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Abstract: The embedded-ring wind turbine foundations were widely applied in the early develop-
ment stage of wind power industries because of its properties such as easy installation and adjustment.
However, different damages occurred on some embedded-ring wind turbine foundations in recent
years. Based on the common damage phenomena of embedded-ring wind turbine foundations, the
structural defects and damage mechanisms of embedded-ring wind turbine foundations are analyzed
in a gradual way. Cheese head studs are proposed to be welded on the lateral wall of the steel ring
to strengthen the connection between the steel ring and the foundation concrete. The foundation
pier is elevated 1 m to increase the embedded depth of the steel ring. The circumferential confining
pressure is applied on the lateral side of the foundation pier to lead it into a state of pressure. One
simplified method is proposed to calculate the contribution of welding studs in this strengthening
method. Taking an embedded-ring wind turbine foundation as an example, the numerical analyses
for the original foundation and the reinforced one are carried out to compare the stress and strain
distribution changes. Based on the numerical results corresponding to the peak and valley value
loads, the fatigue life of the concrete and studs are evaluated according to the relevant design codes.
The numerical results show that this strengthening method can coordinate the deformation of the
embedded steel ring and the foundation concrete by circumferential prestressing and welding studs.
The maximum principal stresses of the foundation pier and the fatigue stress range of the concrete
around the bottom of the steel ring have been greatly reduced after strengthening. The gaps between
the embedded steel ring and the foundation pier are also obviously decreased because of these
strengthening measures. The stress concentration phenomena of the concrete around the T-shaped
flange have been remarkably improved. The fatigue life can meet the requirements of relevant design
codes after strengthening. Therefore, it can be concluded that the safety performance and service life
of the embedded-ring foundation can be guaranteed.

Keywords: wind turbine; studs; finite element analysis; embedded-ring foundation; strengthen-
ing method

1. Introduction

In recent years, in order to solve the shortage of fossil energy and the environmental
pollution problems, wind energy has been developed rapidly in the world due to its re-
newable and pollution-free characteristics. The global cumulative installed wind capacity
has already summed up to 650 GW by the end of 2019. In the early development stage of
wind power industries, the embedded steel ring is widely applied to connect the upper
steel tower with the bottom concrete foundation for the wind turbine system because of
its properties such as easy installation and adjustment. At that moment, the unit capacity
of wind turbine is relatively small, and hence the bottom forces transferred from the steel
tower to the concrete foundation pier are also relatively small. Therefore, although there
is not enough constraint stiffness of the steel ring in the concrete foundation due to its
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shallow embedded depth, this kind of connection type could ensure the reliability of the
foundation. However, with the increasing of the wind turbine capacity and the tower
height, the bottom forces transferred from the tower to the foundation pier are getting
larger and larger. Different damage types occurred on many wind turbine foundations with
embedded steel rings (as shown in Figure 1), such as concrete cracking of the foundation
surface and concrete crushing around the steel ring [1]. According to the results of the
field survey, the damage phenomena of embedded-ring foundations are very common
when the wind turbine capacity is greater than 2 MW and the tower height is greater
than 80 m. In fact, the damage phenomena of embedded-ring foundations have been
concerned by some researchers in recent years. Rapport [2] summarized the damage forms
of embedded-ring wind turbine foundations and analyzed the damage causes such as
structural defects, unreasonable structural design, dynamic loading, and poor-quality
concrete. Currie et al. [3] analyzed the failure mechanisms of embedded-ring foundation
and proposed several inexpensive sensors to continuously monitor real-time displacements
in embedded-ring wind turbine foundations. Kang et al. [4] developed the finite element
model of embedded-ring wind turbine foundation and analyzed the influence of the gap
between the steel ring and the concrete foundation on its local damages. Currie et al. [5]
presented a wireless monitoring technique by measuring the displacement patterns of the
embedded ring of wind turbine to alert its significant movements. Bai et al. [6] investigated
the fatigue behavior of concrete in the anchorage area of the foundation under the equiv-
alent fatigue loads. Liu and Yang [7] carried out numerical analyses and found that the
height of embedded ring and the arrangement of steel bars around the embedded ring have
an influence on the stress distribution of foundation concrete. Lyu et al. [8] investigated
the fatigue damage mechanism of embedded-ring wind turbine foundation and results
showed that the shear strength of steel bars passing through the steel ring could not meet
the shear requirement between the steel ring and the foundation concrete.
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Figure 1. Damages of embedded-ring foundation.

