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Abstract: The energy transition in Germany takes part in decentral structures. With the ongoing
integration of Renewable Energy Sources (RES) into the electricity supply system, supply-side is
therefore becoming increasingly decentral and volatile due to the specific generation characteristics. A
rather inflexible demand-side, on the other hand, increases the effort to gain the necessary equilibrium
between generation and consumption. This paper discusses how consumer behaviour can be
influenced by real-time pricing to align demand with generation. Therefore, a combination of two
different approaches is used, (I) The Cellular Approach (CA) and (II) Agent Based Modelling (ABM).
A model is set up considering a regional energy market, where regional electricity products can be
traded peer-to-peer regarding each consumer’s preferences. The observation is made for a whole
distribution grid including all types of consumers. The investigations show that energy purchases can
be stimulated individually by a flexible pricing mechanism and met preferences. Moreover, benefits
occur for the whole region and potentials arise to smooth the exchange balance to the superordinate
grid level. Running the model for one entire year in a conservative generation scenario, hours of
oversupply could be reduced by 18% and the consumption of green electricity generated regionally
could be increased by over 125 MWh within the region itself, in comparison to a base scenario.

Keywords: regional energy markets; cellular approach; agent based modelling

1. Introduction

A stable electricity system is highly dependent on a permanent equilibrium be-
tween generation and consumption. Therefore, flexibility of both sides is a fundamental
need. Up to now, this flexibility is mainly provided through the supply-side factors [1].
However, while the German energy transition progresses, volatility and decentralism be-
come permanent supply-side characteristics. In contrast to this, demand-side will not
change to this extent and consumption remains rather inflexible in spatial as well as in tem-
poral sense. Consequently, the organisational effort for gaining the equilibrium increases
tremendously [2,3].

To secure the supply throughout the whole energy system it is no longer sufficient
to regulate only the supply-side. Supply and demand have to be managed and adjusted
mutually. Because of the increasing shares of decentral generation units primarily based on
RES there is a rising potential for enhanced interconnections of generation and consumption
on local grid levels. Therefore, it is indispensable to create more flexibility on the demand-
side [4]. However, it is still not answered satisfactorily yet, how to change or influence
consumer behaviour effectively.

As generation out of RES is highly weather dependent there is no way of influencing
its temporal amount manually [5]. Various technical solutions, e.g., battery storages or
power-to-x-technologies, enable the temporal decoupling of generation and consumption
to a certain extent. Another approach, the so-called demand side management, follows the
idea of shifting or cutting load peaks to meet the amount of generation [4,5]. These and
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other technical aids will be one part of the overall solution for reaching Germany’s climate
goals. The other part of the solution will be the consumer itself [6].

In supply systems with increasing shares of RES, the former classification between
consumers and producers tends to be blurred. In other words, consumers become partly
producers, so-called “prosumers”, or at least shareholders of generation units [7,8]. Since
electricity is a homogeneous commodity in the physical sense, some consumer groups make
distinctions regarding the energy source. For example, electricity from the rooftop photo-
voltaic (PV) system is preferred compared to electricity from the public grid. Furthermore,
the location of generation is important to some consumers [9].

With regard to this, the question of possible impacts on regional supply and demand
arises. Therefore an agent-based model is created to analyse counterfactual scenarios,
by taking into account the constraining boundaries of a real existing local supply system,
where all consumer groups (Households; Trade, Commerce and Services; Industry) are
simulated as full-fledged equal market participants in a regional energy market. This mar-
ket is not understood as a self-sufficient isolated market, but rather as an integrated unit in
an interregional wholesale energy market. Moreover, this approach does not attempt to
achieve a cost optimization of the total system by means of idealized equilibrium models,
but to investigate the impacts of consumer behaviour from a bottom-up perspective.

2. Background and Literature

As the German energy transition progresses, the number of renewable, near-load
electricity generation units will increase and by this, the amount of electricity fed into
the distribution grid level [10]. If the electricity cannot be consumed locally, it will be
transferred to the upper grid levels and transported to other regions where generation does
not exceed the demand. This trend will inevitably continue to grow in the course of the
energy transition [11].

A prerequisite for this interregional electricity exchange is sufficient grid capacity.
However, since the grid is not actually a copper plate, bottlenecks may occur. To avoid
bottlenecks (I) grid expansion and (II) redispatch of generation units are inevitable. (I) On
the one hand, grid expansion is in many cases the most cost-effective flexibility option, i.e.,
the costs of regional equilibration may exceed the costs of additional grid expansion. On the
other hand, designing the grid for the so-called last kilowatt-hour is not economically
efficient [10,12]. (II) Costs for redispatch in Germany increased continuously in the last
decade [13].

Against this background, the question arises to which extend the trading of green
and regional electricity can contribute to the success of the energy transition and the
development of supply systems. Currently there is neither a solid business model nor
a suitable regulatory framework for the trading of green and regional electricity. So,
no prerequisites for a continuous market development are given. Until now, there is a
lack of systematic understanding of the added value of regional green power marketing in
terms of both the energy industry and society [10].

Lueth et al. (2020) [14] tested recently proposed regional market designs under the
current rules in the context of the German market. All presented concepts were financially
unattractive to prosumers and consumers within the current regulatory framework.

On the other hand, the systematized review of [15] on different time of use electricity
tariffs shows that there definitely exists demand for flexible price tariffs. Moreover, refs. [16,17]
show that price signals can trigger a reaction and adjustment in electricity demand of different
consumer groups and further that there is an impact on the market.

Mainzer (2018) [18] points, that there is a significant potential for covering the energy
demand on the basis of renewable energies, especially in smaller communities. Mainzer
(2018) [18] also shows that the transformation of the urban energy system towards the use
of local and sustainable energy resources can be the preferred alternative. But as [18,19]
primarily inspect the issue out of the systems perspective using top-down equilibrium
models, this paper’s model focuses primarily on the consumer groups itself.
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Pokropp (2012) [20] analyses environmentally conscious decisions regarding the pur-
chase of green electricity by residential costumers and focuses on the consumer’s prefer-
ences. This paper uptakes this approach, extends it to the preference for regionality and
adopts it not only for one specific but for all consumer groups within the supply system.

As already mentioned there is no regulatory framework for the regional trading of
green and regional electricity. The basic idea to design this paper’s market model was to
create a tool which enables to discuss different pathways and regulatory frameworks on
how to foster local consumption of regionally generated electricity throughout various
generation and demand scenarios regarding different population and industrial structures.

3. Methodology and Materials
3.1. Methodology
3.1.1. Cellular Approach

Future electricity supply systems reach for environmental sustainability on a high
level and thus integrating high shares of fluctuating RES. With regard to the challenge of
adjusting supply and demand mutually, this requires new approaches with an increased
degree of system control.

