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Abstract: Power transformers play an important role in electrical systems; being considered the core
of electric power transmissions and distribution networks, the owners and users of these assets are
increasingly concerned with adopting reliable, automated, and non-invasive techniques to monitor
and diagnose their operating conditions. Thus, monitoring the conditions of power transformers
has evolved, in the sense that a complete characterization of the conditions of oil-paper insulation
can be achieved through dissolved gas analysis (DGA) and furan compounds analysis, since these
analyses provide a lot of information about the phenomena that occur in power transformers. The
Duval triangles and pentagons methods can be used with a high percentage of correct predictions
compared to the known classical methods (key gases, International Electrotechnical Commission
(IEC), Rogers, Doernenburg ratios), because, in addition to the six types of basic faults, they also
identify four sub-types of thermal faults that provide important additional information for the
appropriate corrective actions to be applied to the transformers. A new approach is presented based
on the complementarity between the analysis of the gases dissolved in the transformer oil and the
analysis of furan compounds, for the identification of the different faults, especially when there are
multiple faults, by extending the diagnosis of the operating conditions of the power transformers, in
terms of paper degradation. The implemented software system based on artificial neural networks
was tested and validated in practice, with good results.

Keywords: power transformer; insulation; dissolved gas analysis; furan compounds; radial basis
function neural network; feed forward neural network

1. Introduction

Power transformers are key pieces of equipment in the electric power transmission
and distribution systems, and their reliability influences the safety of electric power supply
networks. Although they are reliable pieces of equipment, it is difficult to avoid damaging
them. In addition to catastrophic damage to the power supply system, the faults in trans-
formers can also cause substantial financial losses for both the owner and the consumers
served by it. For this reason, it is important to identify, at an early stage, the possible faults
in transformers so that, based on an appropriate diagnostic procedure, an efficient and
rational decision is taken in advance on the appropriate corrective actions to be applied to
the transformer [1-4].

An important and effective tool for the early-stage fault diagnosis in oil-immersed
power transformers is dissolved gas analysis (DGA), which can identify the degradation
of the solid insulation and oil [5-10]. The diagnosis of the involvement of solid insulation
and its possible carbonization, resulting from a method of dissolved gas analysis, can be
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confirmed by careful use of carbon oxides, the CO,/CO ratio, and the analysis of furan
compounds [11-15].

Lately, in order to correct and render, more effectively, the methods used for identifying
faults in oil-immersed power transformers that rely on the DGA, researchers around
the world have tried to apply, to these methods, various techniques based on artificial
intelligence, such as the fuzzy logic-based method proposed in [16], as a new solution for
determining the fault condition using the combination of gas level, gas rate, and DGA
interpretation through the Duval pentagon method.

One approach carrying out the classification of power transformer faults, based on
the combination of intelligent methods, such as the hypersphere multi-class support vector
machine (HMSVM), the hybrid immune a logarithm (HIA), and the kernel extreme learning
machine (KELM), is shown in [17]. The optimization of the parameters of the HMSVM-
type method, starting from the training stage, is achieved by means of particle swarm
optimization (PSO). The fusion of these methods is achieved by the Dempster-Shafer (DS)
evidence theory in order to increase the accuracy of the results.

Starting from the problem of insufficient and imbalanced datasets, one method that
carries out the diagnosis of power transformers and overcomes these issues is the twin
support vector machines (TWSVMs) method, proposed in [18]. The parameters of this
intelligent classification method are optimized by using the chemical reaction optimization
(CRO) type algorithm, and the efficiency and accuracy are increased by means of restricted
Boltzmann machines (RBMs) from the moment of data preprocessing.

Moreover, to avoid a series of drawbacks regarding the traditional methods of DGA,
an approach based on an improved algorithm of the grey wolf type, in order to get better
results in case of fault classification by the least square support vector machine (LSSVM), is
proposed in [19].

Based on the DGA and the construction of a global health index of power transformers,
intelligent algorithms based on the improved differential evolution optimization algorithm,
which substantially improve the precision and accuracy in determining the faults, are used
in [20,21].

A complementarity for DGA, which is carried out through the partial discharge study
by using the correlation analysis and extraction of the main characteristic parameters is
shown in [22].

Moreover, a complex image of the fault condition of power transformer is presented
in [23] and consists of determining the winding hot spot temperature combined with the
DGA.

Although the intelligent methods and theories presented above have yielded good
results on the accuracy of the power transformer fault diagnosing methods based on the
DGA, there are also some shortcomings in the parameter optimization, the selection of
the set of characteristics and the data preprocessing methods, which narrow the practical
application of the intelligent systems [1,17,18].