In this paper, damage mechanisms of embedded-ring wind turbine foundations
are analyzed and strengthening measures are evaluated by numerical analyses. The
paper is organized as follows: Section 2 analyzes structural defects of embedded-ring
wind turbine foundation. Section 3 proposes a strengthening method to improve the
mechanical performance of embedded-ring foundation, which includes adding welded
studs, circumferential prestressing, and increasing the embedded depth of the steel ring.
Section 4 describes numerical modeling details of the study case. Section 5 reports the
numerical results and evaluates the strengthening method. Finally, some conclusions are
discussed in Section 6.

2. Structural Defects of Embedded-Ring Foundation

A typical embedded-ring spread foundation is shown in Figure 2 in which the steel
ring is embedded in the foundation concrete. There is a T-shaped flange under the bottom
of the embedded-ring to enhance the anchoring effect with the foundation concrete. The
L-shaped flange on the top of the steel ring is applied to connect with the upper steel
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tower by bolts. On the surface, wind turbine embedded-ring foundations are similar in
form to embedded-column footings widely used in steel frame structures of civil buildings.
However, their mechanical mechanisms are totally different because the relative embedding
depths of embedded-ring foundations are much smaller than those of embedded-column
footings of frame structures. For tubular embedded-column footings, the embedding depth
should be at least three times than its outer diameter according to JGJ99-2015 [9]. Therefore,
the foundation concrete could provide enough lateral pressure to transfer the overturning
moment that acts on the steel column base [1]. The diameter of the embedded steel ring for
a wind turbine with the capacity about or more than one megawatt is generally greater
than 4 m, but its embedded depth in the concrete foundation is less than 2 m, which is only
about 0.5 times the diameter of the steel ring.
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Since the embedded depth of steel ring is too shallow, the restraining stiffness of
the foundation pier to the embedded ring is insufficient and the contact pressure from
the foundation pier is not enough to resist the overturning bending moment. Therefore,
the T-shaped flange plays an important role for the anchoring of steel ring in foundation
concrete. The overturning moment of the bottom end of the tower is transferred by both
the anchoring effect of the T-shaped flange and the contact pressure from the foundation
concrete. Some structural engineers assume directly that the 30–40% overturning moment
is transferred through the contact pressure of the foundation pier and the rest is undertaken
by the anchoring effect of T-shaped flange. For embedded-column footings in steel frame
structures, welding studs are widely used to enhance the connection between the steel
column and the concrete footing. However, for embedded-ring foundations built in the
early stage, there are no welding studs on the lateral wall of the steel ring and the only
connection with the foundation concrete is the upper and lower steel bars passing through
the holes on its lateral wall. However, the concrete of the foundation pier is cut into two
parts due to the embedding of the steel ring. The deformations of the embedded steel ring
and the concrete foundation are uncoordinated under the overturning moment due to their
differences in material properties. There are stress concentration phenomena occurring
near the top surface of the foundation pier and around the T-shaped flange under the
overturning moment because of the special construction of the steel ring (as shown in
Figure 3a). As the increasing of the wind turbine capacity, the stress concentrations become
more and more serious and some local cracks possibly appear (as shown in Figure 3b).
Under the reciprocating loading, the concretes at these local zones are gradually grinded
and gaps will be generated. Over the years, the embedded steel ring might swing slightly
in the foundation pier (as shown in Figure 3c). The overturning moment transferred by
the contact with the foundation pier decreases gradually and the overturning moment
undertaken by the anchoring effect of the T-shaped flange increases gradually. Rainwater
or condensate water enters the gaps due to the pumping action and leads to the mortar
emitted from the gaps [10]. As the operating time increases, voids will be formed in the
foundation concrete near the T-shaped flange. After the rainwater is accumulated in the
voids, the damage of the foundation concrete under the reciprocating loading will be
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exacerbated. The swing of the tower will gradually aggravate and then affect the safety
performance of wind turbine system.

Energies 2021, 14, x FOR PEER REVIEW 4 of 16 
 

 

The overturning moment transferred by the contact with the foundation pier decreases 
gradually and the overturning moment undertaken by the anchoring effect of the 
T-shaped flange increases gradually. Rainwater or condensate water enters the gaps due 
to the pumping action and leads to the mortar emitted from the gaps [10]. As the oper-
ating time increases, voids will be formed in the foundation concrete near the T-shaped 
flange. After the rainwater is accumulated in the voids, the damage of the foundation 
concrete under the reciprocating loading will be exacerbated. The swing of the tower 
will gradually aggravate and then affect the safety performance of wind turbine system. 

