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Abstract: In this paper, a novel Virtual State-feedback Reference Feedback Tuning (VSFRT) and Ap-
proximate Iterative Value Iteration Reinforcement Learning (AI-VIRL) are applied for learning lin-
ear reference model output (LRMO) tracking control of observable systems with unknown dynam-
ics. For the observable system, a new state representation in terms of input/output (IO) data is de-
rived. Consequently, the Virtual State Feedback Tuning (VRFT)-based solution is redefined to ac-
commodate virtual state feedback control, leading to an original stability-certified Virtual State-
Feedback Reference Tuning (VSFRT) concept. Both VSFRT and AI-VIRL use neural networks con-
trollers. We find that AI-VIRL is significantly more computationally demanding and more sensitive 
to the exploration settings, while leading to inferior LRMO tracking performance when compared 
to VSFRT. It is not helped either by transfer learning the VSFRT control as initialization for AI-VIRL. 
State dimensionality reduction using machine learning techniques such as principal component 
analysis and autoencoders does not improve on the best learned tracking performance however it 
trades off the learning complexity. Surprisingly, unlike AI-VIRL, the VSFRT control is one-shot 
(non-iterative) and learns stabilizing controllers even in poorly, open-loop explored environments, 
proving to be superior in learning LRMO tracking control. Validation on two nonlinear coupled 
multivariable complex systems serves as a comprehensive case study. 

Keywords: learning control; reference model output tracking; neural networks; state-feedback; re-
inforcement learning; observability; virtual state-feedback reference tuning; robotic systems; di-
mensionality reduction; transfer learning 
 

1. Introduction 
Learning control from input/output (IO) system data is a current significant research 

area. The idea stems from the data-driven control research, where it is strongly believed 
that the gap between an identified system model and the true system is an important fac-
tor leading to control performance degradation. 

Value Iteration (VI) is one popular approximate dynamic programming [1–7] and 
reinforcement learning algorithm [8–13], together with Policy Iteration. VI Reinforcement 
Learning (VIRL) algorithm comes in many implementation flavors, online or offline, off-
policy or on-policy, batch-wise or adaptive-wise, with known or unknown system dy-
namics. In this work, the class of offline off-policy VIRL for unknown dynamical systems 
is adopted, based on neural networks (NNs) function approximators, hence it will be 
coined as Approximate Iterative VIRL (AI-VIRL). For this model-free offline off-policy 
learning variant, a database of transition samples (or experiences) is required to learn the 
optimal control. Most practical implementations are of the actor-critic type where func-
tion approximators (most often neural networks (NNs)) are used to approximate the cost 
function and the controller, respectively. 
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One of the crucial aspects of AI-VIRL convergence is appropriate exploration, trans-
lated to visiting as many state-actions combinations as possible while uniformly covering 
the state-action domains. The exploration aspect is especially problematic with general 
nonlinear systems whereas for linear ones, linearly parameterized function approxima-
tors for the cost function and for the controller, relieve to some extent this issue, owing to 
their better generalization capacity. Good exploration is not easily achieved in uncon-
trolled environments, and usually, pre-existing stabilizing controllers can increase the ex-
ploration quality significantly. An additional reason for using pre-stabilizing controller is 
that, in mechatronics systems, uncontrolled environment commonly implies instability, 
under which dangerous conditions could lead to physical damage. This is different from 
the virtual environments specific, e.g., to video games [14] (or even simulated mechatron-
ics systems), where instability leads to an episode (or simulation) termination but physical 
damage is not a threat.  

Another issue with reinforcement learning algorithms such as AI-VIRL, is the state 
representation. Most often, in the case of unknown systems, the measured data from the 
system cannot be assumed to fully capture the system state, leading to the partial observ-
ability learning issues associated with the reinforcement learning algorithms [15–18]. 
Therefore, new state representations are needed to ensure that learning takes place in a 
fully observable environment. A new state representation is proposed in this work based 
on the assumption that the controlled system is observable. Therefore, a virtual state built 
from present and past IO samples is introduced as an alias for the true state. The new 
virtual state-space representation is a fully observable system which allows controlling 
the original underlying system. 

A similar approach to AI-VIRL for learning optimal control in offline off-policy mode 
is Virtual Reference Feedback Tuning (VRFT) [19–25]. It also relies on a database of (usu-
ally IO) samples collected from the system in a dedicated experimental interaction step. 
Traditionally, VRFT was proposed for output feedback error IO controllers and was not 
sufficiently exploited for state-feedback control yet. Certainly not for the virtual state-
feedback control required by observable systems for which direct state measurement is 
impossible. One contribution of this work is to propose for the first time such a model-
free framework called Virtual State-Feedback Reference Tuning (VSFRT), which learns 
control based on the feedback provided by the virtual state representation.  

VSFRT also requires exploration of the controlled system dynamics by using persis-
tently excited input signals, in order to visit many IO (or input-state-output) combina-
tions. Principally, it turns the system identification problem into a direct controller iden-
tification problem. This paradigm shift can be thought of as a typical supervised machine 
learning problem, especially since VRFT has been used before with NN controllers [24–
27]. To date, VRFT has been applied mainly for output-feedback error-based IO control-
lers with few reported results with state-feedback control [26,27] but not with feedback 
control based on a virtual state constructed from IO data. 

Both AI-VIRL and VRFT lend themselves to the reference model output tracking 
problem framework. It is therefore of interest to compare their learning capacity in terms 
of resources needed, achievable tracking performance, sensitivity to the exploration issue 
and type of approximators being used. In particular, the linear reference model output 
(LRMO) tracking control setting is advantageous, ensuring indirect state-feedback linear-
ization of control systems. Such linearity property of control systems is critical for higher-
level learning paradigms such as Iterative Learning Control [28–34] and primitive-based 
learning [34–40], as representative hierarchical learning control paradigms [41–44]. 

The contributions of this work are: 
• A new state representation for systems with unknown dynamics. A virtual state is 

constructed from historical input/output data samples, under observability assump-
tions. 

• An original Virtual State Feedback Reference Tuning (VSFRT) neural controller tun-
ing based on the new state representation. Stability certification is analyzed. 
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• Performance comparison of VSFRT and AI-VIRL data-driven neural controllers for 
LRMO tracking. 

• Analysis of the transfer learning suitability for the VSFRT controller to provide initial 
admissible controllers for the iterative AI-VIRL process. 

• Analyze the impact of the state representation dimensionality reduction upon the 
learning performance using unsupervised machine learning tools such as principal 
component analysis (PCA) and autoencoders (AE). 
Section 2 introduces the LRMO tracking problem formulation while Section 3 pro-

poses the VSFRT and the AI-VIRL solution concepts. The two comprehensive validation 
case studies of Section 4 and Section 5, respectively, validate this work’s objectives. Con-
clusions are presented in the last Section 6. 

2. The LRMO Tracking Problem 
Let the dynamical discrete-time system be described by the state-space plus output 

model equation 
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considered continuously differentiable (CD) maps. Additional assumption about (1) re-
quire that it is IO observable and controllable. The IO observability implies that, as in the 
case of the more well-known linear systems, the state can be fully recovered from system 
present and past IO samples. Given the observable system (1), IO samples kk yu ,  are em-
ployed to form a virtual state-space model having ku  as input and ky  as output (simi-
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vector/matrix transposition). Model (2) has partially known dynamics (the unknown part 
stems from unknown dynamics of (1)) and it is fully state observable [45]. Such transfor-
mations are well-known for linear systems. Here, τ  is correlated with the observability 
index and should be chosen empirically since it cannot be established analytically due to 
partially unknown dynamics. It should be selected as large as possible, accounting for the 
fact that for a value larger than the true observability index, there is no more information 
gain in explaining the true state ks  through kv  [45]. The observability index is well-
known in linear systems theory (please consult Appendix A). Its minimal value K for 
which K≥τ , ensures that the observability matrix has its full column rank equal to the 
state dimension n . Meaning that the state is fully observable from a number of at least K 
past input samples and at least K past output samples. In the light of the above remark, 
we define the unknown observability index of the nonlinear system (1) as the minimal 
value K for which any K≥τ  ensures that ks  is observable from 

τ−kk ,Y , 
τ−− kk ,1U . Transfor-

mations such as (2) can easily accommodate time delays in the input/state of (1) by 
properly introducing supplementary states. Such operations preserve the full observabil-
ity of (2) [45]. 

