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Abstract: Full-electric boats are an expression of recent advancements in the area of vessel electrifi-
cation. The installed batteries can suffer from poor cold-start performance, especially in the frigid
season and at higher latitudes, leading to driving power limitations immediately after startup. At
state, the leading solution is to adopt a dedicated heater placed on the common cooling/heating
circuit; this implies poor volume, weight, and cost figures, given the very limited duty cycle of such a
part. The Heater-in-Converter (HiC) technology allows removing this specialized component, ex-
ploiting the power electronics converters already available on board: HiC modulates their efficiency
to produce valuable heat (pseudo-cogeneration). In this work, we use the model-based approach to
design this system, which requires heating power minimization to fulfill power electronics limitations,
while guaranteeing the user-expected startup time to full power. A multistage model is used to get
the yearly vessel temperature distribution from latitude information and some additional data. Then,
a lumped parameter for the cooling/heating circuit is used to determine the minimum required
power as a function of the properties of the thermal interface material used for the battery coupling.
The design is validated on a 1:5 test bench (battery power and energy), which demonstrates how the
technology can be to scaled up to also fit different boats and battery sizes.

Keywords: batteries; thermal management; power conversion; environmental factors; energy man-
agement; modeling

1. Introduction

The electrification of vessels and other marine vehicles is gaining increasingly more
importance to reduce sea pollution, especially in near-shore areas. This is one of the key
points of the green maritime transport line of the European Green Deal [1], and many efforts
are devoted both to ship development [2] and to the adaption of port infrastructure [3]. Sus-
taining this major shift in the marine vehicle architecture requires efforts in various areas [4],
with battery-based energy storage systems being one topic of paramount importance [5].
High-density Li-ion batteries experience poor performance at low temperatures [6,7]; there-
fore, specific heating systems are a key enabling technology (KET) for electrified boats and
vehicles [8].

In full-electric boats, no internal combustion engine (ICE) exists, so resistive heaters are
used to bring batteries to their desired optimal working point from a cold-start condition;
this point is the temperature at which the battery is able to source its nominal design power
and where overload is safer, i.e., the energy storage system tolerates higher currents without
appreciable degradation of its lifetime [9]. It is not trivial to provide accurate definitions of
the key terms above, mainly due to their interdependence and different contexts of origin.
A “cold start” can be defined as a condition characterized by a “difference in temperature
from regular operating conditions” [10]. Typical “regular operating conditions” for a
LiFePO4 battery, in terms of current level, is 3C. As described in [11], this current at 10 °C
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leads to a “lifetime” of just six years, under the hypothesis of 60 full-power cycles per
year and 30% capacity loss at end of life. This lifetime is unfeasible for boats, which is
expected to last much longer (25–30 years, [12]). Therefore, currents in excess of 3C can be
achieved only by heating the battery. This also leaves room for higher transient currents,
i.e., overloads.

The time needed to reach the nominal working point depends on many factors:
dimension of the boat, harbor area, habits, and emotional condition of the driver. Few
experimental approaches to these driving cycles exist, one being described in [13]. Despite
dealing with a hybrid boat (and not a full-electric one), here a time in the order of 1100 s
(about 18 min) from start to full speed is reported. Given the fully monotonic (cubic)
relationship between demanded power and boat speed [14], this is also the time needed
to reach full power. The power needed to travel at full speed is the main design figure
for the powertrain rating [15]. During the cold-start condition, a temperature change of
several dozens of degrees Celsius is required in few minutes: the optimal working point
of the battery, in terms of power capability, is usually in the range 25 °C–40 °C, as stated
in [11] and confirmed by manufacturers’ datasheets. In fact, considering what is stated
above (10 °C starting point, optimistic condition), it yields a temperature difference of
15 °C–30 °C. This demands a high heating power (greater than 1 kW), usually provided
by a specific resistive heater, which is used only in these conditions, therefore with a very
limited duty cycle.

The problem of cold start has been extensively studied, both concerning its effects
on ICE emissions [16] and with respect to fuel cells for vehicular applications [17]. So-
lutions span several technologies: electrochemical reactions, microwaves, induction, etc.
Unfortunately, only a few of them can be readily applied to batteries, with electrothermal
films being an interesting solution [18]. In this work, the authors design a heating system
based on the innovative Heater-in-Converter technology (HiC), published on the OIS-AIR
platform [19], that has been developed [20] and patented [21]. The HiC technology is
referred to as “pseudo-cogeneration” as one or more power electronics converters, already
available on-board the boat/vehicle, are used to produce heat by selectively and temporar-
ily reducing their efficiency. The “pseudo” adjective means that it is not a real cogenerative
approach, but a sort of reverse of cogeneration: electronic converter power loss is exploited
for useful heating of the battery. This method is an interesting alternative to resistive
heating, as it can eliminate the need of a dedicated heater. From the functional point of
view, the two technologies are equivalent: both provide conversion of electric energy into
heat, which is then used for the boat needs (battery heating, in this study). Furthermore,
the applicability to the present problem is similar: in both cases the system is fully enclosed
into the e-boat, thus the sensitivity of the system to outdoor typical parameters (such as
moisture, rain, snow, etc.) is limited, being the working temperature range the main driver.
Therefore, combining this with the optimal battery working temperatures described before,
HiC can be applied to vessels operating in a wide region, i.e., any place where a cold-start
condition can be troublesome for the electric propulsion system. There is only a limit for
operation in extremely cold environments (e.g., arctic weather): HiC sinks power from the
battery to heat it, and this could not be practically possible in extremely cold weather [22].
However, resistive heating also shares the same problem.

With respect to Joule heating, HiC implies several advantages: reduction of volume
and weight connected to the heating function, reduced part count and subsequent increase
in reliability, and reduction of e-waste at vehicle end-of-life. A conceptual comparison of
the two e-boat electric layouts is given in Figure 1 to clarify the difference between the
use of a specific Joule effect heater and the HiC approach. A preliminary assessment of
HiC performance and limitations is given in [20], where a buck converter (though not for
automotive applications) based on this technology is benchmarked and analyzed.



Energies 2021, 14, 1022 3 of 26

BATTERY

DC/DC DC/AC
eMOTOR

PROPELLERAUX LOADS

HEATER

COOLER

(a)

DC/DC DC/AC
eMOTOR

PROPELLERAUX LOADS

COOLER

BATTERY

HiC-enabled HiC-enabled

(b)

Figure 1. Simplified diagrams for e-boat architectures: traditional approach based on a dedicated Joule heater (a) and
innovative pseudo-cogeneration approach by Heater-in-Converter technology (b). The color of the interconnection denotes
the type of energy transfer: blue for electric, red for thermal, and brown for mechanical. The wavy lines represent the heat
flux: green for normal operation and orange for heating during cold start. The HiC-enabled components (highlighted in
light blue) in subfigure (b) fulfill the heating function, thus allowing removal of the heater; it is not mandatory that all the
converters are HiC-enabled. The heating flux to DC/DC, DC/AC, and motor is omitted for better clarity of the graphical
representation.