 
(a) Local stress concentration and initial cracks 

 
(b) Development of local and initial cracks 

 
(c) Voids formed and swing aggravated 

Figure 3. Damage mechanism of embedded-ring foundation. 

3. Strengthening Method 
For damaged embedded-ring foundations, the common strengthening method is 

repairing areas that gap and crack locate by filling cement slurry through the drilled 
holes on the foundation pier. This method is only a stop-gap measure, not a long-term 
way to improve the mechanical performance of embedded-ring foundation. The causes 
of potential damages in embedded-ring foundations still remain and thus gaps and 
cracks will appear again after a period of time. Some researchers also have proposed 
some methods to strengthen the damaged embedded-ring foundations. Kang et al. [4] 
proposed to reinforce the upper surface strength of the foundation and prevent crack 
generation and propagation by adding annular beam, but analysis results showed that it 
could not decrease the local stress of concrete near the steel ring. Liu and Yang [7] inves-

Figure 3. Damage mechanism of embedded-ring foundation.

3. Strengthening Method

For damaged embedded-ring foundations, the common strengthening method is
repairing areas that gap and crack locate by filling cement slurry through the drilled
holes on the foundation pier. This method is only a stop-gap measure, not a long-term
way to improve the mechanical performance of embedded-ring foundation. The causes of
potential damages in embedded-ring foundations still remain and thus gaps and cracks will
appear again after a period of time. Some researchers also have proposed some methods to
strengthen the damaged embedded-ring foundations. Kang et al. [4] proposed to reinforce
the upper surface strength of the foundation and prevent crack generation and propagation
by adding annular beam, but analysis results showed that it could not decrease the local
stress of concrete near the steel ring. Liu and Yang [7] investigated the role of studs that
weld onto the steel ring, and results showed that the steel ring and foundation concrete
can work together better with the welded studs. He et al. [11] presented a retrofit strategy
in a new embedded-ring wind turbine foundation using an external prestressing technique
and found the prestressed loads could reduce the width of cracks inside the steel ring
at the bottom. Chen et al. [1] proposed a strengthening method using a circumferential
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prestressing technique and the numerical results showed that this method can improve the
anti-fatigue performance of the concrete around the steel ring effectively.

The common damage phenomena of embedded-ring foundations include obvious
gaps between the embedded ring and the foundation, waterproof layers at the interface
damaged, and cement slurries emerged on the top surfaces of foundations inside and
outside towers. These phenomena indicate that the connections between steel towers and
concrete foundations are too weak only by steel bars passing through the steel ring. As
mentioned above, studs are widely welded on the surfaces of embedded steel columns
to transfer shear forces and ensure the coordinated deformations for strengthening the
connections of steel columns with concrete foundations. The positive effects of studs on the
connections between embedded rings and wind turbine foundations have been verified by
Liu and Yang [7] by numerical analyses. In this paper, both weld studs and circumferential
prestressing are proposed to improve the mechanical behavior of the zone between steel
embedded-ring and concrete foundation pier. A typical embedded-ring spread foundation
of 1.5 MW wind turbine (as shown in Figure 4), with a height of the tower of 67.45 m, is
taken as an example to give a detailed strengthening plan.
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Figure 4. Strengthening method.

The design strength grade of the foundation concrete is C35. After nearly two years of
grid-connected operation, during a routine inspection, it was found that the sealing strip
between the surface of embedded-ring and foundation pier had been damaged and some
cement slurries were piled on the foundation inside and outside towers. Subsequently, the
concrete strengths of 17 embedded-ring foundations in this wind farm were detected to
be lower than the design strength of C35 by the rebound method in which the average
concrete strengths of 14 wind turbine foundations are less than 25 MPa. In order to avoid
the damages of embedded-ring foundations aggravated by the lower concrete strength
affecting their safety performances and service lives, these foundations are first proposed
to repair gaps and cracks by injection grouting through the drilled holes on the foundation
pier. Then, a series of strengthening measures should be taken to improve the mechanical
mechanism of embedded-ring foundation. First, studs are welded on the inside and outside
wall of the ring above the original foundation pier to strengthen the connection between
the ring and the foundation concrete. Next, the original foundation pier is elevated 1 m
to increase the embedded depth of the steel ring through which the overturning moment
undertaken by the T-shaped flange can be reduced and thereby the stress concentration
around the T-shaped flange can be relieved. Steel strands are coiled around the lateral side
of the original and the raised foundation pier for exerting the circumferential confining
pressure to hold the T-shaped ring. A layer of reinforced concrete with 400 mm thickness is
covered on the outside of the foundation pier for protecting steel strands and to enhance
its constraint stiffness to the T-shaped ring.
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According to Standard for Design of Steel Structures (GB50017-2017) [12], the shear
bearing capacity of one cheese head stud can be calculated according to Equation (1).