The so-called “Cellular Approach” is such an approach. The CA offers a broad range
of potential benefits for integrating RES in local distribution grids, while always balancing
supply and demand on the lowest possible level. Therefore, the CA is based on energy
cells. Cells are characterized by their ability to generate, consume, and store energy. Every
cell can connect to other cells and, thereby, build superordinate energy cells in turn (see
Figure 1). Moreover, each cell aims to equilibrate generation and consumption by itself. If
the equilibrium cannot be reached alone, the cell connects to other cells to reach it.

To rephrase this and give an example, imagine a private household operating a PV
system. This household is the lowest possible cell, always trying to fit its electricity consump-
tion to its generation or vice versa. In case of higher supply than demand, this household
connects to other cells in the system, maybe to another household, and sells its leftover
electricity. Or in contrast, buys electricity from other cells if demand is higher than supply.

In [21] the technical feasibility of the CA is approved. The logic of the CA also allows
the outlined marketing concept above. By this, security of supply and economic efficiency
can be ensured. Furthermore, public acceptance regarding the transformation of the supply
system can be enhanced, since consumers have the opportunity to participate at the market.

Figure 1. Energy cells (Authors own compilation based on [22]).
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3.1.2. Agent Based Modelling

As mentioned in Section 1, this work’s focus is not on minimizing the costs of the
overall system by use of perfect foresight equilibrium models, but rather on simulating con-
sumer behaviour and investigating possible impacts on the supply system. Consequently,
ABM is the method of choice.

ABM allows the simulation of imperfect markets and competition. Therefore, agents
represent various market participants acting with strategic behaviour based on asymmetri-
cal information. Moreover, learning effects due to repeated interactions can be modelled as
well [23–26]. Furthermore, ABM enables to investigate several system levels in different
degrees of abstraction. Especially the interdependency between the microscopic level,
where agents act, and the macroscopic level, where system behaviour emerges, can be
observed [27].

In combination with the CA, a model is set up to observe emerging consumer be-
haviour in a counterfactual energy market scenario. Each agent represents one market
participant acting by its own preferences. Thereby each market participant represents one
low-level energy cell trying to equilibrate its generation and consumption by changing
behaviour or connect to the other energy cells.

4. The Model
4.1. Basics

This simulation model, the so-called Regional Energy Market Model (REMM), is built
in NetLogo (see Appendix C.1) as a bottom-up approach for integral load management and
is designed to investigate decentralised energy markets. So far modelled for short-term
scenarios, the observation period covers one year in a one-hour resolution beginning from
January 1st.

The observed electricity system is defined as a local distribution grid with its typical
producing and consuming entities, covering an area of 100 km2 partitioned as a predefined
10 by 10 mesh with 100 patches each of 1 km2 (see Appendix C.2). In order to reflect genera-
tion from RES properly, a database is linked to the model providing true local weather data
for wind speed, solar radiation, and temperature. The data is obtained by the Test Reference
Years (TRY) of the German Meteorological Service (DWD, see Appendixs C.1 and C.2).

In general, the model can display and simulate various supply and demand scenarios
with specific characteristics. For now, an exemplary scenario was set up, which is com-
parable to the supply system of Zittau, a town in East Germany with 26,500 inhabitants.
Zittau has its own local utility company (LUC) and grid, which perfectly fits to the purpose
of the model. Once set up to supply higher amounts of consumers, the local grid is slightly
oversized so that no grid constraints exist in the model.

Figure 2 gives an overview over the REMM and its entities.
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Figure 2. Overview model structure.

4.2. Demand-Side

The following three representative consumer groups are integrated in the REMM:

• Private Households-model name: Residential with Standard Load Profile (RSL)
• Trade, Commerce, and Service-model name: Business with Standard Load Profile

(BSL)
• Industry-model name: Business with Measured Load Profile (BML).

The consumption of RSL agents is characterised by the (dynamic) standard load
profile H0. Standard load profiles for Germany were published by the German Electricity
Association (VDEW, see Appendix C.1). Furthermore, BSL agents are characterised by
the standard load profile G0. These profiles are standardised to an annual consumption
of 1000 kWh and have to be scaled up to use them in the model. Therefore, each hourly
value of the profiles is multiplied by a coefficient randomly chosen out of a given domain
(see Table 1) and assigned to each of these agents before the simulation starts. In practice,
local utilities use the annual consumption of the prior year to determine the scale factor for
the present year. However, the REMM observes only one year, so that it has to predefine this
coefficient itself. Nevertheless, this complies with the approach most of the local utilities
use to forecast the annual consumption of standard load profile consumers. Find further
information on these scale factors in Appendix A.

Table 1. Scale factor domains for load profiles.

RSL BSL

Scale factor ∈ [1; 5] ∈ [1; 12]
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For BML agents no standard load profiles exist. Therefore, empirical load profiles
were created, which were derived from actually measured profiles of several real existing
companies, which are comparable to those companies typically connected to the distri-
bution grid. By this, three load profiles were generated representing different types of
companies distinguished by their annual electricity consumption (see Table 2).

Table 2. Types of artificial load profiles for BML agents.

Category Annual Consumption Scale Factor

Low ≈250,000 kWh 250
Medium ≈500,000 kWh 500

High ≈750,000 kWh 750

The allocation of scale factors to every agent is primarily a random decision by the
REMM. Nevertheless, constraints ensure that the model depicts the overall picture of the
average distribution of household or business sizes in Germany and by this their overall
electricity consumption [28–31] (see also Appendix A). The localisation of RSL, BSL and
BML agents across the model’s area is comparable to the real conditions of Zittau’s supply
system. In total, the REMM comprises 15,407 RSL, 1638 BSL and 108 BML agents.

All these entities are consciously modelled out of the systems perspective. That means,
they are mainly characterised by two attributes, consumption con and demand dem.
While consumption describes the total electricity need of an agent i per time step t,
demand describes his hourly electricity purchase from the grid. For most of the agents
applies con = dem. However, some agents (prosumer) are able to partially generate their
own electricity, so that their demand is smaller than their consumption (see Section 4.3).

demi,t = coni,t − geni,t (1)

4.3. Supply-Side

The supply-side is also modelled out of the systems perspective, primarily focusing on
the agent’s generation patterns. To model generation characteristics properly, several pos-
sibilities of decentral electricity generation are implemented in the model (see Table 3).
To represent the volatile feed-in through RES, PV systems are implemented. Controllable
renewable and controllable conventional generation characteristics are integrated via com-
bined heat and power (CHP) units, which are operated either with biogas or natural gas.
Via the model’s interface, the total amount of generation units and, thereby, the possible
capacity in the REMM can be predefined by the user.