HiC can modulate the power electronics converters (PECs) efficiency by specific
Active Gate Drivers (AGDs) installed in place of the common ones; they drive the power
components in a less efficient way by manipulating gate voltage or device current in a
controlled fashion. This modification has a limited footprint on the cost and complexity
of the system, and enables a plurality of useful techniques. For example, the adjustable
loss can be used to reduce the thermal cycles amplitude undergone by the devices, thus
improving their reliability, or to heat some system which needs specific climatic conditions,
such as, indeed, batteries during cold start. The power loss which can be generated by
HiC in addition to the nominal one of the PEC has an upper limit imposed by the safe
operation of the whole converter: devices, boards, passive components, and chassis must
remain below their critical temperatures. This temperature limitation becomes a power loss
limitation in dependence of the specific properties of the thermal interfaces. In fact, PECs
are constituted by layers of different materials (power device/module, heatsink, board,
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etc.), each of which exhibits a specific thermal resistance, i.e., a temperature difference per
unit of power traversing the surface of heat exchange. Therefore, to design an effective HiC
system, the thermal interfaces that are under system designer’s control (converter–liquid
and liquid–battery) must be carefully designed, by choosing the most appropriate Thermal
Interface Material (TIM); this allows achieving the target temperature change in the battery
with minimum power loss, thus completely removing the need for a specific heater.

All this considered, to properly size the HiC-based heating system, it is required to
determine its thermal load for the expected working region and the starting temperature
distribution over the year. The difference between the target temperature of the battery and
this distribution gives the distribution of the needed temperature variation over a time span
of one year. This is important to limit potential overdesign arising from a worst-case sizing
of the system. To accomplish this target, a model-based approach is used: a complete model
of the environment where the target system works is given, starting from its latitude and
few historical data about the local weather (transfer function from air to water temperature),
to get distributions of air, water, and, ultimately, boat interior temperatures. The validation
of this chain of models is done partly by using data available in public repositories and
partly acquired directly on a test boat, docked near to Ravenna (Italy). To determine the
required design power, the boat temperature distribution is matched with the maximum
current (or power) vs. temperature–SoC function of the battery and with the typical time
for the boat to reach the nominal speed and power. This information, coupled with a
thermal model validated on the data coming from a reduced scale heating-and-cooling
system, allows us to precisely determine the heating power requirement to guarantee the
heating time, as a function of the thermal impedance of the coupling between the battery
and its plates. The thermal test bench has a battery pack in 1:5 scale in terms of power and
energy capacity, with respect to the typical powertrain of a seven meter long boat.

This study is pursued in the “PSEudo-COgeneration for Battery heating on electric
and hybrid Boats” (PSECOB2) project. As it is funded by the Interreg ADRION initia-
tive, most of the data presented in this work refer to the Adriatic-Ionian area of Italy as
Figure 2 illustrates; Tables 1 and 2 summarize the typical air and water temperatures of the
studied cities (mean values of the year 1999–2019 period [23]). Nevertheless, the models
provided were also partly validated in other locations and supply location-independent
generalization of the proposed solution to other areas.

Figure 2. The ADRION region of Italy, corresponding to the Adriatic and Ionian seas. The seven
studied coastal cities in the region are highlighted (see Tables 1 and 2 for typical temperatures).
Adapted from the work in [24].
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The following of this paper is structured to describe all the used models in Section 2,
the results of which are reported in Section 3. The research outcomes are discussed and
commented thoroughly in Section 4, and final conclusions are drawn in Section 5. Only the
model for solar irradiance from latitude information is reported in Appendix A, as it has
been part of the state-of-the-art for a long time and is presented just for clarity.

Table 1. Typical air temperatures of ADRION cities (mean values of year 1999–2019 period [23]).

City Ancona Bari Otranto Ravenna Taranto Venezia Vieste

Tmin (°C) 4.67 6.977 7.93 1.04 7.01 2.47 7.89
Tmax (°C) 28.88 28.23 29.52 28.73 31.91 27.76 28.56
Tmean (°C) 15.76 17.45 17.96 14.78 18.33 15.01 17.22

Table 2. Typical sea water surface temperatures of ADRION cities (mean values of year 1999–2019
period [23]).

City Ancona Bari Otranto Ravenna Taranto Venezia Vieste

Tmin (°C) 7.48 10.22 11.69 7.32 11.66 6.72 9.27
Tmax (°C) 26.21 26.69 27.45 27.34 27.04 26.95 27.37
Tmean (°C) 16.64 18.18 18.82 17.02 18.93 16.52 17.86

2. Materials and Methods

The core of this work is the model-based design process for the pseudo-cogenerative
heating system to be used during the cold-start phase. The main aim is to minimize the
required heating power, so that the whole heating stage is sustained by the HiC-equipped
PECs on board. Several models are implemented and interconnected to reach this objective:

• Latitude to solar power model (LSPM), to determine the solar irradiance (i.e., the
power per unit of area) received at the latitude of usual operation of the vehicle.

• Sun power to air temperature model (SPATM), to estimate the air temperature from
the solar irradiance.

• Air temperature to water temperature model (ATWTM), to estimate the water tem-
perature with respect to the air temperature.

• Boat temperature model (BTM), to forecast temperature distribution seen by the
onboard battery.

• Battery limitation model (BLM), to identify the target working temperature for the
battery, with respect to battery temperature and state of charge (SOC).

• Battery heating/cooling model (BHCM), to infer the required power from HiC tech-
nology, without the heater.

Their relationships are graphically represented in Figure 3. The validation and source
data are gathered from different origins, depending on each specific model:

• LSPM: PhotoVoltaic Geographical Information System (PVGIS) simulator [25], devel-
oped by the European Joint Research Center and available at its official website [26],
open-access.

• SPATM and ATWTM: Italian National Tide Gauge Network of ISPRA (Institute for
Environment Protection and Research, provider of the European Joint Research Cen-
tre) [23], open-access, and Daphne unit of Agenzia Regionale per la Prevenzione,
l’Ambiente e l’Energia of Emilia-Romagna region (ARPAE) [27], available on request.

• BTM: Data collected directly by the authors on a test boat docked near to Ravenna harbor.
• BLM: Datasheet provided by the cell manufacturer.
• BHCM: Data collected directly by the authors on the 1:5 reduced-scale test bench for

battery heating/cooling system.

