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Abstract: As carriers of green energy, proton exchange membrane fuel cells (PEMFCs) and photo-
voltaic (PV) cells are complex and nonlinear multivariate systems. For simulation analysis, optimiza-
tion control, efficacy prediction, and fault diagnosis, it is crucial to rapidly and accurately establish
reliability modules and extract parameters from the system modules. This study employed three
types of particle swarm optimization (PSO) algorithms to find the optimal parameters of two energy
models by minimizing the sum squared errors (SSE) and roots mean squared errors (RMSE). The three
algorithms are inertia weight PSO, constriction PSO, and momentum PSO. The obtained calculation
results of these three algorithms were compared with those obtained using algorithms from other
relevant studies. This study revealed that the use of momentum PSO enables rapid convergence
(under 30 convergence times) and the most accurate modeling and yields the most stable parameter
extraction (SSE of PEMFC is 2.0656, RMSE of PV cells is 8.839 × 10−4). In summary, momentum PSO
is the algorithm that is most suitable for system parameter identification with multiple dimensions
and complex modules.

Keywords: metaheuristic optimization algorithm; particle swarm algorithm; photovoltaic cell; proton
exchange membrane fuel cell

1. Introduction

Since the start of the Industrial Revolution, humans began to replace animals with
vehicles and ships as their primary means of transportation. However, this rapid tech-
nological development was also accompanied by numerous negative effects. In current
times, the combustion of diesel and gasoline has resulted in a sharp increase in the amount
of carbon dioxide and particulates worldwide. The overexploitation of oil also caused
global concerns regarding the resulting economic crises. It follows that there is an utmost
priority to find an alternative and cleaner energy source. One such alternative is fuel cells:
devices that directly convert chemical energy into electricity. Fuel and oxygen undergo
oxidation and reduction in the cell to produce energy, discharging pure water as its only
byproduct. Among the numerous types of fuel cells, attention has been drawn largely to
proton exchange membrane fuel cells (PEMFCs) due to their high efficiency in energy con-
version, quick response time, and capability to operate at room temperature [1]. PEMFCs
are complex systems that possess characteristics of high non-linearity and strong coupling,
among others. During operation, their system performance is affected by numerous factors,
such as system and environmental temperatures, humidity, current density, and fuel intake
pressure. The crux to advancing PEMFC technology lies in the conversion of electrochemi-
cal reactions into mathematical equations. Modeling can aid users to quickly understand
how to improve on the system performance. More importantly, there is a need to under-
stand how the properties of the PEMFC can be accurately assessed. Currently, there are
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numerous methods of PEMFC modeling. One such method is mechanical modeling, which
involves differential equations or thermal and water management on the electrochemical
reactions within PEMFCs [2], as well as electrochemical reaction properties within the
cells. There is also artificial neural network [3,4] and support vector machine [5] modeling,
which involves designating a fuel cell as a “black box” in model recognition. However, not
only is this method costly and requires a substantial amount of experimental data, it also
does not thoroughly clarify the working mechanism within the cell. It is unable to analyze
certain system parameters and can only represents the variable relationship between input
and output—and thus, poses a hindrance to the design of an optimal system. Another
method is semiempirical modeling, a mathematical model based on the PEMFC reaction
mechanism [6–8]: studies have indicated that these mathematical models constructed by
deriving experiment results are highly stable and efficient.

Photovoltaic (PV) cells are a form of alternative energy possessing mature technologies
and numerous applications. Their efficacy of use is determined by their current–voltage
(I–V) characteristics; therefore, the design of PV cells requires a level of precision in its
modeling. PV cells are typically modelled using two steps: by creating a mathematical
modeling equation, and getting an accurate estimation of every parameter value. After
the parameters of a PV cell under various working conditions are acquired during the
modeling process, the maximum power of the cell can then be estimated. Presently, single
diode (SD) models are one of the more common models applied to simulate the equivalent
electronic circuit in a PV cell [9,10]. The parameters to be determined in this model can be
calculated through the fitting of the experimental data in the cell.

Generally, methods used for estimating PEMFC and PV cell parameters can be cat-
egorized in two ways: deterministic and metaheuristic. Some examples of deterministic
methods include the least square method [11], Lambert W functions [12], and iterative
curve fitting [13]. An advantage of such methods lies in their speed in yielding estimation
results, but one disadvantage is also that their calculated solutions are highly sensitive to
initial solutions and often lead to local optima.