Table 3. Implemented generation units.

Source Type Technology

Renewable volatile PV
controllable CHP (Biogas)

Conventional controllable CHP (Natural Gas)

All units are operated by demand-side agents of the model. Which agents becomes a
so-called prosumer is a random decision by the model. Every prosumer can possess a PV
rooftop unit and/or a combined heat and power (CHP) unit (see Table 3). The generation
capacity of these units is aligned to the annual electricity consumption of the operating
agent. Generation out of PV is captured via standardised rooftop modules (see Appendix B).
For reasons of practicability, a constraint is embedded that PV systems may not be smaller
than 3 kW. Furthermore, the model is only allowed to raise power capacities by steps of
250 W. The CHP capacity of an agent results out of his annual electricity consumption
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and the expected full load hours of 6000 h p.a. (see Appendix B). Constraints allow the
model to only adjust the CHP capacity to the agent’s consumption pattern in steps of
500 W. CHP plants in the REMM are operated in a heat-controlled mode. Therefore, the
daily average temperatures were determined based on the exogenous weather data. If
the average temperature of the following day falls below the heating limit given in the
model’s interface (15 ◦C), the CHP system is switched on for the next full 24 h and operates
on nominal load. On the one hand, this assumption is made on the storage effect of the
buildings mass and, further, on the most probable fact that heating facilities based on CHP
are built in combination with buffer storages.

Each prosumer prefers to consume its self-generated electricity to cover his consump-
tion. In times where generation is greater than consumption, prosumers sell their leftover
electricity at the regional market. If generation is lower than consumption, prosumers will
buy the missing electricity at the market (see Equation (1)).

4.4. Local Utility Company

The LUC, with its own generation possibilities and its connection to the wholesale mar-
ket, represents central fluctuating RES and central controllable conventional energy sources.

As there is a local market and a local supply system, there consequently has to be
a system operator who ensures the equilibrium between generation and consumption
at any time. In REMM, this is the LUCs responsibility. Due to the fact that the model’s
observations are all about the behaviour of the consumers, the LUC is modelled as a passive
agent. Passive means that the LUC acts without any intention of making profit as the enabler,
maintaining the overall system and reading the market to meet the consumer’s demand.
Therefore, the utility has various options. One can be to use its own renewable as well as
conventional generation facilities. Another is to sell or buy electricity from the interregional
wholesale market depending on regional over- or undercapacities respectively.

4.5. Market Design and Pricing Mechanism

The simulation is carried out for a market trading four different electricity products.
Figure 3 shows their modular configuration, based on three different price components.
Key differentiators are the energy source, so whether the electricity comes from renewable
or conventional sources, and the transmission distance, that means the distance between
producer and consumer. By this mechanism, green and grey products are available at each
market both with a regional or an interregional background. Taxes accrue for every product.

pel = psource + pgrid + ptax (2)

As Figure 2 shows, consuming agents have only direct access to the regional
market. However, that does not mean that they are only able to buy regional
products. Interregional products are offered via the LUC, which is the connector between
both markets. As mentioned, all prosumers are allowed to offer their self-generated
electricity at the regional market, in case of overcapacities, as a regional product.
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Figure 3. Price components and electricity products.

Energy Source. To keep the model simple, the simulation works with fixed prices for
every time step. To rephrase this, neither the regional nor the interregional market owns
a further pricing mechanism, like the merit-order approach. It’s the LUCs responsibility
to set the prices. For purchasing the grey product, consumers only have to pay the base
price pbase, whereas for the green product, a price premium for green energy pgreen has to
be paid additionally. This premium is comparable with the German Renewable Energies
Act levy (EEG-Umlage). It can be seen as a promotion for renewable energy sources.

psource =

{
pbase : Grey product
pbase + pgreen : Green product

(3)

Transmission Distance. By choosing a regional or an interregional product, the consumer
decides about the height of the grid fee. The larger the distance, the higher the fee. As
mentioned above (see Section 4.1), the models world is a 10 by 10 mesh with 100 patches.
All producers located on one of these patches, are considered as producers offering regional
electricity. On the contrary, all electricity generated not within this area is considered as
interregional. Of course, the grid fee for interregional electricity is different than for
regional. Both can be predefined in the model’s interface.

pgrid =

{
preg : Regional Purchase
ptrans : Interregional Purchase

(4)

Taxes, Levies and Apportionments. This is a fixed term depending on the consumer
group each agent belongs to (see Section 4.2). For each group, the user can again predefine
the actual value individually in the interface. To take into account that BSL and BML
agents tend to be more energy-intensive than RSL agents are, it is recommended to make a
quantity-dependent graduation. So that RSL consumers pay the highest taxes, in relative
terms, followed by BSL consumers, while BML agents pay less. Note that as taxes are
levied on every product, they provide no incentive and thus do not affect the consumer’s
behaviour and their decision making (see Section 4.6).

4.6. Consumer Behaviour and Decision Making

Starting point for each agent’s decision is his environmental awareness, regional awareness
and his budget (see Table 4). Environmental awareness describes his individual esteem
for green energy sources. Regional awareness represents his preference for electricity
generated in a local context. For both, a value close to one indicates a high preference,
a value close to zero a low preference. Budget describes his individual assessment of higher
costs. The budget is directly dependent on his income, in case of RSL, respectively on his
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earnings, in case of BSL or BML, and expresses in his preference for the price. A value
close to one indicates a high sensitivity for costs, a value close to zero a low sensitivity,
what would mean that these agents would pay higher prices.

Table 4. Domains of consumer preferences.

Awareness Domain

environmental e ∈]0; 1]
regional l ∈]0; 1]

costs/price c ∈]0; 1]

Each time step, all consumers take a new decision which electricity product they
preferably purchase. In general, this is a two stage decision process. Agents compare
between the grey and green products respectively the regional and interregional products
by calculating their values U. Finally, that product is chosen which promises the biggest
personal value.

Stage I: Green vs. Grey

Ugreen > Ugrey → Green

Ugreen < Ugrey → Grey

Stage II: Regional vs. Interregional

Ureg > Uinter → Regional

Ureg < Uinter → Interregional

Analogous to the work of [20], the inertia of human decision making is captured
in the REMM regarding two points. On the one hand the preference for the status quo
is regarded. People tend to prefer easy and fast decision processes in their every day
life, especially for commodities like electricity that are not visible or tangible for
them. Consumers, especially RSL, do not assess these products continuously. There is a
asymmetric assessment, preferring the own current status [20].