It must be noted that the major concern for the model chain presented here is not
to get an accurate meteorological-grade temperature forecast, but to determine the boat
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temperature distribution over an entire year. By definition, this information is uncertain: it
depends heavily on the type of boat, specific atmospheric conditions, travels undergone
during the year, type of berthing, etc. Moreover, looking at the yearly distribution rather
than at the worst case allows understanding the impact of a power limitation in statistical
terms: using worst-case temperature difference may lead to system over-design if this
condition happens rarely over the year (or the period of interest). This is the reason why,
for example, the simple Kepler model can be used to implement LSPM in place of more
complex ones [28]. Each model is detailed in the following sections, with the sole exception
of LSPM, which is directly taken from literature and reported, for clarity, in Appendix A.

Boat temp.
(several weeks) Latitude

Air monthly
average / Air temp.

profile (1 year)
TTF / Water temp.

profile (1 year)
Battery

datasheet

HiC required
power

ATWTMLSPM SPATM

BLMBTM

BHCM

Figure 3. Schematic representation of the information flow for the presented model-based design
approach for HiC heating power: the interdependence of the models is shown. Blue denotes the
input data needed (gray text for optional items), internal data is in green, and red is the final output
of the process.

2.1. Sun Power to Air Temperature Model

At large scale, the air of open environments has complex thermal interactions with the
incoming solar irradiation and the surroundings (see, for example, in [29–31]); in addition,
many variable effects (such as wind, rain, and cloudiness) should be taken into account to
get an accurate dynamic representation. However, as we are interested in overall annual
trends, we are able to model air temperature in a simpler way. It is known that monthly
average air temperature correlates with average Sun irradiation, as long as we consider
a one-month lag between the two quantities [32]. Therefore, it is possible to develop a
linear model which takes into account only solar irradiation S (collected from datasets or
computed with LSPM, see in Appendix A), elevation of the studied point from the ground
E, and the “lapse rate” of temperature loss along elevation L [32]. In particular, adapting
the model provided there to coastal regions (it was originally designed for mountains), it is
possible to predict the average air temperature of month n + 1 by the relation

Tn+1 = C1Sn − C2 − (E− E0)Ln+1 (1)

which fits C1, C2, and E0 coefficients using empirical data and a least-square procedure.
To reconstruct the water temperature, the power from LSPM is integrated over time,

to get the monthly average Sun irradiation, then the work in (1) is applied, yielding the
monthly average air temperature. The resulting points are thus interpolated with a yearly
frequency sinusoid, thus getting a daily-average information. It can be observed that the
amplitude of the daily oscillation of air temperature is fairly constant over the year and
it depends on the considered location only (see in Section 3.3); this component, obtained
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from the frequency analysis of the real temperature data, is added to the aforementioned
sinusoidal yearly fit. The final result is a two-harmonic (plus offset) reconstructed air
temperature trend, including both annual and daily dynamics, which is the valuable
input for the following model. This follows both the commonsense and the experimental
evidence: air temperature has a periodic waveform mostly due to the revolution of the
Earth around the Sun; possibly, it also contains higher order harmonics, connected to the
daily rotation.

2.2. Air Temperature to Water Temperature Model

This model estimates the annual trend of sea surface water temperature of a selected
coastal city, given the environment air temperature of the same location (collected on
datasets or computed with SPATM). The implementation is done by analyzing the data
(ISPRA and ARPAE sources) in the frequency domain, by means of Fourier transform.
More appropriately, as all datasets are time-sampled (possibly with a one-hour time base),
the Discrete Fourier Transform (DFT) is used:

Xk =
N−1

∑
n=0

xne−j2πkn/N . (2)

Following the simplifying assumption that the water temperature is determined
mainly by the temperature of the air mass above it, it is possible to compute the so-called
“Thermal Transfer Function” (TTF) as the ratio between the two DFTs of temperatures:

Hk =
Twat,k

Tair,k
. (3)

According to this approach, the air temperature entirely determines the water tem-
perature, considering all the location specific parameters (orography, shore shape and
orientation, water reservoirs nearby, etc.). Despite its simplicity, this idea is supported by
the data, as it can be noticed in Section 3.3: computing the TTF for many years, it stays
constant, while differing slightly among locations. At last, we can apply the proper location
environment transfer function (3) to predict the annual trend of water temperature. We
end up with an annual set of Sun radiation, air temperature, and sea water temperature to
be used for the internal boat temperature modeling.

To validate this model, seven Italian cities in the ADRION region have been studied:
Ancona, Bari, Otranto, Ravenna, Taranto, Venezia, and Vieste (see in Figure 2). For each of
them, the collected air and water temperature datasets are relative to the 1999/2019 period
and have been sampled hourly. All data were subjected to a preprocessing phase, resulting
in a database formed by a dozen datasets per city, each of them having 8760 samples. The
preprocessing consisted in

• removal of extra data relative to leap years;
• selection of datasets having more than 90% of yearly data and less than 0.5% of

outliers in them;
• linear filling of missing data;
• outlier replacement by the means of a moving median method, computed on a

window of 24 samples (one day); and
• matching of the air and water datasets which both satisfied the selection process.

2.3. Boat Temperature Model

To relate the internal boat temperature to the external environment quantities (Sun
irradiation, air temperature, and sea surface water temperature), we sampled the actual
internal temperature of a typical pleasure boat (Janneau Cap-Camarat 5.5 WA) moored
at Porto Garibaldi (Ravenna, Italy) for about three months (71 days, from 14 June 2020
to 23 August 2020, corresponding to the mooring period of the boat under test). This
period, spanning three months, is the longest period that was compatible with the travel
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restrictions imposed in Italy due to COVID-19 outbreak. Data were collected continuously,
using the unmanned Temperature-Humidity Datalogger RS-172TK. Comparing this data
with the local air and water temperatures (see in Section 3.4, Ravenna values used), we
noted that the mean boat temperature is strongly dependent on the water one, while its
ripple is attributable to air and sun radiation, which both possess a characteristic daily
dynamics. The Sun power was considered as the internal temperature of the boat can
rise above the outside one: this can be ascribed to small-scale greenhouse effect, thus
determined by the direct radiation received.

It is thus possible to perform a multivariate regression (least-square) of the internal
temperature Tboat, using air temperature Tair, water temperature Twat, and Sun irradiance
Q̇sun as predictors:

Tboat = c0 + c1Tair + c2Twat + c3Q̇sun (4)

To support this procedure, we also trained a Support Vector Machine (SVM) learning
algorithm [33] to infer a model with the same structure as (4). SVMs are a wide group of
supervised learning algorithms used for classification and regression problems. They can
enhance traditional regression algorithms by adding some slack hyperparameters which
are then minimized by convex optimization schemes; in particular, we used the linear
epsilon-insensitive regression loss function implementation of SVM [34,35]. Given the short
time span covered by the directly-collected boat temperature profile (see in Section 3.4),
the validation of the model is obtained by splitting the dataset in two chunks, covering
80% and 20%, respectively. The first chunk is used to fit the data (training), while the latter
provides the population for the validation (test).