Metaheuristic algorithm is an advanced process which guides a subordinate heuris-tic
by balancing exploitation and exploration. The former assures the searching of optimal
solutions within the given region, and the latter makes sure the algorithm reach differ-
ent promising regions of the search space. In addition, the metaheuristic algorithm is
classi-fied into four subcategories, including evolutionary algorithms [14], physics-based
algorithms [15], swarm-based algorithms [16], and bio-inspired algorithms [17]. These
algorithms are widely applied to solve complex problems in various domains. For example,
studies that are related to online learning [18], scheduling [19], multi-objective optimiza-
tion [20], vehicle routing [21], medicine [22], data classification [23], energy system [24,25],
etc. can find the footage of the usage. This study, on the other hand, selected swarm-based
algorithms to optimize the energy systems. Swarm Intelligence (SI) is known as “the collec-
tive behavior of decentralized, self-organized systems, natural or artificial” [26]. Several
types of swarm optimization algorithms have been recently proposed for use in solving
problems regarding PV cell parameters. Several types of swarm optimization algorithms
have been recently proposed for use in solving problems regarding PV cell parameters.
In other literatures, some swarm optimization algorithms that have been employed to
estimate PV cell parameters include particle swarm optimization (PSO) [27], artificial bee
colony [28], and whale optimization algorithms [29]. Such algorithms typically yield more
satisfactory estimation results than deterministic methods. In particular, PSO, which is
based on birds’ foraging behaviors, is highly efficient in calculation. Although the original
PSO has been applied to solve various optimization problems, it possesses the problem
of possible premature convergence—a common characteristic found in other basic swarm
intelligence algorithms. In this study, three types of improved PSO algorithm, namely
inertia weight PSO, compressed PSO, and momentum PSO, were employed in PEMFC
parameter optimization.
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In the following section will introduce PEMFC and photovoltaic (PV) cell mathemat-
ical modules and the used heuristic algorithms. Three algorithms are employed to find
the parameter of a benchmark of PEMFC and PV cell model by minimizing the sum of
squared errors (SSE) and root means square errors (RMSE) between the measured and
estimated voltage. After 30 independent runs, the algorithm are compared in terms of the
fitness values.

2. Proton Exchange Membrane Modeling and Theory

Hydrogen fuel cells are currently a very well-received form of green power system.
The system operates by feeding hydrogen gas into the anode before it is broken down using
a catalyst. Thereafter, the electrons form a circuit through the external circuit connection
load. Hydrogen ions then travel to the cathode through proton exchange membranes,
forming water with oxygen ions. This mechanism allows for low-pollution emissions:

Anode reaction : 2H2 → 4e− + 4H+ (1)

Cathode reaction : 4e− + 4H+ + O2 → 2H2O (2)

Chemical reaction : 2H2 + O2 → 2H2O (3)

The theoretical voltage value for system modeling is calculated using the Nernst
equation in accordance to the chemical energy and battery electrode potential. The Nernst
equation was first proposed by the German chemist Walther Hermann Nernst [30] to
determine the electromotive force in electrochemical cells. Under the standard condition
with an environmental temperature of 298.15 K and atmospheric pressure of 1 atm, the
standard electrode potential is 1.229 V, with F being a Faraday constant of 96,485 As/mol,
and n representing the number of electrons per unit mole during the chemical reaction in a
cell [31–33]:

ENernst = 1.229− 0.85× 10−3
(

Tf c − 298.15
)
+ 4.31× 10−5Tf c

[
ln
(

PH2

)
+

1
2

ln
(

PO2

)]
(4)

In the above equation, the value of 1.229 indicates the ideal electric potential energy
under the standard condition, T represents cell temperature, and PH2 and PO2 each rep-
resents the effective partial pressure of hydrogen and oxygen, respectively. If H2 and O2
are the reactants, then the partial pressure can be calculated using Equation (5) and (6);
however, if the reactants are H2 and the air, the effective partial pressure of PO2 must then
be calculated with Equation (7) [31]:

PH2 =
RHaPH2O

2

{[
exp

(
1.635
T1.334

I
A

)
RHaPH2O

Pa

]−1
− 1

}
(5)

PO2 = RHcPH2O

{[
exp

(
4.192
T1.334

I
A

)
RHcPH2O

Pc

]
− 1
}

(6)

PO2 =
Pc − RHcPH2O(

1 + 0.79
0.21
)

exp
(

0.291
T0.832

I
A

) (7)