Nc
v = 0.43As

√
Ec fc ≤ 0.7As fu, (1)

where Nc
v is the shear bearing capacity of one cheese head stud; Ec is the elastic modulus

of concrete (N/mm2); As is the sectional area of one cheese head stud (mm2); fc is the
design value of the compressive strength of concrete (N/mm2); fu is the design value of
the ultimate strength of cheese head stud (N/mm2), which should meet the requirements
in Cheese Head Studs for Arc Stud Welding (GB/T 10433-2002) [13].

The main purposes of these measures are for the embedded steel ring and the concrete
foundation to obtain the coordinate deformation and alleviate the stress concentration
phenomena caused by the insufficient depth that the ring embeds in the concrete. Therefore,
the number of cheese head studs can be calculated according to Equation (2).

(1− ψ)Nc
v

n

∑
i=1
|D cos θi| =Md, (2)

where ψ is the reduction factor of shear bearing capacity of multi-row studs; n is the number
of studs; D is the diameter of the foundation pier; θi is an angle as shown in Figure 5; Md is
the overturning moment undertaken by studs.
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Figure 5. Installation of studs on the embedded-ring.

The diameters and lengths of the cheese head studs are 22 mm and 200 mm, respec-
tively. Three rows are arranged on the outside of the steel ring uncovered by the original
foundation pier in which each row has 78 studs. Under the extreme load case, the studs can
share 31.5% of the overturning moment according to Equation (2) in which the reduction
factor ψ of shear bearing capacity is determined according to the reference [14] and shown
in Table 1.

Table 1. Reduction coefficient of shear bearing capacity of multi-row studs.

Rows of Studs ψ

2 7.00%
3 11.50%
4 12.20%

4. Numerical Modeling

Considering that the embedded-ring foundation as well as loads and constraints
acted on it are all symmetric about the wind direction, the detailed semi-structure finite
element model is developed by ABAQUS to study the change of its stress distribution
before and after strengthening (as shown in Figure 6). The concrete foundation, embedded



Energies 2021, 14, 710 7 of 16

steel ring, studs, and ground soil are all meshed by the 3D hexahedral linear reduction
integral unit C3D8R. Both reinforcing bars and cheese head studs are modeled with the
two-node truss element T3D2. Multi mesh densities are adopted for different parts of
the model, with zones near the T-shaped flange of the steel ring using fine meshes. The
numbers of elements and computational nodes are 74,904 and 92,624, respectively. The
contact constraints are adopted between the ground soil and the bottom of the foundation
and between the embedded ring and the concrete. The normal directions of their contact
surfaces are set to be hard contact, and the friction effects of the tangential directions are
simulated through the penalty function method. The friction coefficient is taken as 0.3 in
the analysis. Both reinforcing bars and studs are embedded in the concrete. One end of
each stud is tied to the lateral wall of the embedded steel ring. To eliminate the influence of
boundary effect, the calculated depth and width of the ground soil are taken 3 and 4 times
the bottom diameter of the foundation, respectively. All displacements are constrained for
the ground soil at the bottom. The constraint of the cut section adopts plane symmetry
constraint in which the displacement in the out-of-plane direction and the rotation of the
plane are constrained. One segment with a height of one times the diameter of the bottom
tower is developed to provide a reference point coupled to the top center of the tower
segment for applying the loads transferred from the tower. Since the plane symmetry
constraint is adopted for the cut section, in order to be consistent with the forces and
moments of the whole foundation, only half of moments and forces are considered in the
model. Table 2 lists the load for different load conditions applied in the analysis.
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Table 2. Applied loads for different load conditions.

Load Condition Mr/(kN·m) Mz/(kN·m) Fr/kN Fz/kN

Extreme load case 57,224 138 879 −2372
Peak value of fatigue load 13,333 920 215 −1935

Valley value of fatigue load 2271 −810 21 −1991

The strength grades of the original concrete before strengthening and the newly added
concrete during strengthening are C20 and C40, respectively. The concrete damaged
plasticity (CDP) model is adopted in ABAQUS (shown in Figure 7) in which the plastic-
damage accumulation of concrete is determined according to the literatures [15,16]. This
model can consider the irrecoverable performance degradation of concrete caused by plastic
damage under the action of tension and compression. The damage variables (compressive
damage factor and tensile damage factor) are adopted to reduce the initial elastic modulus
and indicate the state of the concrete, as shown in Equations (3) and (4) [15].