Following the chain constituted by LSPM, SPATM, ATWTM, and BTM, it is possible
to estimate the internal boat temperature for any day of the year, given the design location
coordinates and an annual chart of its environmental air temperature, combined with the
TTF: this information allows determining the heat load of the Heater-in-Converter system.

2.4. Battery Limitation Model

To determine the heat load required for the Heater-in-Converter system, the target
working point temperature Tobj for the battery must be known, as well as the time span t f ull
available to reach it. The latter depends on the type of boat and the typical activities going
in and out of the port, while the former depends on the cell model and chemistry. The
information about Tobj is best retrieved from the cell datasheet, where a typical maximum
current vs. cell temperature and state of charge table is given Imax(Tcell , SOC). Multiplying
this for the relationship Vcell(SOC) the safe-managed power Pmax(Tcell , SOC) is obtained.
The main problem of this procedure is usually the poor resolution of the data. This can be
overcome by higher-than-linear 2D interpolation; using a cubic algorithm is a good solution.

From the specific application (vehicle, boat, type of driver, etc.) a requirement of worst-
case SOCmin is available: the Pmax curve is thus projected for Pmax(Tcell , SOCmin) = Pobj,
with solution Tobj = Tcell , where Pobj is the application-dependent power which the vehicle
designer wants to guarantee to the driver in t f ull . The battery cells discharge current map
is illustrated in Figure 4a, together with its cubic interpolation on a finer grid (Figure 4b).
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(a) (b)

Figure 4. Battery discharge current map of a typical commercial LFP cell (EVE LF90), expressed as a function of temperature
and state of charge (a), and its finer interpolation (b). The target design point (25 °C, 270 A, 50% charge) is shown as a
red dot.

2.5. Battery Heating/Cooling Model

The main objective for HiC is to enable battery heating at cold start without adding
significant volume, cost, and weight to the system, while removing the specialized heater.
In this view, the heating system shares the thermal circuit with the cooling one: as long as
the components are below their rated temperature, the heating action is used, while the
cooling functionality is actuated in all other conditions. This model is used to estimate the
thermal load of the HiC, starting from the knowledge of the surrounding boat environment
temperature (BTM) and of the target battery working point (BLM).

The general thermal fluid circuit of the boat battery heating/cooling system is given
in the schematic representation in Figure 5. It is constituted by the following components:
pump, fluid cooling device, fluid heating device, battery, and battery heating/cooling
device. The pump is needed to provide constant mass flow through the circuit. A fluid
cooling device is required to chill the thermal fluid, and it prevents the battery from
overheating in duty conditions. The fluid heating device is the core component of the
studied circuit: it is responsible for the fast heating transient of the battery, from cold start
to operative conditions; in modern systems, it consists of a resistive heater, while in the
authors’ proposal it is the pseudo-cogenerative DC–DC converter. Other converters can
be used as well (such as the traction inverters, provided that they are equipped with HiC
technology at the circuit design stage). The battery plates are in charge of both battery
heating, in cold-start situation, and battery cooling, in duty conditions. A reduced-scale
test-bench of this system was developed within the PSECOB2 project; it is reported in
Figure 6. It implements a centrifugal pump for thermal fluid circulation, a fan radiator for
fluid cooling, a dedicated resistive heater (to compare HiC to standard technology), the
DC–DC pseudo-cogenerative converter (heatsink only in figure) and three heat-exchange
plates, responsible for battery heating and cooling. Sheets of TIM are interposed between
each battery plate and cells; there are also two diverter valves, which allow bypassing
the resistive heater when needed. The component specifications are listed in Table 3. In
addition, the battery pack is equipped with three Type-J thermocouples and the water
circuit with a flow meter and five Pt100 resistance temperature detectors (RTDs). To size
the battery pack, we considered that the motor installed on typical small (5 m to 6 m)
pleasure boat usually has a rated power of about 100 kW and a capacity of 25 kW h to
35 kW h. To simplify the implementation of the test bench, we developed a 1:5 down-scaled
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version of the system (both in power and capacity). Eventually, once the model is properly
validated, we may scale up the simulation and test the performance on different and bigger
battery sizes. The scaled battery power of 20 kW–8 kW h was achieved in our test bench by
connecting in series 28 commercial LFP 90 A h capacity cells, rated at 3C discharge current.

4

1

2

3

5 T1

T2

T5
T4

T3TIM

Figure 5. Thermal schematic of the heating/cooling system of the battery: pump (1), fan cooler (2),
one ore more electric heaters (3), battery heat-exchange plates (4), and battery pack (5). T1–T5 are
resistance temperature detector (RTD) sensors to measure the fluid temperature, while the battery
temperature is sensed by three thermocouples.

Figure 6. Test bench implemented for heating/cooling system model validation (see in Figure 5). We
note the pump (1), the fan radiator (2), the resistive heater (3a), the DC–DC converter heat plate (3b),
the battery heat-exchange plates (4), the battery (5), and five temperature RTD sensors (T1–T5). Two
diverter valves allow to bypass the resistive heater, if desired.

The simulation model of the heating system was designed using Mathworks Simulink®

and Simscape™ to match the simulated component parameters to their test bench represen-
tatives. The pump is modeled as an ideal constant mass flow source and keeps circulating
the heat transfer fluid (which is assumed to be pure water, cp = 4187 J kg−1 K−1) at the
measured 2.14 L min−1 rate. The fluid cooling component, representing the fan radiator, is
modeled as a heat flow source that extracts heat based on a datasheet-tabulated thermal
resistance curve. The fluid heater (used for the model calibration) is modeled as a constant
heat flow source of 2500 W (the nominal value of the traditional heater installed in the
bench). The battery pack, which completes the circuit, is represented by two thermal
capacities and is affected by the heat transfer coming from the adjacent plates, modeled as
three constant-temperature source components. It is important to note that the battery was
not active during the test bench experiments, so we neglected its Joule heating contribution
in the validation of the model.

The overall LiFePO4 battery specific heat capacity is expected to be comprised in the
range 825 J kg−1 K−1 to 1360 J kg−1 K−1 [36–40]; in our particular case, the manufacturer
declared cp = 1005 J kg−1 K−1, which is the adopted value. One last crucial aspect to
be considered is the temperature drop due to the imperfect contact among the battery
and the plates: the TIM is modeled by the addition of a consistent thermal resistance Rc
(contact resistance). However, the direct measurement of this quantity is quite difficult



Energies 2021, 14, 1022 11 of 26

and would require complex instrumentation [41–44]: interface surface roughness, objects
materials, and contact pressure are only three of the principal factors determining this
parameter [45–48]. We can therefore calibrate the thermal contact resistance to match the
test bench measurements and then generalize the results to other sizes of the bench.