On the other hand the REMM takes delayed price perception, or in other words a lack of
information in prices, into account. Pokropp (2012) [20] mentions, that consumers have a big
lack of information regarding their annual electricity consumption and related costs. It is
therefore not expected, that RSL agents or agents representing small companies, have a
100% overview of the market and prices.

Preference for the status quo. For switching from the initial to the alternative product,
the benefit of the alternative utility value must be at least greater than the utility value
of the initial product plus a certain threshold value ∆. ∆ can be predefined in the models
interface for each consumer group separately. Explained on the example of purchasing
grey electricity this means:

Ugreen,i,t > Ugrey,i,t + ∆ → Switch to green

Ugreen,i,t ≤ Ugrey,i,t + ∆ → Stay at grey

Delayed price perception. Decisive for the utility value calculations are not the current
values of the price components, but rather the perception agents have about these variables.
With a time lag, perceptions will align to the current decision variables. Therefore, a
differential adjustment process with the exogenous variable λ is implemented. λ can be
predefined in the models interface for each consumer group separately. Perceptions of
price components are written in calligraphic letters (see Table 5).

Table 5. Formula symbols for perception.

Stage I Stage II

pbase → B preg → R
pgreen → G ptrans → T
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Explained on the example of the perception of the base price pbase this means:

Bi,t = (1− λ) · Bt−1,i + λ · pbase,t (5)

Utility values of stage I. Similar to the approach in [20] the utility value U is calculated
by each agent by comparing an intrinsic value uintr with the negative value of (higher)
costs ucost. For the calculation of the intrinsic value it is estimated that one unit of the extra
mark-up pgreen, respectively the perception G, for renewable energies can be converted
in exactly one unit of an abstract personal good, that can be interpreted as well-being or
moral satisfaction. The intrinsic value results out of the agent’s environmental awareness e
combined with its price sensitivity c and the amount of G. By this, the intrinsic value for
the purchase of grey electricity is 0.

uintr,i,t =

{
0 : Grey
ei ·
√
Gi,t · ci : Green

(6)

This intrinsic value is compared with the (negative) effect of higher costs caused by
the extra the mark-up for green electricity. The value results under consideration of each
agent’s price sensitivity c and his perception of the price components B and G.

ucost,i,t =

{
c2

i · Bi,t : Grey
c2

i · (Bi,t + Gi,t) : Green
(7)

By combining uintr and ucost the overall utility functions for the purchase of green and
grey electricity result as follows.

Ugrey,i,t = 0 −c2
i · Bi,t (8)

Ugreen,i,t = ei ·
√
Gi,t · ci −c2

i · (Bi,t + Gi,t) (9)

Utility values of stage II. Analogous to stage I the utility values U in stage II also result
out of the comparison between the intrinsic values uintr and the values of costs ucost. It is
furthermore assumed, that an intrinsic value only for the purchase of electricity generated
in a regional context exists. The intrinsic value for interregional purchase is 0.

uintr,i,t =

{
l2
i ·
√
Ri,t · ci : Regional purchase

0 : Interregional purchase
(10)

The utility value of costs results similar to the approach in stage I as follows.

ucost,i,t =

{
c2

i · Ri,t : Regional purchase
c2

i · Ti,t : Interregional purchase
(11)

Combining both, intrinsic value and value of costs, the overall utility functions for
regional and interregional purchase appear es follows.

Ureg,i,t = l2
i ·
√
Ri,t · ci −c2

i · Ri,t (12)

Uinter,i,t = 0 −c2
i · Ti,t (13)

4.7. Market Clearing

Since CHPs only operate at low temperatures and PVs only generate electricity while
the sun is shining, the regional market is highly volatile. Consequently, situations can arise
where parts of the preference-driven demand cannot be met. It’s the LUC’s responsibility
to clear the market. Situations characterised by a regional oversupply are not crucial for
the simulation, because of the assumption that leftover electricity could be sold at the
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wholesale market at any time. However, situation with undersupply of both or at least
one of the regional products are challenging, because a decision has to be made, who of
the applying agents gets served and who has to switch to another product and on which
decision base the switch happens. This second situation is shown in Figure 4.

Green
Regional

Green
Interregional

Grey
Regional

Grey
Interregional

Step
I

Step
II

Step
III

Demand cleared
Switch to

alternative product

Demand cleared
Switch to

alternative product

Demand
cleared

Demand
cleared

Figure 4. Market clearing scheme and alternative products.

The decision who of the applying agents gets served is based on their willingness
to pay (WTP). The WTP can be derived out of the utility functions U. By equating the
Functions (8) and (9) and converting to G, the amount of money can be calculated at which
an agent would just about prefer the green product to the grey one. Analogous this works
for the WTP for the regional product by equating the Functions (12) and (13) and converting
to T .

Step I. The first step is the clearing of the green regional market section. Therefore,
all applying agents are listed on the basis of their WTP for green. Agents with high a WTP
are served first, agents with a low WTP last.

wtpgreen,i =

(
ei
ci

)2
(14)

Agents who cannot be served are forced to switch to an alternative product. Since the
initial decision of these agents is based on both special predicates, green and regional,
it is decisive in the choice of the alternative product, which of the two predicates the
agent would most likely forego. Indicators for this decision are the individual preferences
environmental awareness e and regional awareness l, which already provide a weighting.
The agent therefore decides whether he wants to continue to be green but no longer regional
or would like to remain regional but no longer buy green.

Alternative product:

{
ei ≥ li : Purchase green interregional
ei < li : Purchase grey regional

While clearing this market section the supply of green power decreases continuously
with each agent served. It is highly unlikely that the remaining trading volume while
serving the last possible agent will exactly match his demand. Usually the remaining
supply will be smaller. In this situation, pro-rata billing is carried out. This means, that first
of all, the consumer receives the remaining trading volume of his desired product and
gets accordingly billed. The remaining demand is covered and billed by the alternative
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product chosen by the consumer. Thereby, the agent is served before all others, regardless
of his WTP.

Step II. All agents who would like to purchase grey regional, i.e., also those who
were not served in the first clearing and subsequently decided on grey regional as their
alternative product, are included in this consideration. Analogous to step I, agents with a
high WTP are served preferred.

wtpreg,i,t =
l4
i

2c2
i
+

l2
i

ci
·

√
l4
i

4c2
i
+ Ti,t + Ti,t (15)

Agents who cannot be served have to switch to an alternative product. However,
the product green regional is not available for this. The agent’s initial decision deliberately
fell on grey electricity due to a lack of his WTP for green. That means, even in a situation
with a regional oversupply of green electricity, a grey electricity consumer would not be
willing to pay for the more expensive product. In a situation of regional undersupply of
green electricity, there is no possibility to switch at all, since the entire trading volume was
already distributed in clearing step I. Agents can therefore only switch to one of the two
interregional products. This means, that the decision is only made between green and grey
electricity, whereby the already calculated utility values can be used again. Consequently,
all agents who have already decided to choose grey electricity in the initial decision
continue to purchase grey. Only agents who were not supplied with green electricity in
clearing step I and switched to grey regional due to a higher regional awareness will switch
back to the green but interregional product.