The variables Pa and Pc represent the inlet pressure at the anode and cathode respec-
tively, while RHa and RHc represent the relative humidity of the steam at the anode and
cathode, respectively. Next, I represents the working current of the cell and A represents
the effective area of the membrane. Lastly, PH2O indicates the saturation pressure of water
vapor as a function of cell temperature T, as expressed in Equation (8):

log
(

Psat
H2O

)
= 2.95 ×10−2 × (T − 273.15)− 9.18× 10−5 × (T − 273.15)2 + 144× 10−7 × (T − 273.15)3

−2.18
(8)
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One must note that voltage loss can result from cell polarization, leading to a loss
in potential and the inability of cells to operate at the ideal voltage. Cell polarization
can occur in three ways: activation polarization, Ohmic polarization, or concentration
polarization [34]. The polarization of PEMFC shown in Figure 1.
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Figure 1. Fuel cell polarization curve.

Activation polarization (Vact) is a reaction that occurs on the electrode surface—a delay
in electrochemical reaction causes potential drift, largely due to catalyst adsorption and
desorption. The main factor that affects activation polarization is the reaction of the cathode.
Vact can be calculated using a semiempirical equation, as shown below in Equation (9):

Vact = −
[
ξ1 + ξ2T + ξ3T ln(CO2) + ξ4T ln(I)

]
(9)

In the Butler-Volmer equation, which has its basis in kinetics, thermodynamics, and
electrochemistry, the semiempirical coefficients ξ1 to ξ4 bears physical significance. Also,
the concentration of dissolved oxygen catalyzed at the cathode (CO2) can be calculated
using Henry’s law, as expressed in Equation (10):

CO2 =
PO2

5.08× 106 exp
(

498
T

)
(10)

Ohmic polarization occurs when energy is expended as the current passes through
components of the fuel cell. The key reason for this is internal resistance, which is generated
through multiple aspects: firstly, the resistance of hydrogen ions during their transmission
through the proton exchange membrane, the resistance during the transmission of electrons,
and the resistance caused by gaps in the contact surfaces between cell components. In
particular, the resistance encountered by hydrogen ions during their transmission through
the proton exchange membrane is the primary cause of Ohmic polarization, as denoted in
Equation (11):

Vohm = I(Rm + Rc) (11)
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Rc is usually regarded as a constant due to the relatively narrow range of the PEMFC
working temperature. In order to encompass all the major membrane parameters, Rm is
expressed in the following universal equation:

Rm =
ρm × l

A
(12)

l denotes the thickness of the membrane and ρm represents the specific resistiv-
ity of hydrated proton flow, which can be expressed by an empirical formula such as
Equation (13). In the equation, λ is an adjustable parameter, while 181.6 ⁄ ((λ − 0.634) is the
specific resistance value with no current and at the cell temperature of 30 ◦C. Meanwhile,
the term ‘exp’ in the denominator represents the temperature correction item when the cell
is not 30 ◦C. Following the effective water content of the exchange membrane (λ), 3(i/A) is
a correction item in the experiment that represents the effects of current density and cell
temperature on the average water content of the membrane.

ρm =

181.6
[

1 + 0.03
(

I
A

)
+ 0.062

(
T

303

)2( I
A

)2.5
]

[
λ− 0.634− 3

(
I
A

)]
exp

[
4.18

(
T−303

T

)] (13)

Concentration polarization refers to the potential loss caused by the mass transfer
limitation of the reactant. This is primarily due to a high current load—when a fuel cell
generates electricity, the reactants near the electrode continues to be depleted. Following
that, if the reactant transfer rate is not sufficiently high enough to meet the reaction
efficiency requirement, the concentration of reactants in the reaction zone will decrease
and lead to a potential loss. To express this decrease in concentration (Vcon), the limiting
current density corresponding to the maximal power supply speed (Jmax) and the coefficient
determined by the type and working condition of the cell (B) are defined in the empirical
Equation (14) below:

Vcon = −B ln
(

1− J
Jmax

)
= −B ln

(
1−

I
A

Jmax

)
(14)

In general, the voltage loss in a low current density is caused by activation polarization.
However, as the current density increases, ohmic polarization becomes the primary reason
for voltage loss. It follows that when there is a high current density, the main cause for the
loss will due to concentration polarization instead. The value of the fuel cell’s theoretical
output voltage is the same as its open circuit voltage. When the system exports a current
for external work, polarization occurs. The relational equation of the cell is expressed in
Equation (15), where the voltage loss caused by the three polarization effects is subtracted
from the theoretical stack voltage, before multiplying it by the number of cell stacks (ncell):