Table 3. Test bench components specifications.

Component Specifications

Battery 28× EVE LF90 cells, 270 A max discharge current
Pump Davies Craig EWP115

Fan radiator Hydac AC-M3
Heater VVKB Titan-P3, 2500 W max power

Battery plates Wakefield-Vette 120964
TIM Shariag NF-150 0.3 mm silicone thermal pad

3. Results
3.1. Latitude to Solar Power Model

LSPM implementation (Appendix A) is validated by comparing its results with the
data collected from PVGIS [26]. As the model results strictly depend on the studied location,
several cities of the world have been tested. However, solar irradiation is not related to
longitude (due to Earth rotation during a day) [49]: therefore, we evaluated the model
behavior at different places located at different latitudes, but with similar longitude. In
particular, Figure 7 and Table 4 illustrate the validation of LSPM for the ADRION region,
while Figure 8 and Table 5 focus on some other major cities of the world distributed along
the same meridian. Incidentally, it is worth noting that both Kepler’s method and direct
ODE solving were tested and provided indistinguishable results.

Table 4. RMSE, normalized on the mean value, of LSPM with respect to PVGIS data in ADRION
region (see in Figure 7). Negligible error is observable.

City Ancona Bari Otranto Ravenna Taranto Venezia Vieste

RMSE 0.0965 0.0453 0.0324 0.101 0.0339 0.0883 0.0584

Table 5. RMSE, normalized on the mean value, of LSPM with respect to PVGIS data outside ADRION
region (see in Figure 8). Negligible error is observable.

City Berlin Tazouta Khourigba Libreville Kinshasa Capetown

RMSE 0.124 0.0376 0.0493 0.0404 0.0302 0.0555
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(a) (b) (c)

(d) (e) (f)

Figure 7. Comparison of daily average clear-sky irradiation computed with LSPM (blue) and retrieved from PVGIS (red) in
the ADRION cities: Ancona (a), Bari (b), Ravenna (c), Otranto (d), Taranto (e), and Venezia (f). Substantial superposition of
the two curves is appreciable for all of them (see Table 4 for numerical validation). As expected for northern hemisphere
locations, the highest values of irradiation are registered in the central part of the year.

(a) (b) (c)

(d) (e) (f)

Figure 8. Comparison of daily average clear-sky irradiation computed with LSPM (blue) and retrieved from PVGIS (red).
Some of the major cities of the world belonging to the ADRION meridian are considered: Berlin (a), Tazouta (b), Khourigba
(c), Libreville (d), Kinshasa (e), and Capetown (f). Substantial superposition of the two curves is appreciable for all of them
(see Table 5 for numerical validation). It is notable that the peak of irradiation shifts through the year in function of latitude.
Cities near the equator manifest a nearly-constant irradiation trend over time.
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3.2. Sun Power to Air Temperature Model

Table 6 summarizes the results, and Figure 9 shows the comparison between the
model and the historical data from the ISPRA database. In these figures, one city (Vieste)
was omitted to give a better visual layout; its results are in line with those of the other cities.
To validate this procedure, we compared (1), calibrated on the first year of the data set, to
all other years of sampled data: we observed that the calibrated coefficients consistently
represent each location air temperature trend through time. Table 6 reports the global
RMSE of the model, i.e., computed on all years, using the coefficients determined on the
first year only available in the data set of each town.

Figure 10 reports the annual average of daily air temperature oscillation amplitude;
it is shown that this quantity is almost constant over 18 years. Figure 11 compares the
historical dataset of one year for each city with respect to the air annual temperature profile
as reconstructed by the SPATM.

Table 6. Monthly-average air temperature model coefficients calibrated on the first year available for each city, and RMSE
error computed on all sampled years, with reference to model (1).

Ancona Bari Otranto Ravenna Taranto Venezia Vieste Unit

C1 0.0639 0.0534 0.0522 0.0740 0.0593 0.0650 0.0543 °Cm2/kWh
C2 −2.12 0.826 0.429 −5.01 0.131 −3.70 0.843 °C
E0 1609 1609 1609 1609 1609 1609 1609 m

RMSE 1.92 2.74 2.52 2.30 2.98 2.26 2.77 °C

(a) (b) (c)

(d) (e) (f)

Figure 9. Comparison between ISPRA monthly-averaged air temperature, in blue, and its reconstruction using the calibrated
model (1), in red. Substantial accordance of modeled trend to sampled data is observable (see Table 6 for numerical data).
Cities shown: Ancona (a), Bari (b), Otranto (c), Ravenna (d), Taranto (e), and Venezia (f).
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Figure 10. Annual average of daily air temperature oscillation amplitude (blue dots) and global city
mean (red line); stationary trend is observable. Example shown for Ancona, for all the sampled years.

(a) (b) (c)

(d) (e) (f)

Figure 11. Air temperature reconstruction: original ISPRA data (blue), monthly average reconstruction computed with
model (1) (purple), yearly sinusoidal fit of monthly average (yellow), complete air two-harmonic reconstruction with
the addition of modeled daily trend (red). Cities shown: Ancona (a), Bari (b), Otranto (c), Ravenna (d), Taranto (e), and
Venezia (f).

3.3. Air Temperature to Water Temperature Model

The spectral analysis of air and water temperatures shows that there are three ma-
jor harmonic components; in descending amplitude order: the average value, a yearly
harmonic, and a daily harmonic. These components match the two main expected mo-
tion cycles of Earth around the Sun: yearly revolution and daily rotation [50]; Figure 12
illustrates an example of air and water temperature spectra. It is noticeable that water
possesses a very weak daily spectral component, due to its expected high thermal capacity;
Figure 13 clarifies this concept, showing a comparison between the original air and water
temperatures profiles and a simplified reconstruction based on the two-harmonic model.
The time shift between the air and water temperature is noticeable; it can be ascribed to the
equivalent high thermal capacity of the sea water itself [51].
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Figure 14 represents the three main components of the TTF Hk for all the sampled
years of our database; each city presents constant values over time: this means that though
the environmental temperature transfer function is characteristic of a specific location,
it is not a function of time. Comparing the values for various cities, we note that the
ADRION region manifests a fairly consistent behavior, therefore we can characterize the
overall ADRION TTF as the average of each city contribution. Table 7 summarizes the
aforementioned results.