Alternative product:

{
Ugrey,i,t + ∆ ≥ Ugreen,i,t : Purchase grey interregional
Ugrey,i,t + ∆ < Ugreen,i,t : Purchase green interregional

In case that the remaining trading volume in this clearing step is not enough to meet
the demand of the last served agent, the approach for pro-rata billing mentioned in clearing
step I applies analogous.

Step III. All agents that where not served in the first two clearing steps and all those
who initially decided to purchase interregional electricity are settled in this step.

5. Results
5.1. Preliminary Analysis-Utility Functions
5.1.1. Decision Stage I: Green vs. Grey Electricity

First, preliminary analyses were carried out to verify the created utility functions.
Due to a better understanding, the following results describe solely the behaviour of selected
RSL agent types. The results for all types not shown below can be interpreted analogously.

Figure 5 shows the preference for green over grey electricity f (G) for an exemplary
scenario. The intersection with the abscissa indicates up to which amount of pgreen respec-
tively G green electricity is preferred. The plot on the left side shows four exemplary RSL,
all with the same cost awareness of c = 0.5, but with a different environmental awareness
from e = 0.4 to e = 0.7. The right side plot depicts four exemplary RSL, all with the same
environmental awareness of e = 0.5, but with a different cost awareness c.

f (G) = Ugreen −Ugrey
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Figure 5. Preference of different RSL types for green over grey electricity.

Mattes (2012) [32] indicates a WTP for green electricity of RSL ranging from 2.48 ct/kWh
for electricity from suppliers with both green and conventional electricity tariffs, to 3.59 ct/kWh
for electricity from suppliers with exclusively green electricity tariffs. The WTP even increases
to 8.44 ct/kWh if the supplier verifiably invests in RES. Schmuecker (2015) [33] indicates a
WTP for green electricity of +15% compared to the grey electricity tariff. Based on an average
tariff of 28 ct/kWh, this results in a WTP of 4.2 ct/kWh. The Figure 5 proves that the model’s
agents reflect these statements in their behaviour.

5.1.2. Decision Stage II: Regional vs. Interregional Purchase

Figure 6 shows selected RSL types and their preference for regional over interregional
electricity purchase f (T ,R) in an example scenario. The intersection with the abscissa
indicates up to which amount of G, compared to an interregional grid fee of T = 8 ct/kWh
(what corresponds approximately to the actual transmission grid fee in Germany), regional
purchase is preferred. The left side plot shows four exemplary RSL, all with the same
cost awareness of c = 0.5, but with a different regional awareness from l = 0.4 to l = 0.7.
The plot on the right side depicts four exemplary RSL, all with the same regional awareness
of l = 0.5, but with a different cost awareness c.

f (T ,R) = Ureg −Uinter

... with T = 8 ct/kWh
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Figure 6. Preference of different RSL types for regional over interregional purchase.

Surveys or studies on the WTP for regionality, in the sense it is presented in this work,
are not available. However, there are several studies that reflect the WTP in a similar context.
For example [34] indicate an additional WTP of + 3.50 ct/kwh for electricity supplied by a
municipally owned LUC. Mattes (2012) [32] says + 3.41 ct/kwh if the electricity supplier
is embedded in the region. Figure 6 shows that the utility functions set up for the model
reflect this numbers. At this point, it should be stated that Figure 6 shows the WTP for
regional electricity in a comparative presentation to a interregional grid fee of T = 8 ct/kWh.
That means, according to [32,34] regional purchase is preferred, as long as the regional grid
fee G does not exceed 11.41 or 11.50 ct/kWh.

5.2. Individual Review for an RSL Agent

Up to this point, the interdependencies within the REMM are very extensive. This chap-
ter provides a short but precise insight into how the model works in order to get a better
understanding on how the overall results accrue. For this purpose, an individual review
for one exemplary, selected RSL agent is illustrated in detail.

The observed agent is a pure consumer household characterized by an annual elec-
tricity consumption of approximately 2400 kWh, an environmental awareness of e = 0.8,
a regional awareness of l = 0.3 and a cost awareness of c = 0.4. Moreover, the threshold
value is assumed as ∆ = 0. The observation is made for a whole week in month of May
(18–24 May 2015). The consumer’s WTP for green over grey electricity results as shown
in Section 5.1.1. Taking into account the consumer’s environmental and cost awareness,
the consumer is going to purchase green electricity as long as his perception of the price
premium for green electricity is less than or equal to 4 ct/kWh. The consumer’s WTP for
regional energy purchase results as shown in Section 5.1.2. Assuming an interregional
grid fee of 8 ct/kWh and regarding the consumer’s awareness for regionality and costs
shown above, the consumer tends to buy a regional product as long as his perception of
the regional grid fee is less than or equal to 8.14 ct/kWh.

Figure 7 covers different issues of decision stage I and compares the consumer with
a randomly chosen prosumer household operating a PV rooftop system. Thereby, the
black graph depicts the hourly electricity demand (dem) of the consumer household. The
green graph shows the hourly oversupply (gen− con) of the prosumer during the same
time, whereby the prosumer could act as a potential trading partner for the consumer
according to the CA at the regional market selling a green and regional electricity product.
Highlighted via dots are specific hours in which the consumers preferences for green
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over grey electricity were met by the market and the consumer c.p. will purchase green
electricity. Red dots indicate beneficial price situations under assumption of perfect price
perception (λ = 1), blue ones under assumption of delayed price perception (λ = 0.7).
Note, that as the regional grid fee is assumed as a fix price component in this paper’s
explanations, it is not necessary to review decision stage II in such detail as it is done
for stage I.

(a) Perfect Price Perception

0

0.2

0.4

0 24 48 72 96 120 144 168

[P
]=

1
kW

[t] = 1 h

Oversupply Demand Purchase at

(b) Delayed Price Perception

0

0.2

0.4

0 24 48 72 96 120 144 168

[P
]=

1
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[t] = 1 h

Oversupply Demand Purchase at

Figure 7. Beneficial price situations for green electricity purchase of an exemplary RSL agent with (a) perfect perception
(λ = 1) and (b) delayed perception (λ = 0.7).