Vcell = ncell × (ENernst −Vact −Vohmic −Vcon) (15)

Objective Function of the Optimized PEMFC Model Parameters

In Equations (4)–(15), the measurable operation parameters T, Pa, Pc, RHa, RHc,
PH2 , PO2 , and ncell are determined by the operation environment, whereas the physical
parameters ξ1, ξ2, ξ3, ξ4, λ, Rc, and B are unknown parameters. Taking in consideration
that the unknown parameters X = (ξ1, ξ2, ξ3, ξ4, λ, Rc, B) will considerably affect the model
calculation results, these unknown values must thus be estimated as accurately as possible
to fulfill the actual I–V characteristic. Nevertheless, before X = (ξ1, ξ2, ξ3, ξ4, λ, Rc, B) is
identified, the objective function needs to be defined. In this study, the objective function
F(X) is to find a set of optimized parameter values so as to minimize the sum of squares for
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errors (SSEs) between the experimental voltage (Vexp) and the estimated voltage that was
calculated using the aforementioned equations (Vmod), as expressed in the equation:

F(X) = minimize
X∈[LB,UB]∈R+

g

∑
i=1

N

∑
j=1

[
Vexp,ij −Vmod,ij(X)

]2 (16)

In Equation (16), g represents the number of data sets used for parameter extraction,
N represents the number of experimental I–V data in each data set, and LB and UB are the
lower and upper limits of the known model parameter X, respectively.

3. Photovoltaic Cell Modeling and Theory

Photovoltaic Cell converts light into energy due to the photovoltaic effect of semi-
conductors. The single-diode model represents the non-ideal single-exponential diode
model [13]. The equation related to this model is relatively simple and can be expressed in
the form of an equivalent circuit, as shown in Figure 2. This model displays a diode used
as a shunt to divert the photogenerated current (Iph), and a resistor which is connected in
series to the diode.
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As shown in Figure 2, the SD PV cell model has a current source that is connected
in a parallel with a diode [13,35]. Under light, an actual PV cell exhibits series and shunt
resistance. The terminal current (It) for the PV cell in the model can be expressed as follows:

It = Iph − Id − Ish (17)

In the above equation, Iph represents the source of photoelectric/photogenerated
current, Id represents the saturation current of the diode, and Ish represents the leakage
current caused by the shunt resistance, Rsh. In this study, the Shockley diode equation was
adopted to produce a suitable model, where the relational equation between the current
(Id) and voltage (Vt) can be expressed as follows:

Id = Isd

[
exp

(
q(Vt + Rser × It)

n× k× T

)
− 1
]

(18)

Consequently, Equation (19) can be formulated:

It = Iph − Isd

[
exp

(
q(Vt + Rser × It)

n× k× T

)
− 1
]
− Vt + Rser × It

Rsh
(19)

In Equation (19), Vt represents the terminal voltage, T represents the cell tempera-
ture, the charge of the electron is q = 1.602 × 10−9 (C), and the Boltzmann constant is
k = 1.380 × 10−23 J/K. It can be seen that the nonlinear Equation (19) contains several
unknown parameters—accordingly, the SD model has the following five parameters to be
determined: photogenerated current (Iph), reverse saturation current (Isd), ideal factor for
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the saturated diode (n), series resistance (Rser), and shunt resistance (Rsh). These parameters
can be estimated using the I–V equation of the PV cell. To accurately obtain the unknown
parameters X = (Rser, Rsh, Iph, Isd, n), IV curve of solar cell uses root mean square errors
(RMSEs) Equation (20) and is identified by minimizing the errors between the experimental
voltage and the estimated voltage as the optimization principle.

RMSE(X) =

√√√√ n

∑
i=1

(Vexp −Vmod
)2

n
(20)

4. PSO Algorithm

As compared to other swarm intelligence algorithms, PSO stands out as one that is not
only highly efficient, but also does not require much memory space in its calculation. The
algorithm, which is based on birds’ foraging behaviors, adjusts the speed of particles to
alter their positions and conducts multiple searches to identify their optimal positions [36].
These equations are expressed in Equations (21) and (22), and Figure 3 depicts a schematic
diagram of the particle search. A basic PSO search uses the optimal positions identified
through an individual particle’s and combined particle swarm’s current search results
to determine the direction of the subsequent search target, in order to quickly attain a
convergent solution:

→
vi

k+1
=
→
vi

k
+ c1 × rand(0, 1)×

(
pbesti −

→
xi

k
)
+ c2 × rand(0, 1)×

(
gbest−→xi

k
)

(21)

→
xi

k+1
=
→
xi

k
+
→
vi

k+1
, i = 1, 2, . . . , Nparticle (22)
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In Equations (21) and (22),
→
xi and

→
vi represent the position and speed vector of the

ith particle respectively, pbesti represents the previous optimal position of the ith particle,
and gbest represents the optimal position of the particle swarm Np when it evolves to the
kth generation. The parameters in Equation (21) also include cognitive (c1) and social (c2)
learning rate, which are generally set as c1 = c2 = 2.0.