IO controlling (2) is the same with IO controlling (1), since they have the same input 
and output. While any potential state-feedback control mapping the state to the control 
input, would differ for (1) and (2) since n

k ℜ∈s  and τ++τℜ∈ ump
k

)1(v . The control objective 
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is aimed at shaping the IO behavior of (1) by indirectly controlling the IO behavior of (2) 
through state-feedback. This is achieved by the reference model output tracking frame-
work, presented next. 

A strictly causal linear reference model (LRM) is: 
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pkkk rr ],...,[ ,1,=r  will be reference 

input to the control system and the LRM output is Tm
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m
k

m
k yy ],...,[ ,1,=y . The LRM dynamics 

are known and characterized by the matrices LHG ,, . Its linear pulse transfer matrix IO 
dependence can be established as 

kLRM
m
k q rTy )(= , where “q” is the pulse transfer time-

based operator, analogous to the “z” operator. 
The LRMO tracking goal is to search for the control input which causes the system’s 

(1) output ky  to track the output m
ky  of the LRM (3), given any reference input kr . This 

objective is captured as an optimal control problem searching for the optimal input satis-
fying 

),3(),1(..

,)(,minarg
0

2

2
*

ts

VV
k

m
kkkLRMOLRMOk

k


∞

=

∞∞ −== yuyu
u  (4) 

where the dependence of ky  on ku  is suggested. In the expression above, 
2• measures 

the L2 distance over vectors. It is assumed that a solution *
ku  for (4) exists. The above con-

trol problem is a form of imitation learning where the LRM is the “expert” (or teacher or 
supervisor) and the system (1) is a learner which must mimic the LRM’s IO behavior. For 
the given problem, dynamics of (3) must be designed beforehand, however they may be 
unknown to the learner system (1). 

In the subsequent section, the problem (4) is solved by learning two state-feedback 
closed-loop control solutions for the system (2). The implication is straightforward. If a 
state-feedback controller of the form )( kk vCu =  is learned to control (2), then this control 
action can be set as the actual control input for the system (1), based on the feedback kv  
built from present and past IO samples kk yu ,  of the system (1). Hence, learning control 
for (2) by solving (4) is the same with solving (4) for the underlying system (1). Notice the 
recurrence in )( kk vCu =  since kv  includes τ−− kk uu ,...,1 . 

Several observations concerning the LRM selection are mentioned. According to the 
classical control rules in model reference control [46], the LRM dynamics must be corre-
lated with the bandwidth of the system (1). The time-delay of (1) and its possible non-
minimum-phase (NMP) character must be accounted for inside the LRM as they should 
not be compensated. These knowledge requirements are satisfiable based on working ex-
perience with the system or from technical datasheets. However, they do not interfere 
with the “unknown dynamics” assumption. Since the virtual state-feedback control de-
sign is attempted based on the VSFRT principle, it is known from classical VRFT control 
that the NMP property of (1) requires special care, therefore for simplification, it will be 
assumed that (1) is minimum-phase. IO data collection necessary for both the VSFRT and 
the AI-VIRL designs require that (1) is either open-loop stable or stabilized in closed-loop. 
It will be assumed further that (1) is open-loop stable, although closed-loop stabilization 
for IO samples collections can (and will also) be employed for reducing collection phase 
duration and to enhance exploration. 

The following section proposes and details the VSFRT and AI-VIRL for learning op-
timal control in (4), in virtual state feedback-based closed-form solutions. 
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3. LRM Output Tracking Problem Solution 
3.1. Recapitulating VRFT for Error-Feedback IO Control 

In the well-known VRFT for error-feedback control defined for linear mono-variable 
unknown systems [19], a database of IO samples is considered available after being col-
lected from the base system (1), let this database be called 1,0)},,{( −== NkDB kk yu . Either 
open- or closed-loop could be considered for IO samples collection. Based on the VRFT 
principle, it is assumed that ky  is also the output of the given LRM conveyed by )(qLRMT
. One can offline calculate in a noncausal fashion the virtual reference 

kLRMk q yTr )(~ 1−=  
which set as input to )(qLRMT  would render ky  at its output. The tilde means offline cal-
culation. A virtual feedback error is next defined as kkk yre −= ~~ . Selecting some prior lin-
ear controller transfer function structure ),~( ϑkeC  ( ϑ -the parameter vector) as a function 
of the virtual feedback error, the controller identification problem is defined as the mini-
mization over ϑ  of the cost 
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V eCu . Meaning that the controller 

),~( ϑkeC  outputs ku  when driven by ke~ . This conceptually implies that the control sys-
tem having the loop closed by ),~( ϑkeC , produces the signals ku  and ky  when driven by 

kr~ . This would eventually match the closed-loop with the LRM. The VRFT circumvents 
direct controlled system identification, hence it is model-free. 

The work [19] analyzed approximate theoretical equivalence between )(ϑN
VRV  and 

the LRM cost 
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(sometimes denoted with M) with pulse transfer function L(q), was used to enhance this 
equivalence by replacing kk eu ~,  in )(ϑN

VRV  with their filtered variants 

k
L
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L
k qLqL eeuu ~)(~,)( == . The VRFT extension to the multi-variable case was studied in [20] 

while its extension to nonlinear system and nonlinear controller case has been afterwards 
exploited in works like [23–27], where the L-filter was dropped when richly parameter-
ized controllers were used (e.g., NNs). 

3.2. VSFRT—The Virtual State Feedback-Based VRFT Solution for the LRM Output Tracking 
Following the rationale behind the classical model-free VRFT, a database of IO sam-

ples is considered available after being collected from the base system (1), let it be denoted 
as 1,0)},,{( −== NkDB kk yu . It is irrelevant for the following discussion if the samples 
were collected in open- or closed-loop. An input-state-output database is constructed as 

)},~,{( kkk yvu  where kv~  is constructed from the historical data kk yu , . Based on the VRFT 
principle, it is assumed that ky  is also the output of the given LRM (characterized by 

)(qLRMT ). A non-causal filtering then allows for virtual reference calculation as in 

kLRMk q yTr )(~ 1−= . Similar to VRFT applied for error-feedback IO control, now a virtual state-
feedback reference feedback tuning (VSFRT) controller is searched for. This controller de-
noted C should make the LRM’s output to be tracked by the system (2)’s output and it is 
identified to minimize the cost 
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k ])~()~[(~ rvs =−  being an extended state regressor vector constructed from the vir-

tual state kv~  of (2) and with a controller parameter vector ϑ . 
A VSFRT controller rendering 0)( =ϑN

VRV  should lead to 0→∞
LRMOV . It is the VRFT 

principle which establishes the equivalence between )(ϑN
VRV  and )(ϑ∞

LRMOV , being sup-
ported in practice by using richly parameterized controllers (such as NNs [25]), coupled 
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with a wise selection of the LRM dynamics. A controller NN called C-NN will be em-
ployed in this framework, with ϑ  capturing the NN trainable weights. It is straightfor-
ward to regard )(ϑN

VRV  as the mean sum of squared errors (MSSE) criterion for training 
the C-NN, with input pattern }~{ −ex

ks  and with output pattern }{ ku . 
The model-free VSFRT algorithm is presented below. 

