85.45 90.23
Solar-power 68.55 74.31 77.64

The construction investment of CCS technology (103 RMB¥/MW) [33]
3196 2854 2573

The benchmark technology cost for CCS technology (RMB¥/MW)
100.5 90.5 85
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Table 4. Cont.

Time Period

t=1 t=2 t=3

Cost for capacity expansion (RMB¥/MW)
Coal-fired 18.58 22.36 32.14
Gas-fired 22.34 27.15 33.44

Wind-power 96.72 101.24 105.37
Solar-power 100.32 104.51 107.32

Energy conversion efficiency (103TJ/MWh)
Coal-fired 9.3 9.9 11.4
Gas-fired 8.7 9.2 10.5

The average utilization hours of renewable technologies (hours)
Wind-power 2300 2500 2700
Solar-power 2600 2800 3000

4. Result and Discussion
4.1. The Uncertainty Simulation in Different Periods

(1) The fuel price prediction
Figure 4 indicates that the fuel prices from 2015 to 2030 in Inner Mongolia showed

an upward trend for both coal and natural gas. However, the performances of the coal
price and natural gas were fairly different. Generally, the price of coal showed an increas-
ing trend over the whole planning horizon, while they had relatively dramatic fluctua-
tions under some scenarios. The highest coal price in Inner Mongolia would increase
to 726.18 yuan/tonne in 2030. The variation of the natural gas price showed different
performances before and after 2022. It showed that from 2015 to 2022, the natural gas
price had an apparent increasing trend, while it showed fluctuations after 2022 until 2030,
which means that uncertainty during the prediction process made it difficult to forecast
the nature gas price after 2022. To make the price prediction of two fuels available for the
PCIO model, the price values in each period using the mean value under 16 scenarios were
adopted to avoid the predictive deviation.

(2) The output prediction of wind and solar power

Figure 5 shows the output prediction results of the wind and solar power in four
seasons under three planning periods. It indicates that both the output of wind and
solar power showed seasonal variation. For wind power, the simulation result showed
that spring and winter were the main seasons that generate power in Inner Mongolia.
Meanwhile, the peak output of wind power varied at different times of the day. For example,
in spring, the peak output of the wind power appeared from 5:00 to 9:00 am, while in
winter, it appeared from 20:00 to 23:00. Through the adjustment of shape factor and
scale factor in period t=2 and t=3, the output simulation in these two periods could be
executed. It indicates that the output of the wind power in t=2 and t=3 showed similar
performances. The peak output of solar power also varied at different times of the day and
different seasons.
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4.2. The Optimized Electricity Supply and Cooling Technologies

Optimized solutions for electricity supply scheme and cooling technologies in Inner
Mongolia are presented in Figure 6. It indicates that the amount of coal-fired power
showed a downward trend from t=1 to t=3, while the strict water withdrawals scenario
further decreased the amount of coal-fired power generation compared with the flexible
one. The average decreasing amplitude under each demand level would be 9%, 5%,
and 4% in period t=1, t=2 and t=3, respectively. Gas-fired power, wind power, and solar
power showed an increasing trend as time goes on to make up the power generation
shortage because of the reduction in coal-fired power. Meanwhile, the electric power
production from wind and solar power was larger in the strict water policy scenario than
in the flexible one. The phenomena could be attributed to the fact that wind power and
solar power consumed no water during the power generation process, so strict water
withdrawals policy resulted in more wind and solar power instead of coal-fired and gas-
fired power in Inner Mongolia. The distribution of three cooling technologies of coal-fired
and gas-fired power in different time periods under different water withdrawals policy
and power demand levels is also presented in Figure 5. It indicates that the air-cooling
system would play the most important role when the strict water withdrawals policy is
executed in Inner Mongolia, especially when the power demand level was medium and
high, it increased by 77.53% (medium power demand) and 82.17% (high power demand)
when t=1, 69.50% and 71.56% when t=2 and 64.74% and 57.53% when t=3 for the coal-fired
power. The phenomenon showed that the strict water policy would be a powerful push
on the application of the air-cooling system for coal-fired power. The installation capacity
of coal-fired power also showed that as time goes on, the air-cooling system will replace
the dominant position of the cycling cooling system and one through system. In 2035,
the installation capacity of coal-fired with air-cooling technology would reach 70.64 GWh
(flexible scenario) and 116.37 GWh (strict scenario). Meanwhile, the one-through system
would gradually be replaced by the other two cooling technologies.
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4.3. Capacity Expansion

The CO2 emissions up to the peak (CEUP) target and water withdrawal policies in
the planning periods may greatly impact the power sources structure in Inner Mongo-
lia. We analyzed the distributions of the generation capacity of Inner Mongolia for each
technology under four scenarios in 2030 and tried to find out the interactions between the
capacity expansion schemes and environmental limits. In Figure 7, the 65% CO2 emissions
reduction on the base of 2005 was the CO2 limit. The flexible and strict water withdrawal
policies coupled with this CO2 reduction level was chosen to investigate the mixed impact
of CO2 and water constraints on the capacity expansion in 2030. The box-and-whisker
diagram shows different impacts from different scenarios on the capacity expansion in
Inner Mongolia. The boundary closest to zero is the first quartile, the one closest to the
top indicates the 75th percentile, and the line within the box marks the median, error bars
above and below the box indicate the 90th and 10th percentiles, respectively. Moreover,
the dots above or below the error bars represent the 5th and 95th percentiles.