As a result of not being able to necessarily identify the global optimal solution through
referencing a current local optimal solution, it can be easy to fall into the trap of being too
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preoccupied by the local optimal solution found. In 1998, Shi and Eberhart proposed an
improved PSO algorithm [37], in which they introduced a weight parameter (w) to control
the algorithm’s search speed, thereby reinforcing its local search ability. This improved
algorithm is termed inertia weight PSO and has been verified to have a greater efficacy
than a genetic algorithm. Weight (w) serves as a critical parameter in the algorithm’s search
for the optimal solution—the value of which can be solved linearly by setting two weight
values, wmax = 0.9 and wmin = 0.4, according to the number of iterations. The inertia weight
PSO is expressed as follows:

→
vi

k+1
= ω

→
vi

k
+ c1× rand(0, 1)×

(
pbesti −

→
xi

k
)
+ c2× rand(0, 1)×

(
gbest−→xi

k
)

(23)

→
xi

k+1
=
→
xi

k
+
→
vi

k+1
, i = 1, 2, . . . , Nparticle (24)

w = wmax −
wmax −wmin

kmax
× k (25)

Furthermore, in 1999, Clerc proposed a PSO algorithm with a constriction factor
(K) [37] that can effectively dampen the speed of particles to enhance their local search
capacity. The improved algorithm, referred to as constriction PSO, has been verified to
significantly reinforce the particles’search capability in a local spatial setting. After running
a stability analysis, the method proposes that K is a function ofϕ = c1 + c2. When compared
to the previously mentioned inertia weight PSO that was proposed by Shi and Eberhart,
the constriction PSO produces better solutions and reduces the need for manual inputs
with regards to the weight parameter (w). Moreover, both the cognitive learning rate
(c1 and c2) can be set to the same value of 2.05. Constriction PSO can be expressed in the
following equations:

→
vi

k+1
= K×

(
→
vi

k
+ c1 × rand(0, 1)×

(
pbesti −

→
xi

k
)
+ c2 × rand(0, 1)×

(
gbest−→xi

k
))

(26)

→
xi

k+1
=
→
xi

k
+
→
vi

k+1
, i = 1, 2, . . . , Nparticle (27)

K =
2∣∣∣2−ϕ−√ϕ2 − 4ϕ

∣∣∣ (28)

In the equations, ϕ = c1 + c2, and ϕ > 4. The momentum PSO [38], which has been
improved upon in recent years, generates the following equations in accordance with the
physical characteristics of particle flight:

→
vi

k+1
= β× ∆

→
vi

k
+ c1 × rand(0, 1)×

(
pbesti −

→
xi

k
)
+ c2 × rand(0, 1)×

(
gbest−→xi

k
)

(29)

→
xi

k+1
=
→
xi

k
+ α×→vi

k+1
, i = 1, 2, . . . , Nparticle (30)

β is a positive momentum constant (0 ≤ β < 1) that controls the rate of change in
particle speed vectors, while another momentum constant, α, is used to adjust the rate of
change in particle positions. These aforementioned equations grant each particle, when
searching for an optimal solution at different times, the capability to dynamically adjust
itself. In this study, β is set to the value 0.1 and α is set to the value of 1.0. When the entire
system is in a state of equilibrium (i.e., no better particle positions are detected;

→
x i = pbesti

and
→
x i = gbest, (29) automatically fulfills ∆

→
v i = 0, yielding

→
v i = 0). An empirical

analysis confirmed this algorithm to have satisfactory calculation efficiency and problem-
solving accuracy.
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5. Results
5.1. Proton Exchange Membrane NedStackPS6 Parameter Optimization

The operating data of NedStackPS6 system can be found in Reference [31], which
consists of 65 cells. The structural parameters and operation environment settings are
presented in Table 1.

Table 1. Structural parameters and operation environment setting of the NedStack PS6 model.