1. The IO database 1,0)},,{( −== NkDB kk yu  is first collected, then kv~  is built. Both kr~  
and −ex

ks~  are computed. 
2. A C-NN is parameterized by properly selecting a NN architecture type together with 

its training details. MaxTrain  called the maximum number of training times is set 
along with the index j = 1 counting the number of trainings. 

3. The NN weights vector ϑ  is initialized (e.g., randomly). 
4. The C-NN is trained with input patterns }~{ −= ex

kin s  and output patterns }{ kt u= . 
This is equivalent to minimizing (5) w.r.t. ϑ . 

5. If MaxTrainj < , set 1+= jj  and repeat from the 3rd Step, otherwise finish the algo-
rithm. 
The above algorithm produces several trained neural controllers C-NN with param-

eter ϑ , i.e ),~( ϑ−ex
ksC . The best one is selected based on some predefined criterion (mini-

mal value of )(ϑN
VRV  or minimal value of some tracking performance on a given test sce-

nario). Stability of the closed-loop with the VSFRT C-NN is asserted, with some assump-
tions following next [47]: 

A1. The system (2) supports the equivalent IO description 
),,...,,,...,( 11 nukknykkk −−−−= uuyyTy  with ny , nu  unknown system orders and the nonlinear 

map T  is invertible with respect to u : For a given ky , the input ku  is computable as 

)(1
1 kk yTu −

− =  (the “k−1” subscript in u vs. the “k” subscript in y formally suggest strictly 
causal system). Additionally, LRM (3) supports the IO recurrence 
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k rsMy , to simultaneously convey the IO and the input-state-output de-

pendence in a single compact form, under the mappings mMM, . With no generality loss, 
the above representation indicates the relative degree one between input and output. Let 
us assume the map M  is invertible, with 1, −kk uv  computable from 
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)()( 1
kvk yMv −= , )()( 1

1 kuk yMu −
− = . Also assume that mM  is a CD invertible map such 

that 1, −k
m
k rs  are computable from m

ky  as )()(),()( 1
1

1 m
k

m
rk

m
k

m
s

m
k yMryMs −

−
− ==  and that 

there are constants 0,0 >κ>κ m
Mr

m
Mx

 fulfilling m
Mxm

k

k
m
k

m

κ<
∂

∂ −

s
rsM ),( 1  and 

m
Mr

k

k
m
k

m

κ<
∂

∂

−

−

1

1 ),(
r

rsM , where •  is an appropriate matrix norm induced by the L2 vector 

norm. The model inversion assumptions are natural for state-space systems (2) and (3) 
being characterized by IO models. Practically, the idea behind )()( 1

kvk yMv −=  is as fol-
lows: For certain ky  in (2), one can calculate )(1

1 kk yTu −
− = , then generate ),(1 kkk uvFv =+  

based on (2). The above inequalities with upper bounds on the maps’ partial derivatives 
are reasonable and commonly used in control. Moreover, let 1)(, −
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The maps 1)(, −
vMM  are CD since they emerge from the CD map F in (2), whose CD 

is a consequence of the CD property of f, g from (1) [45]. Their bounded derivatives are 
reasonable assumptions for that matter. 

A3. Let 1,0,},~,{ −=××⊂= NkYVUDB kkk yvu  be a trajectory collected from the sys-
tem (2) within respective domains YVU ,,  and with ku  being: 1) Persistently exciting 
(PE), to make sure that ky  senses all system dynamics; 2) uniformly exploring the entire 
domain YVU ×× . The largerN , the better exploration is obtained. 

A4. There exists a set of nonlinear parameterized state-feedback continuously differ-
entiable controllers { }),( ϑ−ex

ksC , a ϑ̂  for which )ˆ,ˆ(ˆ ϑ= −ex
kk sCu , and an 0>ε  for which 
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− = . The quantities }ˆ,ˆ,ˆ{ kkk yvu  would be 
collected under )ˆ,ˆ(ˆ ϑ= −ex

kk sCu  in closed-loop, as dictated by the evolution of the virtual 
signal 1

~
−kr  for a given ϑ̂ . The bounded derivative condition for the controller is natural 

when smooth NN function approximators are used. 

Theorem 1. [47]: Under assumptions A1–A4, there exists a finite 0>κ such that 
2
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Proof. We introduce the notation ( ) ( ) TT
k

T
k

ex
k ]~~[~ rvs =−  and make the notation equivalences 

k
ex
k ζs ~~ ↔− , 

k
ex
k ζs ˆˆ ↔− , kk xv ~~ ↔ , kk xv ˆˆ ↔ . Note that kv  is the state of a virtual state-space 

model (2), different from kx  in [47] being the state of a natural state-space model. Addi-
tionally, −ex

ks~  does not contain the LRM state m
ks , this discussion is deferred for now to 

Section 3.4. Then, following the rationale of Theorem’s 1 proof in the Appendix of [47], the 
proof of the current Theorem 1 follows.          □ 

Corollary 1. The controller )ˆ,( ϑ−ex
ksC  where ϑ̂  is obtained by minimizing (5), is stabilizing for 

the system (2) in the uniformly ultimately bounded (UUB) sense. 

Proof. When ϑ̂  is the value found to minimize )(ϑN
VRV  from (5), it makes the first ine-

quality in A4 hold for arbitrarily small 0>ε . From Theorem 1 it follows that 2

2
ˆ kk yy −  is 

bounded. Notice that ky  is bounded from the experimental collection phase and that kŷ  
is generated in closed-loop with )ˆ,ˆ( ϑ−ex

ksC . However, the closed-loop that generates kŷ  
is driven by kr~  obtained from ky  as )(~ 1

1 kLRMk yTr −
− = . The PE condition on ku  makes 

ky well explore its domain which subsequently makes kr~  well explore its domain, let it 
be called rR . Based on the CD and bounded derivatives properties of the maps, it means 
that, for any other values rk R⊂r~ , the term 2

2
ˆ kk yy −  is bounded. The UUB stability of 

the closed-loop follows.           □ 

Remark 1. The output ky  in )ˆ(ϑN
LRMOV  from (8) is also the LRM’s output, according to the 

VSFRT initial assumption, therefore 2
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controller identification rendering a small 
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making ε  sufficiently small, i.e., 0→ε . Then 2)ˆ( κε<ϑN
LRMOV  can be made arbitrarily 

small. Since )ˆ(ϑN
LRMOV  is the finite-length (and also the parameterized closed-form control) 
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version of ∞
LRMOV  from (4), it is expected that for sufficiently large N , an equivalence holds 

between minimizing )ˆ(ϑN
VRV  in (5) and minimizing ∞

LRMOV  in (4). 

Remark 2. The controller )ˆ,( ϑ−ex
ksC  which is stabilizing (2) in the IO UUB sense, is also 

stabilizing (1), since (1) has the same input and output as (2). 

3.3. The AI-VIRL Solution for the LRM Output Tracking 
Solving (4) with machine learning AI-VIRL requires an MDP formulation of the sys-

tem dynamics. To proceed, the virtual system (2) and the LRM dynamics (3) are combined 
to form the extended virtual state space system 
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(9) 

where )(1 kk rr Γ=+  is any valid generative dynamical model of the reference input, herein 
being modeled as a piecewise constant signal, i.e., kk rr =+1  and S is the extended system 
dynamics nonlinear mapping. The dimension of ex

ks  is mux nrmrpn +++= )2( . 
For extended system (9) with partially unknown dynamics, an offline off-policy batch 

AI-VIRL algorithm will be used, which is also known by the name of model-free batch-
fitted Q-learning. It relies on a database of transition samples collected from the extended 
system (9) and uses two function approximators: One to model the well-known action-
state Q-function and another one modeling a parameterized dependence of the control on 
the state, i.e., ),( ϑ= ex

kk sCu  with parameter vector ϑ . Commonly, NNs are used thanks 
to their well-developed training software and customizable architecture. The Q-function 
approximator is parameterized as ),,( πus k

ex
kQ . A major relaxation about model-free AI-

VIRL w.r.t. to other reinforcement learning algorithms is that it does not require an initial 
admissible (i.e., stabilizing) controller, but manages to converge to the optimal control 
which must be stabilizing for the closed-loop control system. 