Various phenomena can be observed in Figure 7. (I) Within PV generation peaks
during noon, prices get low enough to incentivise green electricity purchase. And this
not only for single hours but also over periods of up to five hours. (II) Moreover, it can
be observed that green energy purchase is even incentivised in hours with relatively low
electricity demand. This creates opportunities to shift demand from periods of high elec-
tricity consumption to hours of low consumption, what leads into two positive effects. On
the one hand, consumers can buy electricity at times and prices that suit their preferences.
On the other hand, the local distribution grid is unburdened by shifting peak loads into
hours with high generation. (III) These phenomena just mentioned occur irrespective of
whether price perception is perfect or delayed.

5.3. Initial Values and Parameters

The aim of this papers overall analysis is to make a first estimation in which direction
the results will develop and to uncover potentials for further, more detailed analyses.
Therefore, the set up price mechanism is compared with an appropriate reference scenario
including fixed electricity tariffs. To investigate the effects of the supply-dependent, flexible
price premium for green electricity on the local distribution grid, a conservative generation
scenario with less RES is deployed.
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Table 6 reflects the initial values and parameters for this paper’s analysis. Deviation
from load profile describes the fluctuation range in which each agent’s load profile is allowed
to vary randomly. This parameter ensures that several agents of the same type and with
the same scaling factor have different consumption values. Furthermore, it generates
load peaks and deltas within the load curve. Share of PV and share of CHP indicate how
many agents of each type operate a PV respectively a CHP unit, whereas, share of biogas
gives the information on the share of CHP units which where driven with biogas. The
perception of price components λ is set to 1, the threshold value ∆ for switching electricity
products is set to 0. The price components of the fix price scenario shown below resemble the
actual amount of those components in reality, except of pregio which is an counterfactual
component. The amount of pregio is the authors own assumption according to the actual
grid fee and an average value for the WTP for regional products. The flex price scenario
differs in only one parameter, namely pgreen, which results depending on the amount
of green electricity generated. Preliminary calculations have shown, that the maximum
amount of green energy generated in the REMM, gets up to at most 50% of the actual
installed capacity. The LUC calculates the share of electricity generated in relation to
installed capacity and sets the price accordingly. The resulting price curve is linear and
ranges from 0% =̂ 6.5 ct/kWh to 50% =̂ 2 ct/kWh.

Table 6. Initial values and parameters.

Fix Price Flex Price

Deviation from load profile ±5% ±5%
Share of PV 5% 5%

Share of CHP 5% 5%
Share of Biogas 33% 33%

λ 1 1
∆ 0 0

pbase 7.5 ct/kWh 7.5 ct/kWh
pgreen 6.5 ct/kWh [2;6.5] ct/kWh
ptrans 7.5 ct/kWh 7.5 ct/kWh
pregio 10.5 ct/kWh 10.5 ct/kWh

Moreover, the distribution of preferences among the agents is decisive for the model’s
outcome. To avoid that the outcome is pushed into a direction an approximately uniform
distribution was used. Figure 8 displays this distribution exemplary for all 15,407 RSL
agents in a histogram over 10 model set-ups. The value of the preference is shown on the
abscissa, whereas the ordinate indicates the number of agents characterised by this attribute.
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Figure 8. Uniform distribution of consumer preferences.
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The distribution in Figure 8 appears not to be uniform. This results out of the model’s
code. The histogram groups the preferences to one decimal place. Because of the model’s
formulas (division by zero), a preference cannot have the value 0. So, the first group in the
histogram is smaller than the rest and that is why it seems that there are less agents with
these preferences. Furthermore, random variables are used to achieve an approximately
equal distribution of preferences across all agents in the model. For reasons of model
language, it follows that the last group in the histogram contains slightly more agents than
the other groups.

5.4. Fix vs. Flex Price Scenario

The following explanations embrace statements and results that apply to the entire
supply system, i.e., across all agent groups. The presented results were obtained in a
potential assessment study for the REMM, which was carried out to test the model’s basic
idea and functions, uncover potentials and develop detailed analysis goals. Results from
5 model runs were processed to depict the general outcome of the model.

First, the reference scenario including fixed electricity tariffs is considered. Figure 9
provides an overview regarding the overall demand for the “green regional” electricity
product, the generation of green electricity within the supply system and the leftover sales
volume after the consumption of self-generated green electricity, in (a) over one whole year
and in (b) over an exemplary week in May.

(a) One Year
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Figure 9. Green electricity demand, generation and sales volume in fix price scenario over (a) one year (1 January 2015–
31 December 2015) and (b) one week (18–24 May 2015).

Though there is green electricity generated by CHP units, the generation graph shows
a typical PV-driven profile in (a) with a seasonal peak in summer and in (b) with daily peaks
over noon. In contrast, the demand curve seems not to be influenced by the seasonality
of generation, rather, it appears that there is a slight decrease in green electricity demand
over summer. The daily observation (b) depicts extraordinary demand patterns especially
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on Monday (hours 0–24) and Friday (hours 96–120). Surprisingly, demand approximately
equals sales volume in several hours at noon on these days. Whereas on the other days,
the demand curve takes the expected progression but does not equal the sales volume. On
Sunday there is less demand than volume, on Tuesday till Thursday and Saturday demand
exceeds sales volume. What hits the eye first on these days, is that there is an temporal
offset between peak of demand and peak of generation.

Figure 10 shows the comparison between demand for green electricity in fix and flex
price scenario, again in (a) over a whole year and (b) over one week. Both graphs display
an increase in demand for green electricity. This increase is mainly PV-driven because
it occurs seasonally in summer in (a) and daily at noon in (b). Even then the demand
exceeds the sales volume partially perceptibly, this increase indicates a great potential for
the system integration of RES. Furthermore, it is noticeable in (b) that the temporal offset
is reduced by the increase of demand, especially in the afternoon. In general, (b) depicts
an enhanced exploitation of regional generation capacities, here again especially in the
afternoon. Remarkably is the adjustment of demand on Sunday.
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Figure 10. Green electricity demand in fix and flex price scenario over (a) one year (1 January 2015–31 December 2015) and
(b) one week (18–24 May 2015).

Table 7 displays the average market results for the product “Green Regional” in fix
and flex price scenario and confirms the conclusions given above. The table is divided into
two sections (I) hours with oversupply and (II) hours with undersupply. (I) Hours with
regional oversupply of green electricity could be reduced from 712 in fix price scenario to
579 in flex price scenario. Whereas in the fixed electricity tariff scenarios about 318.3 MWh
of green, regional electricity were sold to the interregional wholesale energy market by the
LUC, in flexible price scenarios only 192.7 MWh were given away. This means a reduction
from 7 to 4% of the total green electricity generation. Also the maximum amount of leftover
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electricity sold in an hour could be reduced from 1.6 MW to 1.1 MW. The average hourly
amount could be reduced from 0.44 MW to 0.33 MW.