The novelty presented in this article consists in the complementarity between the
analysis of the gases dissolved in the oil of power transformers and the analysis of furan
compounds, for the identification of the different faults, especially when there are multiple
faults, by extending the diagnosis of the operating condition of power transformers in
terms of paper degradation. This automatic and non-invasive diagnostic is based on the
Duval triangles and pentagons analysis methods. The software implementation of the
diagnosis is based on using artificial neural networks, such as Radial Basis Function Neural
Network (RBFNN) and Feed Forward Neural Network (FFNN), due to their facilities, such
as: learning, robustness of the algorithms used, and good results on accuracy and precision.

This paper is a continuation of the previous research [24-26] related to the determina-
tion of power transformer faults based on the fuzzy logic implementation of the DGA and
the analysis of furan compounds.

The rest of the paper is organized as follows: Section 2 presents the methods for the
analysis of dissolved gases and furan compounds. Section 3 presents the system developed
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to determine the faults in oil-immersed power transformers, based on neural networks.
Section 4 presents the validation of the proposed system, and the conclusions and future
approaches are presented in Section 5.

2. Materials and Methods for Faults Detection of the Power Transformers

The interpretation of the DGA in oil-filled transformers is one of the most important
procedures for the determination of the types of faults. IEC 60599-2015 09 [5] and Institute of
Electrical and Electronics Engineers IEEE C57.104-2019 [6] standards provide several DGA
interpretation methods achieved on the calculation of certain oil-dissolved flammable gas
ratios. Between the methods proposed by these standards and the evolution of the effective
faults in transformers, there is a correlation validated by large datasets collected from
operating transformers and compared with those collected from out-of-service transformers.
We briefly present the most common DGA interpretation methods proposed in [5] (IEC
ratio and Duval 1 triangle (DTr-1)) and in [6] (key gas analysis, Doernenburg ratio, and
Rogers ratio).

2.1. Key Gas Method

To determine the faults in the transformer, the key gas method uses the combination
of individual gases (Hy; CHy; CoHg; CoHy; CoHp; CO; CO,) and the total concentration
of flammable gases (TDCG = H;, + CHy + C;Hg + CoHy + CoHy + CO), and the result
of the diagnosis is based on the determination of the relative maximum values of the
key gases in relation to the rest of the gases dissolved in the transformer oil [6]. This
method can only forecast the following general types of errors: partial discharges (PD)
in oil, overheated oil, cellulose overheating, and arcing in oil. Researchers consider this
method as very conservative because, according to it, a transformer can operate safely,
even if this interpretation method shows an imminent risk, provided that the speed of gas
generation is not increasing steadily [1-3]. Due to these things, this method is not widely
used as a tool for the efficient interpretation of the transformer faults based on the DGA
results.

2.2. Doernenburg Reporting Method

This method is one of the oldest methods used to identify the initial faults in transform-
ers. To apply this method, the first condition to be fulfilled is that at least one of the key gas
concentrations (Hy; CHy; CoHg; CoHy; CoHj) exceeds twice the concentration limits (L1),
as shown in Table 1, and that one of the other two gases exceeds the limit value L1. After
this condition is fulfilled, the four typical gas ratios (CH4/Hjy; CoHy /CoHy; CoHy /CHy;
CyHg/CyHy) will be used to examine the types of faults as shown in Table 2 [1-3,6].

Table 1. Concentration limits L1 of dissolved gases.

Dissolved Gases Hz CH4 CO C2H2 C2H4 C2H6
Concentration limits L1 100 120 350 1 50 65

Table 2. Fault analysis based on Doernenburg ratio.

Case of Error CH4/H2 Csz/C2H4 Csz/CH4 CzHG/CZHz
Thermal decomposition >1 <0.75 <0.3 >0.4
Corona .
(Low intensity partial discharge) <01 Insignificant <03 >0.4
Arcing >0.1-<1 <0.75 >0.3 <04

(High-intensity partial discharge)
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2.3. Rogers Ratio and IEC Ratio Methods

One of the two DGA interpretation techniques recommended in [5] is the method of
IEC ratios using the same gas ratios (CoH,/CyHy; CHy/Hy; CoHy/CoHg), as in the case
of the Rogers ratio method. Tables 3 and 4 show the values of the ratios and the types of
faults related to them for the methods of the Rogers and IEC ratios [4-6].

Table 3. Analysis based on Rogers ratios.

Type of Fault Csz/C2H4 CH4/H2 C2H4/C2H6
Normal unit <0.1 >0.1 to <1 <1
Partial discharge <0.1 <0.1 <1
Arcing 0.1t0 3.0 >0.1to <1 >3
Low thermal temperature <0.1 >0.1 to <1 >0.1to <3
Thermal: <700 °C <0.1 >1 >0.1 to <3
Thermal: >700 °C <0.1 >1 >3

Table 4. Analysis based on IEC ratios.