To solve (4) and reach for the optimal control now expressed as a direct state depend-
ence as in ),( ** ϑ= ex

kk sCu  and also parameterized by ϑ , AI-VIRL relies on the database of 
transition samples (sometimes called experiences) )},,(),...,,,{( ][

1
][][]1[

1
]1[]1[ Nex

k
N
k

Nex
k

ex
kk

ex
kDB ++= sussus

. These samples can be collected in different styles, as later on pointed out in the case 
study. Making the AI-VIRL a batch offline off-policy approach. Randomly initializing the 
Q-function NN (Q-NN) weight vector 0π  and the controller NN weight vector as 0ϑ , AI-
VIRL alternates the Q-function weight vector update step 

( )
=

−−
++ ϑ−−=

N

i

jjiex
k

iex
k

i
k

iex
k

i
k

iex
k

j QrQ
N 1

211][
1

][
1

][][][][ )),,(,(),(),,(1minarg πsCsusπusπ
π

 (10)

with the controller weight vector update step 

,)),,(,(1minarg
1

][][
=ϑ

ϑ=ϑ
N

i

jiex
k

iex
k

j Q
N

πsCs  (11)

until, e.g., no more changes in jπ  or jϑ , implying convergence to *ϑ . With NN approx-
imators for both the Q-function and the controller, solutions to (10) and (11) are embodied 
as the classical NN backpropagation-based training, recognizing the cost functions in (10) 
and (11) as the mean sum of squared errors. The NN training procedure requires gradient 
calculation w.r.t. NN weights.  
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For solving (11), another trick is possible for low-dimensional control input: 1) Firstly, 
find the approximate minimizers ]min[i

ku  of ),,( ][ jiex
kQ πus  over u for all ][iex

ks , by enumer-
ating all combinations of discretized control values over a fine grid discretization of u’s 
domain; 2) secondly, establish these minimizers as targets for the C-NN ),( ][ ϑiex

ksC  then 
gradient-based train for the parameters ϑ  of this NN. 

The AI-VIRL algorithm is summarized next.  
1. Select C-NN and Q-NN architectures and training settings. Initialize 0π , 0ϑ , termi-

nation threshold ε , maximum number of iterations MaxIter  and iteration index j = 
1. Prepare the transition samples database NiDS iex

k
i
k

iex
k ,1)},,,{( ][

1
][][ == +sus . 

2. Train the Q-NN with inputs }]{[ ][][ TTi
k

Tiex
kin us=  and target outputs 

)}),,(,(),({ 11][
1

][
1

][][ −−
++ ϑ+= jjiex
k

iex
k

i
k

iex
k Qrt πsCsus . This is equivalent to solving (10). 

3. Train the C-NN with inputs }{ ][iex
kin s=  and target outputs }{ ]min[ i

kt u= . This is equiv-
alent to solving (11). 

4. If MaxIterj <  and ε>ϑ−ϑ − 2

2
1jj  (with some threshold 0>ε ), make 1+= jj  and 

go to Step 2, else terminate the algorithm. 
With all transition samples participating in the AI-VIRL, this model-free Q-learning-

like algorithm benefits from a form of experience replay, widely used in reinforcement 
learning. Under certain assumptions, convergence of the AI-VIRL C-NN to the optimal 
controller which implies stability of the closed-loop has been analyzed before in the liter-
ature [2,3,6–8,11,12] and is not discussed here. 

3.4. The Neural Transfer Learning Capacity 
The AI-VIRL solution is a computationally expensive approach while, the VSFRT so-

lution is one-shot and it is obtained much faster in terms of computing time. It is of interest 
to check whether the AI-VIRL convergence is helped by initializing the controller with an 
admissible (i.e., stabilizing) one, e.g., learned with VSFRT. This is coined as transfer learn-
ing. 

Notice that for VSFRT, m
ks~  (computable from kr~ ) does not appear in −ex

ks~ . Meaning 
that −ex

ks~  represents only a part of ex
ks  from (9). The reasons are twofold: (i) Firstly, since 

m
ks  is correlated with m

ky  via the output equation m
k

m
k Lsy =  in (3), in the light of the VRFT 

principle it means that m
ks  is redundant since m

kk yy =  already appears in kv . (ii) Sec-
ondly, different from the AI-VIRL where the reference input generative model kk rr =+1  
used for learning and testing phase is the same as the model used in the transition samples 
collection phase, the VSFRT specific is different. The virtual reference kr~  is imposed by 

ky  and it is different from the one used in testing phase. Implying that m
ks~  computable 

from kr~  also has different versions in the learning and testing phases. This has been ob-
served beforehand in the experimental case study and motivates the exclusion of m

ks~  from 
−ex

ks~ . 
We stress that “~” is only meaningful in the offline computation phase for VSFRT 

and, outside this scope and in the following, the state vectors are referred to as m
ks  and 

−ex
ks . 

The case study will use controllers modeled as a three-layer NN with linear input 
layer, nonlinear activation for a given number of neurons in the hidden layer and with 
linear output activation. Let the controller be ),( ϑ= ex

kk sCu . A fully connected feedfor-
ward NN equation models each output as 

u
n

l
l
in

l
k

jl
in

n

j
ij

out
i
outik mibsWWbu xH ,1),(

1
,

1
,

, =++=  ==
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where l
ks  is the l-th input component from ex

ks  at time k, i
out

l
in

ij
out

jl
in bbWW ,,, ,,  are input layer 

weights, output layer weights, input layer bias weights and output layer bias weights, 
respectively.   is a given differentiable nonlinear activation function (e.g., tanh, logsig, 
ReLu, etc.) and Hn  is the number of hidden layer neurons (or nodes). The parameter vec-
tor ϑ  gathers all trainable weights of the NN. 

The controller transfer learning from VSFRT to AI-VIRL starts by observing that 
TTm

k
Tex

k
ex
k ])()[( sss −= . Then, all the input weights and biases from (12) corresponding to the 

inputs m
ks  are set to zero, while the other weights and biases are copied from the VSFRT 

NN controller. Then the learned VSFRT controller will be transferred as an initialization 
for the AI-VIRL controller. 

4. First Validation Case Study 
A two-axis motion control system stemming from an aerial model is subjected to con-

trol learning via VSFRT and AI-VIRL. It is nonlinear and coupled and allows for vertical 
and horizontal positioning, being described as 
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(13)

where )(1
1−S  means saturating function on ]1,1[− , 21,uu  are the horizontal motion control 

input and the vertical motion control input respectively. ],[)( 13, ππ−∈= yradsa  is the hor-

izontal angle, ]2/,2/[)( 23, ππ−∈= yradsp  is the vertical angle, other states being described 
in [48]. The nonlinear static maps )( ),( ),( ),( 1,1,1,1, aaaapppp sFsMsFsM  are fitted polynomials ob-
tained for )4000;4000(, 1,1, −∈ap ss  [48]. 

A zero-order hold on the inputs combined with an outputs sampler applied on (13), 
conducts to an equivalent discrete-time model of relative degree one suitable for IO data 
collection and control. The system’s unknown dynamics will not be employed herein for 
learning control. 