Figure 12. Example of Ancona air (left) and water (right) temperature Fourier Transform harmonic
amplitudes, year 2000. Three main components are present, in decreasing order: average value,
yearly component (due to Earth revolution around the Sun), and daily component (due to Earth
rotation). It is observable that water manifests a weaker daily component because of its higher
thermal capacity.

(a) (b)

Figure 13. Comparison of Ancona air (a) and water (b) sampled temperature (blue) with their respective 2-harmonic model
(red) (year 2000).
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(a) (b) (c)

(d) (e) (f)

Figure 14. Temperature transfer function amplitude values at the main spectral components, for each ADRION studied city:
average component (blue), yearly component (red), daily component (yellow). Cities shown: Ancona (a), Bari (b), Otranto
(c), Ravenna (d), Taranto (e), and Venezia (f). It is notable that the spectral components are mainly constant over time for a
given location and only change in dependence of the studied place.

Table 7. Environmental temperature transfer function amplitude components and relative normalized
standard deviation error. All quantities are dimensionless, as they descend from the ratio of two
temperature DFTs.

City G0 Gyear Gday STD0 STDyear STDday

Ancona 1.06 0.956 0.0215 0.0353 0.0403 0.371
Bari 1.04 0.982 0.0477 0.0150 0.0321 0.206

Otranto 1.05 0.923 0.0834 0.0149 0.0405 0.167
Ravenna 1.15 0.896 0.0632 0.0203 0.0381 0.462
Taranto 1.03 0.850 0.0476 0.0213 0.0422 0.0843
Venezia 1.10 0.950 0.0608 0.0214 0.0507 0.391
Vieste 1.04 1.04 0.205 0.0703 0.0839 0.167

3.4. Boat Temperature Model

Figure 15 shows a comparison between the 2020 Ravenna air and water temperatures
retrieved from the ISPRA database and the experimental sampled boat internal temperature,
in the same period of time. Detailed information about internal boat temperature is not
available in literature, therefore a measurement campaign was undertaken to collect such
data. By fitting the model (4) to these data, a relationship to extrapolate the results to all the
year is identified; the boat model parameters are summarized in Table 8. Figure 16 offers at
a glance the performance of the BTM. As two extrapolation methods are used (least-square
fitting and SVM fitting), two model curves are reported there (green and purple). The
two methods of extrapolation give consistent responses, so it is safe to compute the boat
temperature extrapolation through the simpler least-square regression approach.
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Figure 15. Sampled boat internal temperature (yellow) compared with Ravenna air (blue) and
water (red) temperatures [23] between 14 June 2020 and 23 August 2020. The boat trend is notably
influenced by water temperature.

Figure 16. Extrapolation throughout the year of the sampled internal boat temperature (yellow),
with respect to Ravenna air temperature (blue) and water temperature (red); the extrapolation model
outputs are included: least-square extrapolation (purple) and SVM algorithm extrapolation (green).
The yellow trace pertains to the data of Figure 15 and spans over a limited fraction of the year,
corresponding to the maximum extension of the experimental data set which was acquired. Note
that the purple line is almost completely hidden by the green one.

Table 8. Internal boat temperature extrapolation coefficients information. These results pertain to
1689 observations and score at RMSE = 0.934 °C, R2 = 0.79.

Coeff. Estimate Std Err t-Stat Unit

c0 3.14 0.322 9.75 °C
c1 0.339 0.0108 31.4 1
c2 0.598 0.0146 41.0 1
c3 −0.509 0.0797 −6.39 °Cm2/kW

3.5. Battery Heating/Cooling Model

Measurements on the 1:5 test bench for the heating system showed that, in stationary
conditions, a water flow of 2.14 L min−1 traverses the circuit: using the resistive heater
at full nominal power (2500 W) for about 15 min, we initially obtained the temperature
increases reported in Table 9. Following a trial-and-error process, it is possible to tune
the thermal resistance between the plates and battery: Figure 17 presents a comparison
between some sampled test bench temperature trends and the corresponding modeled
ones, with Rc = 0.15 K W−1. This value, obtained without the TIM installed (i.e., putting
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plates and battery in direct contact and adding pressure), is far too high; therefore, we
applied the TIM identified in Table 3, with a declared Rc of 1/100 of the previous one.

Table 9. Measured temperature increase of multiple points of the system, given an input power of
2500 W for a time of 15 min. The points are described in the scheme of Figure 5 and in the test bench
photo of Figure 6.

Point Battery T1 T2 T3 T4 T5

Increase (°C) 8 47 39 29 33 41

(a) (b) (c)

Figure 17. Validation of the heating system model. Comparison between test bench (blue) and simulated temperatures
(red), with respect to Figure 6 points: T5 (a), T2 (b), and battery (c).

3.6. Overall System Design Outcomes

Once the boat model is validated and the heating system one is tuned based on the
TIM thermal resistance, they can be applied for the effective battery heating/cooling system
design. The time needed for a real departure from mooring t f ull was measured by GPS
tracking on the test boat docked near to Ravenna (see Figure 18): it resulted in 17 min, so
t f ull ≈ 1000 s. As the extrapolation model for the boat temperature exhibits a plateau at
10 °C between days 0 and 50, i.e., for roughly 14% of the year (see Figure 16), this is assumed
to be the relevant design value for min(Tboat). Following the choice made in Figure 4, the
target battery temperature is set to Tobj = 25 °C. The heating system is therefore required
to produce a net temperature increase of Tobj −min(Tboat) = 15 °C within the estimated
t f ull . It is important to note that, as pointed out by the blue curve in Figure 16, sizing the
system on the air temperature worst case would highly oversize the HiC system, resulting
in a minimum Tboat of 3 °C, thus resulting in a required temperature step 46% higher than
the proposed one.

To study this scenario, we scale up the thermal capacities of BHCM by a factor of
five, to compensate for the scale of the system [52]. However, we realized that the heating
system was not able to achieve the target with Rc = 0.15 K W−1 as it was: the high thermal
contact resistance between battery and plates, modeled upon the test bench coupling,
would cause an excessive heating device sizing, due to the excess drop between the plate
and the cells. Therefore, a highly conductive thermal interface material, installed with an
adequate contact pressure, is mandatory for proper sizing of the HiC-based system. By
leveraging the model-based nature of the simulation, we explored different scenarios of
thermal coupling and heating power inputs: Figure 19 illustrates the simulated heating
time as a function of these two quantities. By imposing the target time t f ull and by fitting
the simulated working points, it is possible to express the heating power as a function
of thermal contact resistance: the adopted simple linear model (see in Figure 20) can be
expressed through the relation

Q̇h = aRc + b (5)



Energies 2021, 14, 1022 19 of 26

where a = 230.5 kW2/K and b = 5.2 kW are the fitting parameters, Q̇h is the HiC target
power (in kW), and Rc the thermal contact resistance (in K W−1). By choosing a Shariag
NF-150 0.3 mm silicone thermal pad and an overall battery area of 0.5 m2, a resistance of
1.5 mK W−1 is obtained. Therefore, we adopted this TIM and chose the final design power
for the HiC converter for the target boat to be 6 kW.