Fuel Cell Stack (NedStackPS6)

Condition Ncell A
(
cm2) l (µm) Jmax

(
A

cm2

)
PH2 (atm) PO2 (atm)

Value 65 240 178 5 1 1

The cell voltage Vcell of the PEMFC model can be expressed as Equation (3), which
contains parameters to be determined. This study employed three types of improved PSO
algorithms to solve for these unknown parameters. Table 2 lists the scope of optimization
searches of the parameters to be determined in the PEMFC model [31].

Table 2. Search scope of the parameter to be determined in the PEMFC model.

Parameter ξ1 ξ2 × 10−3 ξ3 × 10−5 ξ4 × 10−4 λ Rc × 10−4 B(V)

Upper Bound −0.8532 5 9.8 0.954 24 8 0.5

Lower Bound −1.19969 1 3.6 −2.60 10 1 0.0136

5.2. PSO Parameter Optimization Results in the NedStackPS6 Model

The number of particles for the three improved PSO algorithms was set as 50, and the
number of iterations per run was set as 200. In total, 30 independent runs were conducted
to analyze the robustness of the algorithms. The PEMFC model calculation results obtained
were compared with calculation results from other studies. Figure 4a illustrates the I–V
characteristic curve analysis results of the three algorithms used in the PEMFC model,
which indicate that the experiment results were considerably consistent with the calculated
results of the three algorithms. Figure 4b depicts the Power–V characteristic curve analysis
results of the three algorithms, which show a clear increase in the output power following
a rise in the stack current, and that the experiment results were also considerably consistent
with calculated results of the algorithms. Convergent solutions are divided into two types,
namely, Mean Best Solution and Best Solution. Figure 5a,b present a comparison of the
algorithms regarding their convergence ability, in which it can be seen that momentum
PSO significantly outperforms inertia weight PSO and constriction PSO.

Tables 3 and 4 present a comparison of the experimental and calculated values of
the terminal current, which reveals consistency between the experimental values and the
calculated values using the three improved PSO algorithms. The optimized parameter
values calculated using the momentum PSO algorithm, which demonstrated the most
efficient calculation of the three algorithms, were further compared with values acquired
from other studies. Table 4 lists the optimal parameter solutions and Sum of Squares
for Error (SSE) values acquired using the momentum PSO algorithm and algorithms
from [37,38]. The SSE value of the momentum PSO algorithm was 2.0656, lower than that
of the algorithms from [34,39,40]—this demonstrates that the momentum PSO algorithm
exhibited the most satisfactory SSE value out of all the listed algorithms.
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Table 3. Calculated and experimental values of cells stack voltage.

Experimental Data Inertia Weight PSO Constriction PSO Momentum-Type PSO

It (V) Vt (A) Computed Vt (V)

2.2500 61.6400 62.3704 62.3552 62.3558

6.7500 59.5700 59.7911 59.7811 59.7818

9.0000 58.9400 59.0571 59.0497 59.0504

15.7500 57.5400 57.4975 57.4976 57.4982

20.2500 56.8000 56.7140 56.7189 56.7195
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Table 3. Cont.

Experimental Data Inertia Weight PSO Constriction PSO Momentum-Type PSO

It (V) Vt (A) Computed Vt (V)

24.7500 56.1300 56.0360 56.0456 56.0462

31.5000 55.2300 55.1421 55.1584 55.1589

36.0000 54.6600 54.6012 54.6217 54.6222

45.0000 53.6100 53.6055 53.6340 53.6345

51.7500 52.8600 52.9108 52.9448 52.9453

67.5000 51.9100 51.3950 51.4400 51.4403

72.0000 51.2200 50.9797 51.0273 51.0277

90.0000 49.6600 49.3623 49.4181 49.4184

99.0000 49.0000 48.5685 48.6268 48.6270

105.8000 48.1500 47.9713 48.0306 48.0308

110.3000 47.5200 47.5763 47.6360 47.6361

117.0000 47.1000 46.9877 47.0472 47.0473

126.0000 46.4800 46.1938 46.2521 46.2521

135.0000 45.6600 45.3940 45.4494 45.4494

141.8000 44.8500 44.7843 44.8365 44.8364

150.8000 44.2400 43.9682 44.0147 44.0146

162.0000 42.4500 42.9353 42.9723 42.9721

171.0000 41.6600 42.0890 42.1160 42.1157

182.3000 40.6800 41.0027 41.0141 41.0137

189.0000 40.0900 40.3446 40.3451 40.3446

195.8000 39.5100 39.6651 39.6530 39.6526

204.8000 38.7300 38.7463 38.7154 38.7149

211.5000 38.1500 38.0470 38.0002 37.9996

220.5000 37.3800 37.0854 37.0146 37.0139

Table 4. Comparison between the momentum PSO algorithm and algorithms used in other studies regarding the optimal
solutions of parameters to be determined in the PEMFC model.