The objective of the problem (4) is here translated to finding the controller which 
makes the system’s outputs track the outputs of the LRM given as 

))(''),('()( qTqTdiagqLRM =T  with )(''),(' qTqT  the discrete-time variants of 
3),1/(1)('')(' =τ+τ== ssTsT  obtained for the sampling interval of s1.0=Δ . 

4.1. IO Data Collected in Closed-Loop 
An initial linear MIMO IO controller is first found based on an IO variant of VRFT. 

The linear diagonal controller learned with IO VRFT is 

,
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For exploration enhancement, the reference inputs have their amplitudes uniformly 
randomly distributed in ]4.1;4.1[],2;2[ 2,1, −∈−∈ kk rr  and they present as piece-wise constant 
sequences of 3 s and 7 s, respectively. Every th5  sampling instant, a uniform random 
number in ]1;1[−  is added to the system inputs 2,,1, kk uu . Then kr  drives the LRM 
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With controller (14) in closed-loop over the output feedback error ))((k kkq yrCu −= , 
IO data },{ k kyu  is collected for 2000 s, as rendered in Figure 1 (only for the first 200 s). 

 
Figure 1. Closed-loop IO data from the process. (a) 1k,u ; (b) 1k,y (black), m

ky 1, (blue), 1,kr (red); (c) 

2k,u ; (d) 2k,y (black), m
ky 2, (blue), 2,kr (red). 

4.2. Learning the VSFRT Controller from Closed-Loop IO Data 
Using the collected output data ky  and the given reference model )(qLRMT , the vir-

tual reference input is computed as 
kLRMk q yTr )(~ 1−= . Afterwards, the extended state is built 

form the IO database },{ kk yu  and from kr~ , as lumped in 
T

kkkkkkkk
ex
k rruuyyyy ]~~...[~

2,1,2,11,12,31,32,1, −−−−
− =s . 

The extended state −ex
ks~  fills a database of the form )},~{( k

ex
kDS us −=  and it is used 

to learn the VSFRT NN controller using the VSFRT algorithm. The NN settings are de-
scribed in Table 1. Each learning trial trains the C-NN for 200=MaxTrain  times, starting 
with reinitialized weights. Each trained C-NN was tested on the standard scenario shown 
in Figure 2 (only for the first 600 s), by measuring a normalized c.f. N

LRMOVNV ⋅= /1  for 
12000=N  samples in 1200 s. The best C-NN (in terms of the minimal value of V per trial) 

is retained at each trial. One trial lasts about 30 min on a standard desktop computer with 
all calculations performed on CPU. 

For a fair evaluation, the learning process is repeated for five trials. In Table 2, the 
value of V  for five trials is filled and then averaged. The best C-NN, found in trial 3, has 

0.0051332=V . 
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Table 1. Virtual State-feedback Reference Feedback Tuning (VSFRT) C-NN settings. 

Setting C-NN 
Architecture 12-6-2 (12 inputs for 12ℜ∈ex

ks , 6 hidden layer neurons and 2 outputs: 
2,1, , kk uu ) 

Activation function in hidden layer tansig 
Activation function in output layer linear 

Initial weights uniform random numbers in [0;1] 
Training algorithm scaled conjugate gradient 

Maximum number of epochs to train 100 
Validation/training ratio 10–90%  

Maximum validation failures 50 
Minimum performance gradient 3010−  

Training cost function mean sum of squared errors (MSSE) 

 
Figure 2. VSFRT neural network (NN) controller: (a) 1k,u ; (b) 1k,y (black), m

ky 1, (red); (c) 2k,u ; (d) 

2k,y (black), m
ky 2, (red). 

Table 2. VSFRT and Approximate Iterative Value Iteration Reinforcement Learning (AI-VIRL) 
tracking performance when learning uses closed-loop IO data. 

Trial VSFRT AI-VIRL (500 Epochs) AI-VIRL (100 Epochs) 
1 0.0058104 0.010102 0.0070567 
2 0.0054775 0.0066765 0.017531 
3 0.0051332 0.0039271 0.034047 
4 0.0092913 0.024098 0.01389 
5 0.0058103 0.0069556 0.013097 

Average 0.00630454 0.01035184 0.03424868 

4.3. Learning the AI-VIRL Controller from Closed-Loop IO Data 
In this case, the extended state used to learn C-NN with AI-VIRL, built using the same 

dataset },{ kk yu , the states from the reference model m
ks  and the reference input kr , is 

Tm
k

m
kkkkkkkkk

ex
k ssrruuyyyy ],,,,,...[ 2,1,2,1,2,11,12,31,32,1, −−−−=s . 

Before using the raw database, the transition samples at time instants where 1+≠ kk rr  
are to be deleted (the piecewise constant step model is not a valid state-space at switching 
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instants) and the resulted database used for learning is 
NPwherePiDB iex

k
i
k

iex
k <== + ,,1)},,,{( ][

1
][][ sus . 

The controller NN and the Q-function NN settings are depicted in Table 3. 

Table 3. AI-VIRL C-NN and Q-NN settings. 

Setting C-NN Q-NN 
Architecture 14-10-2 16-30-1 

Activation function in hidden layer tansig tansig 
Activation function in output layer linear linear 

Initial weights uniform random numbers in [0;1] uniform random numbers in [0;1] 
Training algorithm scaled conjugate gradient scaled conjugate gradient 

Maximum number of epochs to train 500 or 100 500 
Validation/training ratio 10–90%  10–90% 

Maximum validation failures 50 50 
Minimum performance gradient 3010−  3010−  

Training cost function MSSE MSSE 

To find Q-NN’s minimizers for training the C-NN in Step 3 of the AI-VIRL algorithm, 
all possible input combinations 21 k,k, uu ×  resulted from 19 discrete values in [–1;1] for each 
input are enumerated, for each ][iex

ks . The minimizing combination is set as target for the 
C-NN, for the given input ][iex

ks , at the current algorithm iteration. 
Each AI-VIRL iteration produces a C-NN that is tested on the same standard test 

scenario used with VSFRT, by measuring a finite-time normalized c.f. N
LRMOVNV ⋅= /1  for 

12000=N  samples over 1200 s. The AI-VIRL is iterated for 1000=MaxIter  times and all 
stabilizing controllers that are better than the previous ones running on the standard test 
scenario are recorded. For fair evaluation, AI-VIRL is also run for five trials. 

Two cases are analyzed, to test the impact of the training epochs on the controller 
NN. In the first case, both C-NN and Q-NN are to be trained for maximum 500 epochs. 
The best C-NN is found at iteration 822 of trial 3 and measures 0.0039271=V  on the 
standard test scenario shown in Figure 3 (only the first 600 s shown). 

 
Figure 3. AI-VIRL NN controller: (a) ,1ku ; (b) ,1ky (black), m

ky 1, (red); (c) k,2u ; (d) ,2ky (black), m
ky 2,

(red). 
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In the second case, the Q-NN is trained for maximum 500 epochs and the C-NN is 
trained for maximum 100 epochs. The best C-NN is found at iteration 573 of the first trial 
and measures 0.0070567=V on the standard test scenario shown in Figure 4 (only the first 
600 s shown). 

 
Figure 4. AI-VIRL NN controller: (a) ,1ku ; (b) ,1ky (black), m

ky 1, (red); (c) k,2u ; (d) ,2ky (black), m
ky 2,

(red). 

The iterative learning process specific to AI-VIRL lasts for approximately 6 h in the 
first above mentioned case and for about 4 h in the second case, on a standard desktop 
computer with all operations on CPU. All measurements corresponding to the five trials 
in the two cases are filled in Table 2. 

After learning the AI-VIRL control, the conclusion w.r.t. VSFRT learned control can 
be drawn: The VSFRT control is computationally cheaper to learn (one-shot instead of 
iterative) and the average tracking control performance is better with VSFRT (about an 
order of magnitude better). 