Figure 18. Sampled GPS track of test boat departure from Porto Garibaldi dock (Ravenna, Italy). Starting
coordinates at 05:12 AM: [44.67 N, 12.23 E]. Ending coordinates at 05:29 AM: [44.68 N, 12.25 E].

Figure 19. Simulated heating time as a function of battery-plates thermal contact resistance and
heater power. The target heating time t f ull ≈ 1000 s is represented as a green plane while the red
line illustrates the minimal power curve for system sizing. Data refer to full-size system, not to the
test bench.
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Figure 20. Heater power in function of battery–plate thermal contact resistance, for a heating time of
t f ull ≈ 1000 s and for the full scale system. Simulated scenarios shown as blue dots, fitted model as
red line.

4. Discussion

Looking at Section 3, it is clear that the model-based design approach to HiC converters
for battery heating is rather complex, yet the model chain has been validated and the final
additive power requested by the HiC converter for a 100 kW boat powertrain is identified
in 6 kW.

Section 3.1 demonstrates that the planetary model is accurate enough to provide the
clear-sky sun irradiance, even in instantaneous terms, as denoted by the superposition
of this model (regardless of the specific implementation) with the data collected by the
PVGIS repository. Therefore, no specific data are required at this stage: just the location
latitude value or interval is needed. Considering the clear-sky irradiance rather than the
direct normal irradiance may seem a coarse approximation, but the consistency of the
subsequent models, entirely based on “clear-sky” rather than “direct normal”, suggests
that more complex models (such as those in [28]) are not needed.

Indeed, the Huang approach on inferring air temperature from solar irradiation [32]
is more troublesome, as denoted by Figure 9. Considering that, in the best case, SPATM
requires tuning on the monthly-average data, there is a trade-off between accuracy and
cost of retrieving information: the hourly profile of air may be unavailable, especially in
certain places, conditions in which the SPATM approach ensures a simple solution. In
addition, if daily data are available, using it for the design leads to improved accuracy. The
stable profile of annual-average daily air temperature oscillation amplitude depicted in
Figure 10 suggests that data from a single year only can be considered, thus suggesting also
that collecting many years can be an excessive effort for this application. Nonetheless, the
comparison of data and SPATM in Figure 11 proves that our model provides a reasonable
accuracy while also giving a daily ripple figure.

Figures 12 and 13 confirm what commonsense suggests: the steady-state behavior of
both air and water temperatures is highly connected to the Sun power as resulting from
yearly revolution and daily rotation: frequency analysis is absolutely the right tool to face
the problem. For the other frequency components, the analysis showed that they are not
periodic, as noticeable, especially for water, in Figure 13. Figure 14 and Table 7 provide a
very strong result: it is possible to find a TTF typical for each location, often characterized
by very small coefficients for the daily component, which is almost absent from the water
while being relevant for the air. The similar values of TTF of the different ADRION cities
considered point out the possibility to determine the TTF also in locations slightly far away
from the desired one, without excessively losing accuracy. It is still unclear to the writers
the reason why the average temperature of water is slightly higher than the one of air.
Possibly, some radiative dispersion of air during the night is involved [53].
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Concerning internal boat temperature yearly profile estimation, Figure 16 and Table 8
ratify that the proposed linear model is satisfactory, regardless of the fitting done using
traditional least-square procedures or more modern SVM-based techniques. A remarkable
outcome of Figure 15 is the massive effect of water temperature in determining the boat
one, and the need to consider a reasonable ripple caused mainly by Sun irradiation and
small-scale greenhouse effect inside the boat.

Despite the relevance of the models discussed above, the core of the design effort
is sustained by BLM and BHCM. While the battery limitation issue can be solved by
datasheet-available information, the uncertainty in the Rc of the TIM between battery
plates and the cells of the pack requires a non-trivial calibration procedure [54], which we
were able to complete thanks to the reduced-scale test bench. The comparison in Figure 17
confirms the correctness of the lumped BHCM model and its accuracy once the TIM is
properly accounted for. The paramount relevance of the TIM properties in the sizing of
the HiC heater and in the performance of the heating/cooling system is reaffirmed by
Figures 19 and 20. Despite the system being nonlinear, the experimental evidence shows
that if a constant t f ull is considered, the relationship between TIM thermal resistance Rc
and required heater power is almost linear.

It is clear that each of the presented models is an essential element to cope with
the initial problem, i.e., the sizing of the heater for e-boat batteries. Each model plays a
key role in gathering all the relevant information from the environment (irradiance, air
and water temperatures, etc.) and pertaining to component properties (boat shape and
materials, heating/cooling system, etc.). Even if the proposed model chain is quite long, it
develops almost linearly; overall, the key objective for this analysis is achieved: providing
the system and power electronic designers the requirements for the HiC heater and for the
materials (i.e., the TIM layer and the liquid circuit dimension) influencing them most. This
approach is mandatory as working simplistically on worst-case (coldest) air temperatures
from weather datasets yields unnecessary system over-design.

This study calls for the use of a 6 kW heater in a 100 kW powertrain. This value
represents a theoretical efficiency of 6%, but the nominal heat must occur at low loads,
resulting in a much lower target efficiency in case of HiC. The technology, currently at
TRL 4 and targeting TRL 6 by the end of the PSECOB2 project, still presents open points
about the minimum achievable efficiency (therefore, maximum heating power): the exact
quantification of this aspect is still uncertain and requires further investigation, because of
its impact on converter reliability [55]. Nonetheless, it is reasonable to argue that higher
heating power levels can be achieved by converters with higher ratings. Despite this
possible technical limitation, the HiC technology is fully viable from the economic point
of view: adopting AGDs to enable HiC functionality in the converter requires combined
design and component costs in the range of 7 to 15 USD per part (almost independent from
the heat target), with a batch of one thousand units. Thus, HiC can compete with heaters in
the 100–300 USD band. In addition, HiC technology can be applied fruitfully also to other
full-electric vehicles: we proposed a marine environment, but no element is expected to
be exposed to the salty and windy aggression typical of this environment. What is really
needed to adopt this technology is the availability of an onboard PEC with a sufficient
power rating to accommodate also for the temporary lower efficiency request by HiC.