Table 7. Market results of product “Green Regional”.

[Unit] Fix Flex

Oversupply

Hours h 712 579
Electricity total kWh 318,355 191,664

Share of total Gen % 7.15 4.20
Max kW 1622 1140

Average kW 446 329

Undersupply

Hours h 8048 8181
Electricity total kWh 9,177,578 9,492,721

Share of total Gen % 206 210
Max kW 5357 5369

Average kW 1139 1156

Generation total kWh 4,942,296 4,550,889

In terms of sustainability, the question arises whether the increased demand for
green, regional electricity lowers the demand for grey, regional electricity. Results here
are not completely conclusive and vary from run to run, what in average leads to similar
results in fix and flex price scenario, as shown in Table 8. By now it seems that there is
a direct influence by an increased demand for green electricity on the purchase of grey
electricity. Unfortunately, this influence cannot be recognized directly because there is
an countering influence induced by the conservative generation scenario and the market
clearing mechanism, too. So, the WTP of some agents is met by decreasing prices for green
electricity who would normally purchase grey and regional electricity. The problem is the
huge amount of agents who also try to purchase the grey and regional product, but are not
served because of the relatively low capacity and who are forced to switch to the grey and
interregional product. Even if some agents choose to switch from grey to green, there are
even more agents who then would not be forced to switch from regional to interregional,
so that it appears that there is no change in the purchase of the grey and regional product.
Further investigations have to be done.

Table 8. Market results of product “Grey Regional”.

[Unit] Fix Flex

Oversupply

Hours h 1757 1729
Electricity total kWh 405,172 423,846

Share of total Gen % 8.02 8.38
Max kW 417 430

Average kW 222 235

Undersupply

Hours h 7003 7031
Electricity total kWh 8,785,138 9,327,184

Share of total Gen % 179 190
Max kW 5642 7038

Average kW 1255 1318

Generation total kWh 4,942,296 4,948,608

6. Discussion

The REMM, as an approach of fortifying the regional trading of regionally gener-
ated electricity based on cellular structures and flexible energy price components, shows
promising results. At first, the investigation of individual agents was started in small



Energies 2021, 14, 781 20 of 27

steps. By contrasting the single utility functions of the agents, their WTP for green over
grey respectively regional over interregional electricity was determined and displayed
(see Section 5.1, Figures 5 and 6) comparative for an exemplary RSL agent. It is shown
that the utility functions set up, depict the WTPs given in the literature, what enables
the REMM to reflect realistic market behaviour. However, it has to be stated that large
spreads between the variables e and c respectively l and c can result in an immense WTP,
which cannot be assumed for reality this way. Since these high WTPs are not actually
called at the market, but prices are capped by the LUC and the individual WTPs only serve
for classification in the model, it is legitimate to work with these functions. Note that, if
scenarios are considered in which the LUC does not cap prices, the modeller can intervene
manually and limit the described spreads in the model code, so that applies: e− c ≤ |0.5|
respectively l − c ≤ |0.5|.

Section 5.2 contains an individual review of an exemplary RSL agent, characterised by
a high preference for green electricity, a moderate cost sensitivity and a minor preference
for regionality. The agent’s market behaviour is examined under perfect and delayed
price perception. This investigation serves on the one hand to examine the impact of price
perception and on the other hand to prove that preference-based trading takes place within
the REMM. Figure 7 indicates that there is a slight influence in the temporal call of the
purchase in case of delayed price perception. But, in the overall picture results remain the
same irrespective of whether price perception is perfect or delayed.

Moreover, this figure displays, that generation-related electricity prices lower of
course at noon when PV generation is at peak and incentivise preference-based electricity
trading. This incitement of trading happens independent of the agent’s current demand,
and moreover, not only for single hours, but also for periods up to five hours. It is not in the
paper’s focus to investigate the effects of load shifting but at this point there is considerable
scope for further investigation and intensification in this field of research. It seems that
statements in [21], which were made from a technical point of view, can be supported by
the REMM from an economic perspective.

These results could not only be obtained for individual agents, but are also confirmed
by the investigations for the whole region as shown in Section 5.4. By comparing the model
region once in a fix price scenario similar to the reality, and then in a flex price scenario, the
differences between the real world and the model’s counterfactual market system were
investigated to determine the effects of flexible electricity trading.

The flexible price mechanism ensures that the demand for green electricity increases
within the region, both seasonally during the summer and daily at generation peaks.
Furthermore, the temporal offset between consumption and generation is reduced, without
any technical demand side management, but only via the price. The number of hours with
a regional oversupply of green electricity as well as the average and maximum amount of
green energy transferred to the superordinate grid level could be reduced. As Figure 10
shows, the demand curve could even be adjusted nearly exactly to the generation in
some days.

In this model situation, generation and demand are basically too far apart for a pure
market mechanism to match them completely. Even if hours of oversupply can be reduced,
this will artificially generate c.p. hours of undersupply. In order to exploit the regional
generation capacities to a bigger extend, technical options must be considered in addition
to a flexible pricing mechanism. To this end, model extensions must be installed to allow
demand side management to the agents and to create shiftable load potentials via battery
storages and flexible loads.

Nevertheless, the presented investigations and results are all based on a very conser-
vative generation scenario combined with a demand situation equally distributed across
all preferences. Furthermore, a real existing supply system, which includes all consumer
groups with their individual characteristics and which has no disproportionate possibility
of green electricity generation (e.g., wind farms, free field PV, pump storages etc.) in the
system boundaries, was used as the model’s basis. The REMM is an overall assessment for
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a whole region and not only the attempt of a district solution. In consideration of all these
factors, the study proves that there are possibilities for smoothing the exchange balance to
the superordinate grid level by market mechanisms, even within non-privileged distribu-
tion grid areas like such in the model. The smoothing potential can be expanded further
by exploiting the regional generation capacities with technical solutions like demand side
management and storage systems.

7. Conclusions

The individual analysis within the REMM proved that its mechanisms depict the
actual WTPs of the consumers and that flexible prices make them adjust their buying
behaviour not only for single hours, but also over periods and this independent of the
agent’s current demand. Moreover it was shown, that slight delays in price perception do
not have a big influence on the model’s outcome.

This paper’s overall investigations prove that regional trading can help to smooth the
exchange balance of distribution grid areas, both seasonally and daily, by only exploiting
the consumers WTP for several electricity products. In detail, not only the temporal offset
between consumption and generation could be reduced, but also the number of hours with
regional oversupply of green electricity as well as the average and maximum amount of
green energy transferred to the superordinate grid level. Note, that all results shown above
were achieved without any demand response or demand side management approaches.