Results indicated that the capacity expansion of different technologies had different
appearances in mixed scenarios. Take the coal-fired power as an example, the mid hinge
turned into a lower level, which meant the average amount of capacity expansion decreased
(nearly 20%~50% reduction), and the dispersion of the distribution mainly aggregated
on the low-capacity level (less than 30 GW for the coal-fired power) when the CO2 limit
and water constraints were taken into account. The performance of the average amount
of the capacity expansion for the CO2 limit and that coupled with the flexible water was
approximately the same, although their distribution was different. When the strict water
limit was involved, the average amount of capacity expansion showed the lowest level,
which was just less than 10 GW. It indicated that the strict water policy dramatically
reduced the capacity expansion amount of coal-fired power. For the gas-fired power,
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the skewness of gas-fired turned to a higher level (increased by 40%) when the CO2 limit
was taken into account. Moreover, the capacity expansion would be further promoted
when the water limits were present, especially for the strict one.

The other two technologies show the same performance as the gas-fired power,
which was in the presence of CO2 limit, the amount of capacity expansion would be
promoted, and water limits would further increase the amount of capacity expansion.
The reason can be attributed to the fact that coal-fired power has higher CO2 emissions
and water withdrawals for cooling. The joint constraints from the CO2 emissions limit and
water withdrawals limit will lead to a substantial reduction in CO2 and water withdrawals.
Gas-fired and the other two technologies with fewer water withdrawals and emissions
will have a large potential to make up the capacity gap when the amount of coal-fired
power decrease.
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4.4. The CO2 Emissions and Water Withdrawals

The installation level of CCS devices, the amount of CO2 emissions, and the CO2
reduction levels in Inner Mongolia are shown in Figure 8. It indicates that more CCS
devices were acquired under the flexible water withdrawals scenario than the strict one.
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Compared with the flexible scenario, almost 10.19%, 15.78%, and 27.98% fewer CCS devices
were required under the strict water scenario when the power demand level was low,
medium, and high, respectively. The result indicates that strict water policy not only helps
to decrease the water withdrawals but also indirectly leads to the CO2 emissions’ mitigation
because of the reduction in the thermal power (coal-fired and gas-fired) installations.
With the help of the CCS devices, the CO2 emissions showed a decreasing trend in Inner
Mongolia as time goes on to realize the target of reaching the CO2 emissions peak of
China in 2030. For example, the amount of CO2 emissions was 10,015 × 1010 tonne in
t=1, 9634 × 1010 tonne in t=2, and 8635 × 1010 tonne in t=3 when the power demand
level was low, while when the power demand level was high, the CO2 emission was
14795 × 1010 tonne, 12,689× 1010 tonne, and 11158× 1010 tonne in t=1,2, and 3, respectively.
Meanwhile, the CO2 reduction through the CCS devices showed an increasing trend as
time goes on. Higher power demand led to more CO2 emissions reduction to meet the CO2
emissions criteria.

Energies 2021, 14, x FOR PEER REVIEW 4 of 23 
 

 

The water withdrawals and system cost are shown in Figure 9. It indicates that the 
strict water policy had an apparent effect on the reduction in water withdrawals than the 
flexible water policy. For example, the water withdrawals decreased by 41.02%, 48.28%, 
and 59.07% in t=1,2, and 3 when the power demand was low. The system cost showed an 
increasing trend as time goes on, and the result also showed that increasing power de-
mand level led to an increase in the system cost. The system cost under the flexible water 
withdrawal policy led to an average level of 16.32%, 13.76%, and 7.36% reduction than 
that under the strict policy when the demand level was low, medium, and high. The rea-
son can be attributed to the fact that on the one hand, more air-cooling technologies will 
take the place of the once-through or the cycling cooling system to reach the water reduc-
tion target, which may result in higher system cost; on the other hand, more renewable 
power technologies, whose water consumption can even be neglected but with higher 
fixed investment fees, will be applied instead of the thermal power technologies, espe-
cially the coal-fired power under the strict water policy, which will further lead to the 
increase in the system cost. Although the thermal power showed a decreasing trend as 
time goes on, more CCS devices were still necessary to achieve the more and more strict 
CO2 emissions target, and this was the third sector, which led to the increase in the system 
cost. Generally, under the triple constraints of power demand, water policy, and carbon 
emissions mitigation, more system costs should be invested to help reach the synergetic 
energy–economy–environment goals in the EPS of Inner Mongolia. 