4.4. Learning VSFRT and AI-VIRL Control Using IO Data Collected in Open-Loop 
Next, we repeat the learning process for the two controllers (the VSFRT one and the 

AI-VIRL one) but the data used for learning is collected in open-loop as depicted in Figure 
5. For the sake of exploration, the system inputs have their amplitudes uniformly ran-
domly distributed in ]4.0;5.0[],6.0;45.0[ 2,1, −∈−∈ kk uu  and they present as piece-wise con-
stant sequences of 3 s and 7 s, respectively. Each of 21 k,k, ,uu  are firstly filtered through the 
lowpass dynamics 1/(s+1). Then every th5  sampling instant, a uniform random number 
in ]1;1[−  is again added to the filtered 21 k,k, ,uu . A crucial difference w.r.t. the closed-loop 
collection scenario is that the reference inputs drive only the LRM and since there is no 
controller in closed-loop, the reference inputs kr  and the LRM’s outputs 

kLRM
m
k q rTy )(=  

evolve as correlated but independently of the system outputs who were excited by ku . 
For exploration, the reference inputs have their amplitudes uniformly randomly distrib-
uted in ]2;1[],6;6[ 2,1, −∈−∈ kk rr  and they are also piece-wise constant sequences of 10 and 
15 s, respectively. We underline that for VSFRT, kr  and m

ky  are not needed as they are 
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automatically offline calculated by the VSFRT principle. However, AI-VIRL uses them for 
forming the extended state-space model. 

It is clear when comparing Figure 1 with Figure 5 that the open-loop data collection 
in uncontrolled environment is not satisfactorily exploring the input-state space (there is 
significantly less variation in the outputs). This may affect learning convergence and final 
LRM tracking performance. 

The extended states for VSFRT and AI-VIRL and their NNs settings are kept the same 
as in the closed-loop IO collection scenario. 

For a fair evaluation, the learning process is repeated five times for all the cases pre-
viously described. In Table 4 is noted the value of V  for each trial and the average value. 

 
Figure 5. Open-loop input/output (IO) data from the system: (a) 1k,u ; (b) 1k,y (black), m

ky 1, (blue), 1,kr
(red); (c) 2k,u ; (d) 2k,y (black), m

ky 2, (blue), 2,kr (red). 

Table 4. VSFRT and AI-VIRL tracking performance when learning uses open-loop IO data. 

Trial VSFRT AI-VIRL (500 Epochs) AI-VIRL (100 Epochs) 
1 0.0057742 1.6159 1.0426 
2 0.004507 0.24 0.96942 
3 0.0055276 1.8268 1.0055 
4 0.0043692 0.63566 1.3044 
5 0.0049202 0.84485 0.20267 

Average 0.00501964 1.032642 0.904918 

The best VSFRT controller, obtained in trial 4, measures 0.0043692=V on the test sce-
nario from Figure 6, a value close to the minimal value obtained in the closed-loop IO data 
collection scenario. The AI-VIRL controllers’ performance is obviously inferior; the C-NN 
with the minimal V in the case when it is trained for maximum 100 epochs, is found at 
iteration 15 and measures 0.24=V  on the second trial (tracking is shown in Figure 7 the 
first 600 s only); the C-NN with minimal V (best tracking) in the case when trained for 
maximum 500 epochs, is found at iteration 132 of the fifth trial and measures 0.20267=V  
on the standard test scenario shown in Figure 8 for the first 600 s only. 
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Figure 6. VSFRT NN controller: (a) k,1u ; (b) k,1y (black), m

ky 1, (red); (c) k,2u ; (d) k,2y (black), m
ky 2,

(red). 

 
Figure 7. AI-VIRL NN controller: (a) k,1u ; (b) k,1y (black), m

ky 1, (red); (c) k,2u ; (d) k,2y (black), m
ky 2,

(red). 

 
Figure 8. AI-VIRL NN controller: (a) 1k,u ; (b) 1k,y (black), m

ky 1, (red); (c) 2k,u ; (d) 2k,y (black), m
ky 2,

(red). 
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The conclusion is that the poor exploration fails the AI-VIRL convergence to a good 
controller, whereas the VSFRT controller is learned to about the same LRM tracking per-
formance. VSFRT learns better control (about two order of magnitude smaller V than with 
AI-VIRL) while being less computationally demanding and despite the poor exploration. 

4.5. Testing the Transfer Learning Advantage 
It is checked whether initializing the AI-VIRL algorithm with an admissible VSFRT 

controller helps improving the learning convergence, using the transfer learning capabil-
ity. An initial admissible controller is not however mandatory for the AI-VIRL. Since both 
the VSFRT and the AI-VIRL controllers aim at solving the same LRMO tracking control 
problem, it is expected that the VSFRT controller initializes AI-VIRL closer to the optimal 
controller. 

The VSFRT controller from the closed-loop IO data collection case is transferred since 
this case has proved good LRMO tracking for both the VSFRT and for the AI-VIRL con-
trollers. Two cases were again analyzed: When the C-NN of the AI-VIRL is trained for 100 
epochs at each iteration and when the C-NN of the AI-VIRL is trained for 500 epochs at 
each iteration. While the Q-NN has its weights randomly initialized with each trial. 

The results unveil that the transfer learning does not speed up the AI-VIRL conver-
gence, nor does it result in better AI-VIRL controllers after the trial ends. The reason is 
that the learning process taking place in the high-dimensional space spanned by the C-
NN weights remains un-controllable directly, but only indirectly by the hyper-parameter 
settings such as database exploration quality and size, training overfitting prevention 
mechanism and adequate NN architecture setup. 

4.6. VSFRT and AI-VIRL Performance under State Dimensionality Reduction with PCA and 
Autoencoders 

State representation is a notorious problem in approximate dynamic programming 
and reinforcement learning. In the observability-based framework, the state comprises of 
past IO samples who are time-correlated. Meaning that the desired uniform coverage of 
the state space is significantly affected. Intuitively, the more recent IO samples from the 
virtual state better reflect the actual system state, whereas the older IO samples are less 
characterizing the actual system state. 

Analyzing the state representation for VSFRT and for AI-VIRL, two sources of corre-
lation appear. First, the time-correlation since the virtual state is constructed from past IO 
samples. Secondly, correlation appears between the independent reference inputs (used 
in closed-loop IO data collection) and the LRM’s states and outputs and the system’s in-
puts and outputs as well. It is therefore justified to strive for state dimensionality reduc-
tion. 

One of the popular unsupervised machine learning tools for dimensionality reduc-
tion is principal component analysis (PCA). Thanks to its offline nature, it can be used 
only with offline learning schemes, such as VSFRT and AI-VIRL. Let the state vector ks  
recordings be arranged in a matrix S where the number of columns correspond to the state 
components and the line number is the record time index k. The state ks  can be either 
one of −ex

ks~  for VSFRT or ex
ks  for AI-VIRL. Let the empirical estimate of the covariance of 

S be S~  obtained after centering the columns of S to zero, and the square matrix V con-
tains S~ ’s eigenvectors on each column, arranged from the left to the right, in the descend-
ing order of the eigenvalues amplitudes. The number Pn  of principal components counts 
the first Pn  leftmost columns from V, which are the principal components. Let this left-
most slicing of V be LV . The reduced represented state is then calculated as sVs TLred )(=
. 
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The state dimensionality reduction effect on tracking performance is tested both for 
the VSFRT and for the AI-VIRL. The used database is the one from the closed-loop collec-
tion scenario since this offers a learning chance to both VSFRT and to the AI-VIRL con-
trollers. For VSFRT, the dimension of the state −ex

ks~  is 12, whereas for AI-VIRL, the di-
mension of ex

ks  is 14. For VSFRT, the first 4 principal components explain for 98.32% of 
the data variation, while for AI-VIRL, the first 6 components explain for 98.51% of the data 
variation, confirming existent high correlations between the state vector components. This 
leads to reduced C-NN architecture sizes of 4–6–2 for VSFRT and 6–6–2 for AI-VIRL. For 
AI-VIRL, the case where 100 epochs for training the C-NN was employed. The explained 
variation in the data is shown for the first four principal components only for VSFRT, in 
Figure 9. 