σc = (1− dc)E0(εc − ε
pl
c ), (3)

σt = (1− dt)E0(εt − ε
pl
t ), (4)
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where σc and σt are the axial tensile and compressive stress, respectively; E0 is the initial
elastic modulus; εc, εt, ε

pl
c , and ε

pl
t are the total strain, equivalent plastic strain in com-

pression, and tension, respectively. In this paper, cracks are observed in local zones near
the T-shaped flange in which compressive strength is relatively sufficient, and thus the
tensile stresses, strains, and damage factors are the most concerned parts in the analysis.
The role tensile stresses and damage variable play in crack developing and the structural
strengthening effect of this case is similar with that in masonry collapse analysis and
seismic assessment, reported in literatures [17,18], of which the literature [18] used the
CDP model to access the structure’s damage pattern.
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Figure 7. Constitute curves of C20 and C40 concrete.

The ideal elastoplastic models are applied for steel bars, cheese head studs, and the
steel ring with the tower segment in which their strength grades are HRB400, ML15, and
Q345B, respectively. The soils in the supporting layer of the wind turbine foundation are
strongly weathered fine sandstone, tuff, and slate. The linear elastic constitutive model
is adopted for the ground soil in the analysis. Tables 3–5 list the physical and mechanical
parameters of different materials.

Table 3. Parameters of concrete.

Concrete Grade Ec/MPa µ f tk/MPa f ck/MPa ρ/(kg·m−3)

C20 25,500 0.20 1.54 13.4 2400
C40 32,500 0.20 2.39 26.8 2400
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Table 4. Parameters of steel meterials.

Steel Grade Es/MPa µ f y/MPa ρ/(kg·m−3)

HRB400 200,000 0.3 310 7850
Q345 206,000 0.28 265 7850
ML15 206,000 0.28 265 7850

Table 5. Parameters of ground soil.

Soil Es/MPa µ ρ/(kg·m−3)

Strongly weathered tuff 1000 0.2 2000

5. Numerical Results
5.1. Extreme Load Case

Figure 8 shows the loading directions and the maximum principal stress and strain of
the original and reinforced embedded-ring concrete foundations under the extreme load
case. From Figure 8a, we can see that the maximum principle stresses around the T-shaped
flange are relatively higher before strengthening. The stress concentration phenomena
are serious on the windward-side top of the foundation, the leeward-side bottom of the
foundation slab, and the local zones around the T-shaped flange. The high stress areas
spread to the windward-side top of the foundation pier and the leeward-side bottom of
the foundation slab along about a 45◦ direction. A large portion of concrete in these areas
have reached the characteristic tensile strength 1.54 MPa of C20 concrete. This indicates
that most of the overturning moment is undertaken by the anchoring effect of the T-shaped
flange, as we mentioned above.

Energies 2021, 14, x FOR PEER REVIEW 9 of 16 
 

 

Table 3. Parameters of concrete. 

Concrete Grade Ec/MPa μ ftk/MPa fck/MPa ρ/(kg∙m−3) 
C20 25,500 0.20 1.54 13.4 2400 
C40 32,500 0.20 2.39 26.8 2400 

Table 4. Parameters of steel meterials. 

Steel Grade Es/MPa μ fy/MPa ρ/(kg∙m−3) 
HRB400 200,000 0.3 310 7850 

Q345 206,000 0.28 265 7850 
ML15 206,000 0.28 265 7850 

Table 5. Parameters of ground soil. 

Soil Es/MPa μ ρ/(kg∙m−3) 
Strongly weathered tuff 1000 0.2 2000 

5. Numerical Results 
5.1. Extreme Load Case 

Figure 8 shows the loading directions and the maximum principal stress and strain 
of the original and reinforced embedded-ring concrete foundations under the extreme 
load case. From Figure 8a, we can see that the maximum principle stresses around the 
T-shaped flange are relatively higher before strengthening. The stress concentration 
phenomena are serious on the windward-side top of the foundation, the leeward-side 
bottom of the foundation slab, and the local zones around the T-shaped flange. The high 
stress areas spread to the windward-side top of the foundation pier and the leeward-side 
bottom of the foundation slab along about a 45° direction. A large portion of concrete in 
these areas have reached the characteristic tensile strength 1.54 MPa of C20 concrete. 
This indicates that most of the overturning moment is undertaken by the anchoring effect 
of the T-shaped flange, as we mentioned above. 