 
Figure 8. The installation level of CCS devices and CO2 emissions (-F denotes the flexible water 
policy scenario, while -S denotes the strict water policy scenario). 

Figure 8. The installation level of CCS devices and CO2 emissions (-F denotes the flexible water policy scenario, while -S
denotes the strict water policy scenario).

The water withdrawals and system cost are shown in Figure 9. It indicates that the
strict water policy had an apparent effect on the reduction in water withdrawals than the
flexible water policy. For example, the water withdrawals decreased by 41.02%, 48.28%,
and 59.07% in t=1,2, and 3 when the power demand was low. The system cost showed
an increasing trend as time goes on, and the result also showed that increasing power
demand level led to an increase in the system cost. The system cost under the flexible water
withdrawal policy led to an average level of 16.32%, 13.76%, and 7.36% reduction than that
under the strict policy when the demand level was low, medium, and high. The reason
can be attributed to the fact that on the one hand, more air-cooling technologies will take
the place of the once-through or the cycling cooling system to reach the water reduction
target, which may result in higher system cost; on the other hand, more renewable power
technologies, whose water consumption can even be neglected but with higher fixed
investment fees, will be applied instead of the thermal power technologies, especially
the coal-fired power under the strict water policy, which will further lead to the increase
in the system cost. Although the thermal power showed a decreasing trend as time
goes on, more CCS devices were still necessary to achieve the more and more strict CO2
emissions target, and this was the third sector, which led to the increase in the system
cost. Generally, under the triple constraints of power demand, water policy, and carbon
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emissions mitigation, more system costs should be invested to help reach the synergetic
energy–economy–environment goals in the EPS of Inner Mongolia.
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4.5. The Optimized Penetration and Satisfaction Degree

The optimized result of renewable energy penetration and satisfaction degree of the
system is shown in Table 5. The renewable penetration showed an increasing trend as time
goes on, and the strict water withdrawal policy led to a higher renewable penetration rate in
each planning period. For example, in t=2, the renewable penetration rate under the strict
water policy was 3.58% more than that under the flexible one. However, the satisfaction
degree of the system, which implies that each part of the system has reached its best balance,
had different performances. The supreme satisfaction degree (λ=0.9523) appeared in t=2
under the strict water withdrawal policy, which means that the renewable penetration rate
and the system cost achieved the optimal tradeoff under the CO2 emissions reduction level
in the period t=2. The satisfaction degree helps quantize the overall system satisfaction
level. Decision-makers can evaluate and adjust their optimized strategies based on the
satisfaction degree.

Table 5. The optimized renewable energy penetration and the satisfaction degree of the system.

Time Periods

t = 1 t = 2 t = 3

Water policy scenario flexible strict flexible strict flexible strict
Optimized penetration

rate (%) 27.74 32.41 31.67 35.25 33.59 42.34

Satisfaction degree (λ) 0.8426 0.8715 0.9241 0.9523 0.9213 0.8954

5. Conclusions

This study proposed a patron–client interactive optimized (PCIO) model to investigate
the energy–water–carbon nexus optimization in Inner Mongolia under the policy back-
ground of 2030 CO2 emissions up to the peak target in China, concerning the uncertainty
of fuel price and output of the wind and solar power. PICO model not only had the ability
to tackle problems with the hierarchical relationship and achieved the proper tradeoffs
between maximizing the renewable power penetration and minimizing the system cost
but also synergistically dealt with multiple optimized targets, including the power supply
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and capacity expansion schemes, water consumption control through the combination of
different cooling techniques and CO2 emissions mitigation target with the CCS device.

The optimized results indicated that the coal-fired power showed a downward trend
during the whole planning horizon under the CEUP target in Inner Mongolia. Gas-fired and
renewable power will continuously substitute the place of coal-fired power in this region.
The strict water withdrawal policy further exacerbated the substitution effect of the coal-
fired power by wind and solar power, with an average level of 9%, 5%, and 4% in three
periods. To achieve both the CEUP and water-saving target, the CCS device and the air-
cooling system will play gradually important roles in Inner Mongolia’s EPS, especially in
the strict water withdrawal scenario, even when the coal-fired power decreases as time goes
on. However, these targets will be achieved at the expense of high system costs, which may
increase the financial burden of the local government of Inner Mongolia. The PICO model
makes it possible to make reasonable tradeoffs between maximizing the renewable energy
proportion and minimizing the system costs through the quantized satisfaction degree.
Decision-makers can make flexible strategies through the adjustment of the membership
function of the PICO model.

As Inner Mongolia is a major energy supply province, which shoulders the responsibil-
ity of transferring the electric power resource to other regions (mainly to the Jing-Jin-Hebei
region), the potential impacts on the local energy–water–carbon nexus when transmitting
energy to other regions should also be taken into consideration. Meanwhile, wind and
solar power generation curtailment may also be core concerns with respect to the CEUP
target in Inner Mongolia, which will also be investigated in our future studies.
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