Parameter ξ1 ξ2 × 10−3 ξ3 × 10−5 ξ4 × 10−4 λ Rc × 10−4 B(V) SSE

Momentum-type PSO −1.1965 4.2668 9.8000 −9.5400 12.5743 1.0000 0.0136 2.0656

Proposed SMS [31] −0.9525 2.9086 5.1762 −9.5400 12.5743 1.0000 0.0136 2.0656

Constriction PSO −1.0104 3.5332 8.2481 −9.5400 12.5733 1.0016 0.0136 2.0662

SFLA [34] −1.0231 3.4760 7.7883 −9.5400 15.0323 1.6200 0.0136 2.1671

SSO [39] −0.9719 3.3487 7.9111 −9.5435 13.0000 1.0000 0.0534 2.1807

Inertia Weight PSO −0.9947 3.3069 5.2445 −9.5403 13.2321 1.0000 0.0829 2.2171

GA [40] −1.1997 3.4172 3.6000 −9.5400 13.0000 1.3760 0.0359 2.4089

5.3. Estimating the Parameters to Be Determined in the SD Model

The terminal current (It) if the SD model for a PV cell can be expressed as
Equation (19), which contains parameters to be determined. Three improved PSO al-
gorithms were adopted in this study to solve for these parameters. The photovoltaic (PV)
cells operating data of can be found in Reference [35]. Table 5 indicates the scope of the op-
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timization search for the parameters to be determined in the SD model with the mentioned
algorithms [28,35,39–41].

Table 5. Search scope of parameters to be determined in the SD model.

Parameter Rser (Ω) Rsh (Ω) Iph (A) Isd (µA) N

Upper Bound 0.5 100 1 1 2

Lower Bound 0 0 0 0 1

The number of particles for the three improved PSO algorithms was set as 150, and the
number of iterations per run was set as 200. In total, 30 independent runs were conducted
to analyze the robustness of the algorithms. The SD model calculation results obtained
were also compared with the calculation results from other studies. Figure 6a illustrates
the I–V characteristic curve analysis results of the three algorithms used in the SD model,
which indicate considerable consistency between the experiment results and the calculated
results using all the algorithms. Figure 6b depicts the Power–V characteristic curve analysis
results of the three algorithms, which show that the output power was maximized at
0.3101 W when the terminal voltage was 0.459 V, and that the experiment results and the
calculated results using the three algorithms were also considerably consistent. Conver-
gent solutions are divided into two types, namely, Mean Best Solution and Best Solution.
Figure 7a,b present a comparison of the algorithms regarding their convergence ability,
where it can be seen that the momentum PSO algorithm significantly outperformed the
inertia weight PSO and constriction PSO algorithms.

Tables 6 and 7 present a comparison between the experimental and calculated values
of the terminal current, which also includes the calculation results from the chaotic whale
optimization algorithm (Chaotic WOA) proposed by Oliva et al. [17] The table indicates
that the calculated values of all the three improved PSO algorithms were consistent with
the experimental values. The optimized parameter values calculated using the momentum
PSO, which demonstrated the most efficient calculation of the three algorithms, were
further compared with those acquired in [37]. Table 7 lists the optimal parameter solutions
and root mean square errors (RMSEs) acquired using the momentum PSO algorithm and
the algorithms from other relevant studies. The RMSE value of the momentum PSO was
8.8389 × 10−4, which is lower than those of the 8 algorithms listed in the other referenced
studies, demonstrating that the momentum PSO exhibited the most satisfactory RMSE out
of all the listed algorithms.
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Table 6. Calculated and experimental terminal current values of three improved PSO algorithms in the SD model.