 
 

(a) Stress of the original foundation (b) Strain of the original foundation 

  
(c) Stress of the reinforced foundation (d) Strain of the reinforced foundation 

Figure 8. Maximum principal stresses and strains of concrete under the extreme load case. Figure 8. Maximum principal stresses and strains of concrete under the extreme load case.

From Figure 8b, we can see that the maximum principal strains of both the windward-
side and leeward-side concretes around the T-shaped flange are larger than 7.43 × 10−5,
which is the cracking strain that corresponds to the peak tensile stress (Figure 7a). At the
windward side, the cracked area spreads to the top of the foundation pier. At the leeward
side, the cracked area spreads to the bottom of the foundation slab. The outside of the
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embedded steel ring has detached from the foundation pier and the maximum gap reaches
0.4 mm at the top, which has exceeded the limitation of 0.3 mm specified in Code for design
of concrete structures (GB 50010-2010) [19]. The maximum crack width of the concrete
around the T-shaped flange has reached 0.18 mm. The tensile plastic areas have been
connected on both the windward-side and the leeward-side concrete near the T-shaped
flange, which no longer have sufficient strength to undertake the overturning moment
transmitted by the T-shaped flange. The large tensile plastic areas damage the integral
load-transferring mechanism of the foundation pier and lead the overturning moment
to be transmitted only through the local damaged concretes around the T-shaped flange.
Therefore, the mechanical performance of the embedded-ring foundation has been greatly
degraded because of its structural defects and the lower concrete strength. As a result, the
punching failures may occur on the windward-side concrete above the T-shaped flange
or the leeward-side concrete below the T-shaped flange under the extreme load case. In a
severe case, the embedded steel ring may be pulled out from the foundation pier and lead
to the collapse accident of the wind turbine.

From Figure 8c, we can see that the stress concentration phenomena on the windward-
side surface of the original foundation pier and around the T-shaped flange have signif-
icantly alleviated after strengthening. The maximum value of the maximum principal
stresses of the newly added foundation concrete is only 1.84 Mpa and less than the charac-
teristic tensile strength 2.39 MPa for C40. The high stress areas of the original foundation
also have been greatly reduced except for the leeward-side bottom of the foundation slab.
This means that a part of the overturning moment originally undertaken by the anchoring
effect of T-shaped flange has been transferred to be shared by the connections between the
embedded ring and the foundation. The tensile plastic zones of the concrete around the
T-shaped flange are no longer connected and then the punching shear failure caused by the
embedded steel ring can be avoided.

From Figure 8d, it can be seen that the tensile plastic areas near the T-shaped flange
have been greatly reduced compared with the original foundation before strengthening.
The development of cracks has been successfully restrained and the maximum crack width
of the concrete around the T-shaped flange has been reduced to 0.08 mm. The maximum
gap between the embedded ring and the top surface of the original foundation pier has been
reduced to 0.04 mm. Meanwhile, the gap at the top surface of the newly added foundation
pier is only 0.12 mm, which is far less than the limitation in GB 50010-2010 [19]. Because of
the deeper embedded depth and the added studs, the more overturning moment can be
transmitted by the connections between the steel ring and the foundation pier. The leeward-
side bottom of the foundation slab will no longer crack because the maximum principal
strains have been much reduced. Although the top surface of the original foundation pier
might still be cracking, the cracks are limited in the inside of the foundation pier, where
no rainwater or condensate water would be able to permeate into. All these phenomena
show that the strengthening measures are effective for improve the connection between
the embedded ring and the foundation pier.

Figure 9 shows tensile damage contours of concrete of the original and reinforced
embedded-ring concrete foundations under the extreme load case. From Figure 9a, we can
see that tensile damage is serious in local zones around the T-shaped flange, especially
for the windward side. At the windward side, the damage area spreads to the top of the
foundation pier, while at the leeward side, the damage area spreads to the bottom of the
foundation slab. From Figure 9b, we can see that tensile damage around the T-shaped
flange have significantly alleviated on both sides of the original foundation pier after
strengthening and that the results are consistent with Figure 8c,d. The results indicate
that the strengthening of the concrete foundation can change the distribution of damage
throughout the foundation, and has a beneficial effect on the structural response.
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5.2. Fatigue Load Case