The best learned C-NN with VSFRT and with AI-VIRL measure 0.1653=V  and 
3488.1=V  respectively, on the test scenario. The VSFRT controller performs well only on 

controlling 1,ky  while poorly on controlling 2,ky . Whereas the AI-VIRL control is unex-
ploitable on any of the two axes. The conclusion is that the exploration issue is exacerbated 
by the state dimensionality reduction, although learning still takes place to some extent. 
Even when the data variation is explainable by a reduced number of principal compo-
nents, due to many apparent correlations. 

 
Figure 9. Proportion of state variation explained as function of the number of principal 
components, for VSFRT state input. 

Under reduced state information loss when performing dimensionality reduction, no 
improvement on the best tracking performance is expected. However, learning still oc-
curs, which encourages to use the dimensionality reduction as a trade-off for reducing 
learning computational effort by reducing the state space size and subsequently the NN 
architecture size. 

A standard fully-connected single-hidden layer feedforward autoencoder (AE) is 
next used to test the dimensionality reduction and its effect on the learning performance, 
in a different unsupervised machine learning paradigm. Details of the autoencoder are: 
Six hidden neurons that are the encoder’s outputs and is also the number of reduced fea-
tures; sigmoidal activation function from the input-to-hidden layer as well as from the 
hidden-to-output layer; number of training epochs set to maximum 500. The training cost 
function is of the form sparseLMSSE TcTcT 21 2

++  where MSSET  penalizes the mean summed 
squared deviation of the AE outputs from the same inputs, 

2L
T  is the weights L2 regular-

ization term responsible with limiting the AE weights amplitude and the sparseT  term en-

courages sparsity at the AE hidden layer’s output. sparseT  measures the Kullback–Leibler 
divergence of the averaged hidden layer outputs activation values with respect to a desir-
able value set as 0.15 in this case study. While the other parameters in the cost are set as 

4,004.0 21 == cc . The AE’s targeted output is the copied input. 
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The AE-based dimensionality reduction is only applied to the VSFRT control learn-
ing. Let the encoder map the input to the dimensionally-reduced feature as in 

)~(~ −= ex
k

red
k Enc ss . The VSFRT C-NN training now uses the pairs },~{ k

red
k us  using the same 

value 200=MaxTrain  and the same five trials approach. The best learned C-NN with 
VSFRT measured 0.1838=V  which is on par with the best performance from the VSFRT 
C-NN learned with PCA reduction. The result unveils that no significant improvement is 
obtained using the AE-based reduction, which is expected due to sensible information 
loss. Then there is no preference for using either of PCA or AE for this purpose. It also 
confirms that no better performance is attainable. However, it is advised to use dimen-
sionality reduction tools since by a reduced virtual state, simpler (as in reduced number 
of parameters) NN architectures are usable, leading to less computational effort in train-
ing, testing and real-world implementation phase. 

5. Second Validation Case Study 
A two-joints rigid and planar robot arm serves in the following case study. Its dy-

namics are described by [49] 
)(),()( 21 usssmssm Sat=+   (16)

where Tuu ],[ 21=u  are motor input torques for the base joint and for the tip joint, respec-
tively. Both inputs are limited inside the model, within their domains [–0.2; 0.2] Nm and 
[–0.1; 0.1] Nm, respectively, through the component-wise saturation function )(•Sat . 

Tss ],[ 21=s  measured in radians (rad) represents the angle of the base and tip joints, re-
spectively. While the joints’ angular velocities which are unmeasurable are captured in 

Tssss ],[ 4231 === s  and physically limited inside ]2,2[ ππ−  rad/s. When no gravitational 
forces affect the planar arm, the matrices in the equation (16) are 
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with the parameters’ numerical values set as l1 = 0.1, l2 = 0.1, m1 = 1.25, m2 = 1, I1 = 0.004, I2 = 
0.003, c1 = 0.05, c2 = 0.05, b1 = 0.1, b2 = 0.02. These parameters’ interpretation is irrelevant to 
the following developments. 

A sample period s05.0=Δ  characterizes a zero-order hold applied on the inputs and 
on the outputs of (16), rendering it into an equivalent discrete-time model with inputs 

T
kkk uu ],[ 2,1,=u  and outputs T

kkkkk sysy ],[ 2,2,1,1, ===y . 
It is intended to search for the control which makes the closed-loop match the con-

tinuous-time decoupled LRM model ))12.0/(1),15.0/(1()( ++= ssdiagsLRMT , which is sub-
sequently transformed to the discrete-time observable canonical state-space form 
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)(qLRMT  is the discrete-time counterpart of )(sLRMT , calculated for the sample period Δ . 
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5.1. IO Data Collection in Closed-Loop 
The transition samples must be collected first. Initial non-decoupling proportional-

type controllers are used, given as uk,1 = 0.15·(rk,1–yk,1) and uk,2 = 0.05·(rk,2–yk,2), respectively. 
For driving the resulted closed-loop CS, rk,1 is modeled as a sequence of piecewise 

constant values for 2 s with zero-mean random amplitudes of variance 0.6 and rk,2 is as a 
sequence of piecewise constant values for 1 s with zero-mean random amplitudes of var-
iance 0.65. For enhanced exploration, random additive disturbance is used on inputs 

., 2,1, kk uu  A uniform random number in ]3,3[−  is added to the first input every 2nd sam-
ple and a similar distribution random number is added to the second input every 3rd 
sample. A total of 15,000 samples of m

k
m
kkkkkkk yyyyuurr 2,1,2,1,2,1,2,1, ,,,,,,,  are collected. The col-

lection is shown in Figure 10. 

 
Figure 10. Closed-loop data collection: (a) 1k,u ; (b) ,1ky (black), m

ky 1, (red); (c) 2k,u ; (d) ,2ky (black), 
m
ky 2, (red). 

5.2. Learning the VSFRT Controller from Closed-Loop IO Data 
Using the collected output data ky  and the given reference model )(qLRMT , the vir-

tual reference input is computed as 
kLRMk q yTr )(~ 1−= . Afterwards, the extended state is built 

form the IO database samples },{ kk yu  and from kr~ , all components being lumped in 
T

kkkkkkkkkk
ex
k rruuyyyyyy ]~~[~

2,1,2,11,12,21,22,11,12,1, −−−−−−
− =s . 

The extended state −ex
ks~  fills a database of the form )},~{( k

ex
kDB us −=  and it is used 

to learn the VSFRT NN controller according to the VSFRT algorithm. The C-NN settings 
are described in Table 5. Each learning trial trains the C-NN for 200=MaxSteps  times, 
starting with reinitialized weights. Each trained C-NN was tested in closed-loop on a sce-
nario where the test reference inputs, by measuring a normalized c.f. N

LRMOVNV ⋅= /1  for 
400=N  samples in 20 s. The best C-NN (in terms of the minimal value of V per trial) is 

retained at each trial. One trial lasts about 30 min on a standard desktop computer with 
all calculations performed on CPU. For a fair evaluation, the learning process is repeated 
for five trials. In Table 6, the value of V  for five trials is filled and then averaged. About 
95% of the learned controllers are stabilizing, in spite of the underlying nonlinear optimi-
zation specific to VSFRT, indirectly solved by C-NN training. 
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Table 5. VSFRT C-NN settings. 