Experimental Data Inertia Weight PSO Constriction PSO Momentum- Type PSO

Vt (V) It (A) Computed It (A)

−0.2057 0.764 0.7642 0.7643 0.7641

−0.1291 0.762 0.7627 0.7628 0.7627

−0.0588 0.7605 0.7614 0.7614 0.7614

0.0057 0.7605 0.7602 0.7602 0.7602

0.0646 0.76 0.759 0.759 0.7591

0.1185 0.759 0.758 0.758 0.7580

0.1678 0.757 0.757 0.757 0.7571

0.2132 0.757 0.756 0.756 0.7561

0.2545 0.7555 0.755 0.7549 0.7551

0.2924 0.754 0.7536 0.7535 0.7537

0.3269 0.7505 0.7513 0.7512 0.7514

0.3585 0.7465 0.7473 0.7472 0.7474

0.3873 0.7385 0.7401 0.7401 0.7401

0.4137 0.728 0.7275 0.7275 0.7274

0.4373 0.7065 0.7072 0.7072 0.7070

0.459 0.6755 0.6755 0.6756 0.6753

0.4784 0.632 0.631 0.6311 0.6307

0.496 0.573 0.572 0.5721 0.5719

0.5119 0.499 0.4995 0.4996 0.4996

0.5265 0.413 0.4134 0.4134 0.4136

0.5398 0.3165 0.3172 0.3172 0.3175

0.5521 0.212 0.2119 0.2118 0.2122

0.5633 0.1035 0.1022 0.1021 0.1023

0.5736 −0.01 −0.0083 −0.0083 −0.0087

0.5833 −0.123 −0.1243 −0.1243 −0.1255

0.59 −0.21 −0.2065 −0.2063 −0.2085
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Table 7. Comparison between the momentum PSO and algorithm used in other studies on the optimal solutions of
parameter determined in the SD model.

Parameter Rser (Ω) Rsh (Ω) Iph (A) Isd (µA) n RMSE

Momentum-type PSO 0.0371 51.1649 0.7608 0.2824 1.4691 8.839 × 10−4

Inertia Weight PSO 0.0371 51.0248 0.7608 0.2801 1.4682 8.849 × 10−4

Constriction PSO 0.0373 49.808 0.7608 0.2665 1.4633 8.971 × 10−4

CWOA [17] 0.0364 53.9787 0.7608 0.3239 1.4812 9.860 × 10−4

ABC [28] 0.0364 53.6433 0.7608 0.3251 1.4817 9.862 × 10−4

ILCOA [41] 0.0364 53.7187 0.7608 0.3230 1.4811 9.860 × 10−4

BMO [42] 0.0364 53.8716 0.7608 0.3248 1.4818 9.861 × 10−4

STBLO [42] 0.3638 53.7187 0.7608 0.3230 1.4811 9.860 × 10−4

DE [43] 0.0364 53.7185 0.7608 0.3230 1.4806 2.342 × 10−3

PS [44] 0.0313 64.1026 0.7617 0.9980 1.6000 1.494 × 10−2

SA [45] 0.0345 43.1034 0.7620 0.4798 1.5172 1.900 × 10−2

The effect of the temperature of a PV cell on its I–V and Power–V characteristic curves
was further analyzed. For comparison, the PV cell temperature was set to 25 ◦C, 33 ◦C
(used in the experiment), 50 ◦C, and 75 ◦C. The optimal parameters acquired using the
momentum PSO algorithm were used for calculation. As shown in Figure 8a, when the cell
temperature increased, the net current increased significantly after the terminal voltage on
the I–V curve exceeded 0.4 V. Similarly, as depicted in Figure 8b, when the cell temperature
increased, both the net power and maximum net power increased significantly after the
net voltage on the Power–V curve exceeded 0.44 V.
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6. Conclusions

In this study, three advanced PSO algorithms were adopted to improve upon the
search efficiency of the original PSO and the accuracy of the optimal solution. These
algorithms were applied in the NedStackPS6 PEMFC and SD models to optimize the
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undetermined energy system parameters. The results analysis revealed that the terminal
current values calculated using all three improved algorithms were considerably consistent
with the experimental values. Of the three, the momentum PSO algorithm in particular
significantly outperformed the inertia weight PSO and constriction PSO algorithms in
terms of calculation efficacy. The analysis also revealed that the momentum PSO algorithm
yielded more favorable calculation results as compared to the Chaotic WOA. Additionally,
the optimized parameter and objective function values obtained using the momentum
PSO algorithm were also compared with those obtained from other relevant studies, which
revealed that these calculated solutions obtained using the momentum PSO algorithm were
once again more satisfactory than those acquired using the algorithms adopted in other
studies. To sum up, the self-adjustment mechanism of momentum PSO can substantially
reduce the calculation time and the extraction of the effective data. This study makes a
benchmark of PEMFC and PV cell system which expect to make a further application to
the multi energy carrier and the real-time dynamic loading.
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