5. Conclusions

We presented a chain of models to generalize the determination of inner yearly boat
temperature distribution, relying on the knowledge of the target location coordinates and
a yearly dataset of its environmental air temperature. We developed a simplified model
to predict the average solar radiation in any day of the year. Thanks to this information,
we reconstructed the yearly trend of air temperature, including its typical daily oscillation.
Then, the link between environmental air and surface water temperature was investigated:
we observed that both temperature profiles could be easily described by the sum of three
harmonics (DC, year, and day). The transfer function between the two quantities has proven
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to be constant over time and dependent only on the considered location: leveraging this
fact, we could retrieve the yearly trend of water temperature through its modeled transfer
function. Next, we studied the relationship between the set of the three aforementioned
external quantities (solar radiation, air temperature, and water temperature) and the
internal temperature of a boat, eventually getting to a simplified multilinear model. This
model was validated on data collected in the summer season; validating the extrapolation
model in other seasons will also strengthen the proposed approach. The daily average boat
temperature is mainly determined by the water one, but with an important fluctuation due
to sun irradiance.

This process, yielding the boat temperature distribution over an entire year, allows
not only considering a specific scenario (i.e., the lowest winter temperature or, much
better, the distribution of the coldest months), but also estimating the impact of a reduced
thermal power. This model also prevents overdesign of HiC heating, as it would result
using the worst-case air temperature rather than the presented approach: simulations
showed that a difference in excess of 40% is otherwise achieved. Knowing the optimal
battery working point and the typical departure maneuver time, we were able to design a
suitable HiC-based heating system. Finally, with the help of the PSECOB2 test bench, we
validated the simulation: scaling its parameters, we can generalize the results to different
boat battery sizes and different locations or period of the year. The TIM properties were
revealed to be the key parameters for an effective HiC design. The value identified (6 kW)
will be used as the design requirement of the maximum power loss to be achieved by the
HiC-enabled converter of the proposed application. The effectiveness of the scaled design
will be validated in the bench, with an HiC power of 1.6 kW, as heating power does not
scale linearly with the system size.

The design of a fully HiC-based battery heating system, to be compared with tra-
ditional heaters, is an essential step towards an increased maturity of the technology:
leveraging the presented model, a real system will be developed and evaluated, clarifying
the production costs more in detail (possibly narrowing the current 7–15 USD band), and
leading to deeper understanding of the heat power limitations. These factors are crucial for
the applicability of Heater-in-Converter on many scenarios, especially those characterized
by high heating power demand, in excess of 10 kW.

6. Patents

The battery heating system described in this work resulted in a pending Italian patent
application, under the ownership of University of Parma.
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Abbreviations
The following abbreviations are used in this manuscript:

ADRION Adriatic-Ionian area
AGD Active Gate Driver
ARPAE Agenzia Regionale per la Prevenzione, l’Ambiente e l’Energia

(Regional Agency for Prevention, Environment and Energy)
ATWTM Air Temperature to Water Temperature Model
BHCM Battery Heating/Cooling Model
BLM Battery Limitation Model
BTM Boat Temperature Model
DFT Discrete Fourier Transform
HiC Heater-in-Converter
ICE Internal Combustion Engine
ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale

(Institute for Environment Protection and Research)
LSPM Latitude to Sun Power Model
PEC Power Electronics Converter
PSECOB2 PSEudo-COgeneration for Battery heating on electric and hybrid Boats
RTD Resistance Temperature Detector
SOC State of Charge
SPATM Sun Power to Air Temperature Model
SVM Support Vector Machine
TIM Thermal Interface Material
TRL Technology Readiness Level
TTF Thermal Transfer Function

Appendix A. Latitude to Sun Power Model (LSPM)

This model provides the clear-sky sun irradiance starting from the latitude of any
location. “Clear sky” denotes that the effects of scattering and absorption due to clouds are
neglected, while the absorption by the atmosphere is considered by proper derating of the
solar constant. In fact, the solar irradiance that reaches the top of Earth’s atmosphere on a
perpendicular plane to the rays is known as solar constant , and its value is 1361 W/m2 [56].
However, the interaction with Earth’s atmosphere gaseous components (O3, CO2, and
O2) and water vapor contained in clouds [57,58] significantly reduces the irradiance re-
ceived at ground: the effective value, used in many application fields, is estimated to be
1000 W/m2 [59].

To suit the use needs, this model must provide not only the Earth’s orbit, but also the
position of our planet over time, connected with the start of the calendar year. The basic
dynamic equation, assuming that the Sun is placed in the origin of the reference system, M
is Sun mass, G the Universal Gravitation Constant, x is the vector identifying the position of
Earth with respect to the Sun, with X axis pointing to perihelion and Y axis perpendicular,
π/2 radians apart, turning counterclockwise, is (dot denoting the time derivative)

ẍ = −GM
x

‖x‖3 (A1)

Equation (A1) is a nonlinear system of two second-order ODEs; it can be solved
numerically by common tools [60], provided that the initial position x0 = x(0) = [x0, 0]T

and speed v0 = ẋ(0) = [0, v0]
T are known. These are determined starting from the

revolution period Tr and the orbit eccentricity e, defining ω0 = 2π/Tr:

x0 = (1− e) 3

√
GM
ω2

0
(A2)

v0 = ω0x0

√
1− e2

(1− e)2 = 3
√

ω0GM
√

1 + e
1− e

(A3)



Energies 2021, 14, 1022 24 of 26

A simpler solution to this problem was found by Kepler back in 1619, leading to the
formulation of Kepler’s laws and his system of anomalies [61]. The mean anomalyM is a
function of time t representing the angle of the planet if it moved on a circular orbit; the
eccentric anomaly E is obtained by solving the transcendental equation

M = ω0t = E − e sin E (A4)

The true anomaly ϑ (angular position of the planet) is

ϑ = 2 arctan2

[√
1 + e sin(E/2),

√
1− e cos(E/2)

]
(A5)

Ultimately, the distance between Earth and Sun is given by

ρ = a(1− e cos E) (A6)

where a is the orbit maximum semiaxis.
Once the Earth orbit is determined in space and time by using (A1)–(A3) or (A4)–(A6),

the position PC of the Sun in the local reference frame (studied location) placed at a given
geographical point is obtained by composing the rotation matrices

PC = RCSPS = RCOROT RTSPS (A7)

where S is the frame centered at Earth’s center of gravity and oriented as the ecliptic plane,
T is the frame moving with Earth and oriented as its tilt angle (about 23.5°) with respect
to the ecliptic plane, O is the frame of an observer located on Earth’s surface, and C is the
same frame re-oriented by a compass indication (i.e., with x to East, y to North, and z to
Zenith). The power is therefore obtained by dot multiplying this position by the vector
indicating the direction the surface receiving the light is oriented to (horizontal for the sea).
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