We can state that the CA is not only technically feasible [21], but that there are also
general economic advantages. Furthermore, the combination of ABM and the CA has
proven a relieving basic effect on the supply system and induces a higher customer satis-
faction. The combination of these two approaches was therefore worth the effort and the
initial results justify further investigations to expand and elaborate the positive outcomes.
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Appendix A. Scale Factors for Standard Load Profiles

The definition of the RSL scale factor domain refers to the consumption groups
according to [35] focusing the groups DB and DC (annual electricity consumption between
1000 and 5000 kWh). The consumption group DA (annual electricity consumption of less
than 1000 kWh) is not considered, since a household electricity consumption of this low
amount seems not realistic. This assumption is reinforced by [29] (see Figure A1), which
also does not consider this group. The consumption groups DD and DE (annual electricity
consumption greater than 5000 kWh) are also not taken into account. BDEW 2019 [29]
estimates the average electricity consumption, without consideration of heating electricity
consumption, of four-person households or bigger at approximately 4940 kWh annually. A
domain greater than 5 therefore does not appear sensible.
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Figure A1. Average electricity consumption by household size (Authors own compilation based
on [29]).

The domain of scale factors for BSL agents is determined on the basis of the results
of a representative survey by [28]. Fraunhofer ISI et al. (2014) [28] divides the evaluated
workplaces into 14 groups and further subgroups. However, a detailed evaluation of
frequency distributions of the specific electricity consumptions is only carried out for the
first four groups, (I) construction business, (II) office and similar, (III) production and (IV)
trade. Figure A2 shows a summary of these results. It is clearly shown that despite very
different annual electricity consumption of this individual groups, an accumulation in the
range of 1000 to 4000 kWh occurs. As of an annual consumption of greater than 12,000 kWh,
the frequency is in the low one-digit percentage range. Therefore a domain of 1 to 12 is
applied for the REMM.
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Figure A2. Frequency distribution of the specific electricity consumption by business category
(Authors own compilation based on [28]).

Appendix B. Dimensioning of Generation Units

Appendix B.1. Dimensioning of PV Systems

In Section 4.3 it is mentioned that PV systems fit to the agent’s consumption patterns.
Therefore, the values shown in Table A1 are used to set up these PV systems, while
regarding the structure of the stored weather data and the expected full load hours. Taking
into account practicality, a constraint is embedded that PV systems may not be smaller than
3 kW. Furthermore, the model is only allowed to raise power capacities by steps of 250 W.

Table A1. Specifications of implemented standard PV modules.

Property Value

Module Power 250 W
Module Surface 1.6 m2

Efficiency 16%
Full Load Hours 1000 h
Correction Factor 1.12

(Inclination 30◦, South)

The following transcription illustrates this dimensioning process which is based on the
given values of the PV standard modules in Table A1 and the scaling factor (see Section 4.2,
Tables 1 and 2) for each agents consumption. These factor gives information about the total
annual electricity consumption of an agent. A scaling factor of 3.3, for example, represents
an total electricity consumption of 3300 kWh/a. According to the predefined expectable
full load hours (see Table A1), the capacity of the PV system can be calculated as follows.

Ppv =


3300 kWh

a
1000 h

a

0.25

 · 0.25 = 3.5 kWp

Due to the constraints mentioned in Section 4.3 the capacity is at least 3 kW or gets
rounded up to the next quarter if larger. With this value and according to the other
predefined values (see Table A1) the actual size of the PV system can be calculated.
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First, the capacity of each module Pmodule can be used to calculate the number n of
modules needed.

n =
3.5 kWp
0.25 kW

= 14

Second, combined with the surface of the modules Amodule the overall size of the
system Apv can be calculated.

Apv = 14× 1.6 m2 = 22.4 m2

Appendix B.2. Determine Generation of PV

The weather data on solar radiation fed to the REMM (see Section 4.1) consists of two
components, direct and diffuse solar radiation, both for horizontal surfaces. The German
Weather Service provides these values in the unit W/m2. Both are stored summed up in
the model’s weather data base (see Table A2) and flow from there into the REMM.

Table A2. Excerpt Weather Data Base.

Date Time Direct Radiation Diffuse Radiation Stored in Data Base

Monday, 20 July 2015 04:00–05:00 0 W/m2 0 W/m2 0 W/m2

Monday, 20 July 2015 05:00–06:00 6 W/m2 13 W/m2 19 W/m2

Monday, 20 July 2015 06:00–07:00 19 W/m2 49 W/m2 68 W/m2

...
...

...
...

...
Monday, 20 July 2015 15:00–16:00 136 W/m2 270 W/m2 406 W/m2

The hourly electricity generation of the PV system is then calculated as the factor of the
summed up solar radiation, the overall size of the system, the efficiency (16 %) and, since
the data is for horizontal surfaces, the correction factor for inclination (1.12). Exemplary for
the data shown in the last row of Table A2 the generation results as follows.

Genpv = 0.406
kW
m2 · 22.4 m2 · 0.16 · 1.12 = 1.63 kW

Appendix B.3. Dimensioning of CHP Units

The dimensioning of the CHP units is less complex than for PV systems and depends
only on the annual electricity consumption of the operating agent and the expectable full
load hours of these units. Moreover, the rounding rules have to be regarded which were set
to x.0 respectively x.5. Note that even though these units are operated in a heat-controlled
mode, electrical power plays the decisive role in the dimensioning process of the REMM.
To give a short example:

Pchp =


8,300

kWhel
a

6,000 h
a

0.5

 · 0.5 = 1.5 kWel

Appendix C. Data

Appendix C.1. URLs for Information and Data Download

NetLogo https://ccl.northwestern.edu/netlogo/

Weather Data https://www.dwd.de/DE/leistungen/testreferenzjahre/testreferenzjahre.
html or https://kunden.dwd.de/obt/?utm_source=baulinks&utm_campaign=baulinks

Standard Load Profiles https://www.bdew.de/energie/standardlastprofile-strom/

https://ccl.northwestern.edu/netlogo/
https://www.dwd.de/DE/leistungen/testreferenzjahre/testreferenzjahre.html
https://www.dwd.de/DE/leistungen/testreferenzjahre/testreferenzjahre.html
https://kunden.dwd.de/obt/?utm_source=baulinks&utm_campaign=baulinks
https://www.bdew.de/energie/standardlastprofile-strom/
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Appendix C.2. Coordinates and Number of Agents per Patch

Figure A3 shows the model’s patched supply system and provides information about
the geographical coordinates (WGS 84) and the number of RSL, BSL and BML agents.
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Figure A3. Details of the model’s supply system.
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