Setting C-NN 
Architecture 10-6-2 

Activation function in hidden layer tansig 
Activation function in output layer linear 

Initial weights uniform random numbers in [0;1] 
Training algorithm scaled conjugate gradient 

Maximum number of epochs to train 100 
Validation/training ratio 10–90%  

Maximum validation failures 50 
Minimum performance gradient 3010−  

Training cost function MSSE 

Table 6. VSFRT and AI-VIRL tracking performance when learning uses closed-loop IO data. 

Trial VSFRT AI-VIRL (500 Epochs) 
1 0.0043144 0.0039152 
2 0.0050468 0.0051058 
3 0.0040801 0.0068728 
4 0.0044891 0.0058930 
5 0.0045807 0.0055730 

Average 0.0045022 0.0054719 

5.3. Learning the AI-VIRL Controller from Closed-Loop IO Data 
The extended state used to learn C-NN with AI-VIRL, built using the same database 

},{ kk yu  collected for VSFRT, together with the states from the reference model m
ks  and 

the reference input kr . The extended state vector is comprised of 
Tm

k
m
kkkkkkkkkkk

ex
k xxrruuyyyyyy ],,,,,[ 2,1,2,1,2,11,12,21,22,11,12,1, −−−−−−=s . 

Before using the raw database, the transition samples at time instants where 1+≠ kk rr  
are to be excluded (the piecewise constant step model is not a valid state-space transition 
model at switching instants) and the resulted database used for learning is 

NPwherePiDB iex
k

i
k

iex
k <== + ,,1)},,,{( ][

1
][][ sus . 

The controller NN and the Q function NN settings are depicted in Table 7. 

Table 7. AI-VIRL C-NN and Q-NN settings. 

Setting C-NN Q-NN 
Architecture 12-6-2 14-40-1 

Activation function in hidden layer tansig tansig 
Activation function in output layer linear linear 

Initial weights uniform random numbers in [0;1] uniform random numbers in [0;1] 
Training algorithm scaled conjugate gradient scaled conjugate gradient 

Maximum number of epochs to train 100 500 
Validation/training ratio 10–90%  10–90% 

Maximum validation failures 50 50 
Minimum performance gradient 3010−  3010−  

Training cost function MSSE MSSE 
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To find Q-NN’s minimizers for training the C-NN in Step 3 of the AI-VIRL algorithm, 
all possible input combinations 2,k,1 kuu ×  resulted from 25 discrete values in [–2;2] for each 
input are enumerated, for each ][iex

ks . The minimizing combination is set as target for the 
C-NN, for the given input ][iex

ks , at the current algorithm iteration. 
Each AI-VIRL iteration produces a C-NN that is tested on the same standard test 

scenario used with VSFRT, by measuring the c.f. V  for 400=N  samples over 20 s. The 
AI-VIRL is iterated 200=MaxIter  times and all stabilizing controllers that are better than 
the previous ones running on the standard test scenario are recorded. For fair evaluation, 
AI-VIRL is also run for five trials and all the best measurements over one trial (and the 
average value per trials) are filled in Table 6. 

After learning the AI-VIRL controllers, the conclusion based on Table 6 is clear: 
VSFRT is again better than AI-VIRL, in spite of being computationally less demanding 
and also being one-shot. The learning took place on the same database, in a controlled 
environment where good exploration was attainable. 

5.4. Learning VSFRT and AI-VIRL Control Based on IO Data Collected in Open-Loop 
The robotic arm act as an open-loop integrator on each joint, hence being marginally 

stable. The open-loop collection is driven by zero-mean impulse inputs 2,,1, kk uu . For ex-
ploration’s sake, the reference inputs have their amplitudes uniformly randomly distrib-
uted in ]2;2[],5.1;5.1[ 2,1, −∈−∈ kk rr  and they present as sequences of piece-wise constant 
signals lasting 2.5 s and 2 s, respectively. The difference now w.r.t. the closed-loop collec-
tion scenario is that the reference inputs kr  drive only the LRM and since there is no con-
troller in closed-loop, the reference inputs and the LRM’s outputs kLRM

m
k q rTy )(=  evolve 

independently of the system’s outputs ky  who were driven by ku . The open-loop collec-
tion is captured in Figure 11 from where it is clear that 2,,1, kk yy  do not intersect too often 

with 2,,1, kk rr  and with m
k

m
k yy 2,1, , , respectively. 

 
Figure 11. Open-loop data collection: (a) 1k,u ; (b) ,1ky (black), m

ky 1, (blue), 1,kr  (red); (c) 2k,u ; (d) 

,2ky (black), m
ky 2, (blue), 2,kr  (red). 

The exact same learning settings from the closed-loop case were used for VSFRT and 
for AI-VIRL. Notice that 2,,1, kk rr  and with m

k
m
k yy 2,1, ,  are not used for learning control with 

VSFRT since they do not enter the extended state −ex
ks~ . 
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Five learning trials are executed both for VSFRT and for AI-VIRL, with the LRMO 
tracking performance measure V recorded in Table 8. The best learned VSFRT and AI-
VIRL controllers are shown performing on the standard tracking test scenario in Figure 
12. 

Table 8. VSFRT and AI-VIRL tracking performance when learning uses open-loop IO data. 

Trial VSFRT AI-VIRL (100 epochs) 
1 0.0021623 0.127480 
2 0.0021440 0.273590 
3 0.0021695 0.865850 
4 0.0021951 0.202360 
5 0.0021497 0.175330 

Average 0.0021641 0.328922 

 
Figure 12. VSFRT (black lines) and AI-VIRL (blue lines) learned from open-loop data, tested in 
closed-loop. m

ky 1,  (b) and m
ky 2,  (d) are in red. (a) and (c) show 1k,u  and 2k,u , respectively. 

There is a dramatic difference in favor of VSFRT’s superior tracking performance, in 
spite of the poorer input-state space exploration. As expected, AI-VIRL’s convergence to 
a good controller is affected by the poor exploration and its performance is not better than 
in the closed-loop collection case. Concluding, the superiority of VSFRT over AI-VIRL is 
again confirmed, both in terms of reduced computation complexity/time and in terms of 
tracking performance. 

6. Conclusions 
Learning controllers from IO data to achieve high LRM output tracking performance 

has been validated by both VSFRT and AI-VIRL. Learning takes place in the space of the 
new virtual state representation build from historical IO samples, to address observable 
systems. The resulted control is in fact learned to be applied to the original underlying 
system. Surprisingly in the two illustrated case studies, using the same IO data and the 
same LRM, VSFRT showed no worse tracking performance than AI-VIRL, despite its sig-
nificantly lesser computation demands. While in the cases of poor exploration, VSFRT was 
clearly superior. 

Aside performance comparisons, several additional studies were conducted. The 
transfer learning opportunity from VSFRT to provide initial admissible controller for the 
AI-VIRL showed no advantage. While transfer learning could theoretically accelerate the 
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learning convergence to the optimal control, the result indicates that learning in the high-
dimensional space spanned by the C-NN weights remains uncontrollable directly, but 
only indirectly by the hyper-parameter settings such as database exploration quality and 
size, training overfitting prevention mechanism and adequate NN architecture setup. 
Since the resulted state representation will generally lead to large virtual state vectors, the 
impact of dimensionality reduction through standard unsupervised machine learning 
techniques such as principal component analysis and autoencoders was studied. The ob-
tained results indicate that no significant improvement is obtained, then there is no pref-
erence for using either one of PCA or AE for this purpose. It also confirms that no better 
tracking performance is attainable. However, it is advised to use dimensionality reduction 
since by a reduced virtual state, simpler (in the sense of fewer parameters) NN architec-
tures are used, leading to less computational effort in training, testing and real-world im-
plementation phase. 
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Appendix A 
For an observable linear discrete-time processes of the form 
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the data-based observer expresses the state ks  in terms of kv  as 
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