Figures 10 and 11 show the minimum and maximum principal stress of the original
and reinforced embedded-ring concrete foundations under the fatigue load case. We can
see that both the minimum and the maximum principal stress of the concrete near the
T-shaped flange after strengthening is almost uniformly distributed under both the peak
value loads and the valley value loads. The compressive stresses of the windward-side
concrete above the T-shaped flange are effectively reduced and the stress concentration
phenomena nearly disappear. The minimum principal stresses of the concrete on the
windward-side foundation pier change from the tensile stresses to the compression stresses.
The whole foundation pier is almost in one three-dimensional compressive stress state,
which can significantly improve its mechanical performance. Both the minimum principal
stress and the maximum principle stress of the concrete are below the characteristic tensile
and compressive strength of concrete, respectively.
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5.2.1. Fatigue of Concrete

FIB Model Code [20] issued by the International Federation for Structural Concrete
is applied for the fatigue assessment of the concrete around the T-shaped flange in which
the fatigue strength of the concrete within the design life can be calculated according to
Equation (5).

fck,fat = βcc(t)βc,sus(t, t0) fck(1− fck/400), (5)

where βcc is a coefficient which depends on the age of concrete at the beginning of fatigue
loading; t is the concrete age in days; t0 is the age of concrete at the fatigue loading in days;
βc,sus(t, t0) is a coefficient accounting for the effect of high mean stresses and may be taken
as 0.85 for fatigue loading; fck is the characteristic compressive strength of concrete.

The maximum compressive stress level under fatigue loading Sc,max, the minimum
compressive stress level under fatigue loading Sc,min, and the fatigue stress range ∆Sc
can be calculated by Equations (6)–(8), respectively. The corresponding fatigue life can be
obtained from Equations (9)–(11).

Sc,max = |σc,max|/ fck,fat, (6)

Sc,min = |σc,min|/ fck,fat, (7)

∆Sc = |Sc,max| − |Sc,min|, (8)

where σc,max is the maximum compressive stress of concrete at the peak value of fatigue
loading; σc,min is the minimum compressive stress of concrete at the valley value of fa-
tigue loading.

log N1 =
8

(Y− 1)
· (Sc,max − 1), (9)

log N2 = 8 +
8 · ln(10)
(Y− 1)

· (Y− Sc,min) · log
(

∆Sc

Y− Sc,min

)
, (10)

Y =
0.45 + 1.8 · Sc,min

1 + 1.8 · Sc,min − 0.3 · S2
c,min

, (11)
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where if log N1 ≤ 8, then log N = log N1; if log N1 > 8, then log N = log N2. When
log N ≥ 7, the fatigue requirements can be met.

The fatigue stresses of the windward-side concrete on the top of T-shaped flange are
extracted from the numerical results and listed in Table 6. On the surface, the maximum
compressive stress of concrete has been greatly reduced but its minimum compressive
stress has a little increase after strengthening. However, note that the fatigue stress range
has been greatly reduced after strengthening. The calculation results of fatigue strengths
are listed in Table 7. We can see that the fatigue requirements of the concrete cannot be met
before strengthening but can be met after strengthening.

Table 6. Maximum and minimum compressive stresses of concrete under fatigue loading.

Basic State σc,max/MPa σc,min/MPa

Before strengthening 6.23 0.25
After strengthening 1.61 0.51

Table 7. Calculation results of fatigue strength of concrete.

Basic State Y Sc,max Sc,min logN Fatigue Check

Before strengthening 0.47 0.57 0.02 6.49 Fail
After strengthening 0.49 0.15 0.04 17.94 Succeed

5.2.2. Fatigue of Studs

The fatigue strength curve (as shown in Equation (12)) in a double logarithmic coor-
dinate system has been widely suggested to calculate the shear strength of studs under
fatigue loading, but the values of calculation parameters have large differences in different
criterions or countries. In Standard for Design of Steel Structures (GB50017-2017) [12], the
values of calculation parameters in Equation (12) are suggested to be determined according
to Eurocode 4 [21]. According to air environments, the stricter calculation parameters of
fatigue shear strength for studs are given in Fatigue Design of Offshore Steel Structures
(DNVGL-RP-C203) recommended by Det Norske Veritas (DNV) [22]. In this paper, the
fatigue shear strength for studs are checked according to these two codes, respectively. The
values of relevant calculation parameters are shown in Table 8.

log N = A−m log ∆τR, (12)

where N is the predicted number of cycles to failure for the stress range ∆τR; A is the
intercept of log N-axis by S-N curve; m is the negative inverse slope of S-N curve; ∆τR
is the range of shear stress; the required fatigue life by the wind turbine manufacturer is
1× 107 cycles for a 20 years’ service life.

Table 8. Calculation parameters of fatigue curves for studs.

Standards Slope m Constant A Stress Range ∆τR/MPa

Eurocode 4 8.0 21.934 73.6
DNVGL-RP-C203 5.0 15.350 46.78

According to the numerical results, the maximum shear stresses of the studs under the
peak and valley fatigue loads are 63.5 MPa and 27.6 MPa, respectively. The corresponding
range of shear stress is 35.9 MPa, which is less than the allowable ranges specified by both
Eurocode 4 and DNVGL-RP-C203 as shown in Table 8. This means that the fatigue life of
the studs can meet the requirements of whether Eurocode 4 or DNVGL-RP-C203.
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5.3. Effectiveness of Strengthening Measures

The contact stresses between the T-shaped flange and the foundation concrete at the
least favorable section under the extreme load case are extracted and shown in Figure 12.
We can see that the stress concentration is the most serious at the middle of the T-shaped
flange because of its large shear stiffness. The contact stress at the middle of the top surface
of the T-shaped flange reaches up to 32 MPa, which is much larger than the average stress
of this cross-section. The contact stresses on both sides of the steel ring decrease gradually
with the increase of distance from the lateral wall of the steel ring and increase suddenly
at the two edges of the T-shaped flange due to its sharp corners. The contact stresses
between the T-shaped flange and the foundation concrete after strengthening are decreased
significantly compared with those before strengthening. This means that the studs have
directly transmitted partial loads by connecting to the foundation pier and then the loads
undertaken by the T-shaped flange are obviously reduced. The contact stresses of the top
and bottom surfaces of the T-shaped flange are reduced by 32% and 43%, respectively. The
studs within the range of 78

◦ ≤ θi ≤ 102
◦

is still at an elastic state. All studs can share
29.5% of the total overturning moment, which is smaller than the theoretical calculation
value 31.5% obtained from Equation (2). This shows that the proposed calculation method
has higher calculation precision and can meet the requirements of engineering precision.
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Figure 12. Contact stress between T-flange and concrete.

Figure 13 shows the gaps between the embedded steel ring and the original foundation
pier under the extreme load case. We can see that the gap between the embedded ring
and the top surface of the foundation pier is 0.4 mm before strengthening and may cause
the damage of the sealing strip between the outside of the steel ring and the foundation
pier. After strengthening, the studs reinforce the connection between the foundation pier
concrete and the embedded steel ring, and the circumferential prestressing technique
improves the contact effect between the two. The maximum gap in the original foundation
pier is reduced to 0.04 mm. Thus, it can be concluded that the deformation compatibility
of the embedded ring and the concrete foundation has been improved dramatically and
the common damage phenomena of the embedded-ring foundation should be avoided
or relieved. The overturning moment transferred by the contact of the steel ring with the
foundation pier is effectively increased and stress concentration is obviously alleviated for
the concrete around the T-shaped flange.
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6. Conclusions

Structural defects and damage mechanisms of embedded-ring wind turbine founda-
tions are analyzed in this paper. The inconsistent deformation of the steel ring and the
concrete foundation, the shallow embedded depth, and smooth surface of walls of the
steel ring cannot guarantee effective anchoring. Thus, the serious stress concentration
and damage develops near the T-shaped flange of the embedded steel ring. Under the
reciprocating loading, the damage propagates with the development of gaps and cracks. As
the increasing of operating time, voids will be formed with rainwater accumulated, which
leads to the deterioration of the damage in foundation concrete especially in local zones of
the T-shaped flange. The swing of the tower will gradually aggravate and then affect the
safety performance of the wind turbine system. A series of strengthening measures includ-
ing studs welded on the lateral wall of the steel ring, circumferential prestressing applied
on the foundation pier, and the embedded depth of the steel ring increased by elevating
the foundation pier are applied to improve the mechanical performance of embedded-ring
foundation.

A typical embedded-ring wind turbine foundation of 1.5 MW wind turbine is taken
as an example to analyze the strengthening effect by numerical analysis. The numerical
analysis results show that the studs can effectively improve the connection between the
foundation pier concrete and the embedded steel ring and transmit the overturning moment
of the tower to the foundation pier. The circumferential prestressing together with the
increase of embedded depth of the steel ring strengthen the connection between the concrete
and the steel ring, which can solve the inconsistent deformation between the two parts.
The maximum principal stresses and tensile damages of the foundation pier are greatly
reduced and stress concentration is obviously alleviated around the T-shaped flange. The
gaps between the embedded steel ring and the foundation pier are also greatly reduced
because of these strengthening measures. The fatigue stress range of the concrete has
been greatly decreased and the fatigue life can meet the requirements of relevant design
codes after strengthening. The safety performance and service life of the embedded-ring
foundation can be guaranteed.
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