Case Characteristic Fault C,H,/CoHy CH4/H, C,H4/CyHg
PD Partial discharge Insignificant <0.1 <0.2
D1 Discharge of low energy >1 0.1-0.5 >1
D2 Discharge of high energy 0.6-2.5 0.1-1 >2
T1 Thermal: T <300 °C Insignificant >1 but insignificant <1
T2 Thermal: 300 °C < T <700 °C <0.1 >1 14
T3 Thermal: T > 700 °C <0.2 >1 >4

In the IEC 60599-2015 09 [5] standard, it is recommended that, when the values of
the ratios are not within the threshold ranges and do not match any fault, the graphical
representation in two or three dimensions of the gas concentrations should be used, so
the type of fault may be the area in the vicinity of the undiagnosed case. Moreover,
some identified faults are not precisely for the overlapping fault areas of cases D1 and
D2. Therefore, one of the serious drawbacks of these methods is that part of the gas ratio
obtained is not included in the specific range of values and, thus, the fault diagnostic fails
to be assessed.

In conclusion, ratio-based methods, such as Doernenburg, Rogers, and IEC can only
be used if there is a substantial amount of gas used with the ratio, otherwise the methods
lead to ratio values outside the specific range and it will not be possible for the type of fault
to be identified [1-4]. Therefore, these methods can be used to identify faults, rather than
detect them.

2.4. Duval Triangle Methods

The DTr-1, also presented in [5,6] was proposed by Michel Duval in the early 1970s
and is widely used for the analysis of dissolved gases in mineral oil-filled transformers.
This method is based on the values of gases CH4, C;Hy, and CyHp, which also correspond
to the increasing level of gassing in transformers. The seven areas presented in the DTr-1
correspond to the faults, which may be found in the transformers in service, and are
presented in Table 5 [7].

The DTr-1 method proved to be quite efficient in obtaining the main type of fault
occurring in the mineral oil-filled transformers in service. When the DGA results are
at the boundary between two fault areas, it is difficult to distinguish which of the two
faults is the real one. It has also been found that some oils tend to unpredictably generate
low-temperature gases (between 80 °C and up to 200 °C) [3,5,9,11], and, thus, may interfere
with the correct identification of faults in transformers. The use of the DTr-1 method for
the analysis of the dissolved gases in a transformer with normal insulation aging leads to
an error, because the result of the DGA will show a fault in the said transformer.
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Table 5. Faults identified using the DTr-1.

Code Fault or Stress
PD Corona-type partial discharges
D1 Low-energy discharges
D2 High-energy discharge
T1 Thermal faults not exceeding temperature 300 °C
T2 Thermal faults temperature at 300 °C to 700 °C
T3 Thermal faults exceeding 700 °C
DT Combinations of electrical and thermal faults

To eliminate these uncertainties, Michel Duval developed triangles 4 (DTr-4) and
triangles 5 (DTr-5), also called “low-temperature fault triangles” [7]. They should only
be considered as an addition to the information for DTr-1 and should not be used for
faults D1 and D2, which have been identified using the DTr-1. The DTr-4 presented in
Figure 1 is used to obtain more information about the faults identified using the DTr-1 as
low-temperature faults such as: PD, T1, or T2 and uses “low-energy gases” [6,7,12]: Hj,
CH4, and C2H6.

100 50

100

Figure 1. DTr-4 and DTr-5: (a) DTr-4 for low-temperature faults; (b) DTr-5 for thermal faults.

The defining of the fault areas in this triangle is shown in Table 6.

Table 6. Defining the fault areas in the DTr-5.

Code Fault or Stress
PD Corona-type partial discharges
S Stray gassing of mineral oil
C Paper carbonization caused by hot spots (T > 300 °C)
O Overheating (T < 250 °C)
T2 Thermal faults caused by temperature at 300 °C to 700 °C
T3 Thermal faults occurring at very high temperatures (T > 700 °C)

The DTr-5 for thermal faults is used to obtain more information about the faults
identified using the Duval Triangle 1 as T2 or T3 type thermal faults and to confirm the
faults accompanied by uncertainties after using the DTr-4.

This triangle uses “temperature gases” [6,7,12]: CoH4, CHy, and CyHg and is repre-
sented graphically in Figure 1. The defining of the fault areas in the DTr-5 is shown in
Table 6.
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2.5. The Duval Pentagons Method

A new method of interpreting the DGA is represented by the Duval Pentagons 1 and
2 (DPg-1 and DPg-2), using the five key gases (H,; CHy; CoHg; CoHy; CoHp) arranged at
the apices of the pentagon. This method was created to solve problems which cannot be
solved using the Duval Triangles method [3,6,8,9,12].

The DPg-1 and DPg-2 are shown in Figure 2, and the order of the gases at the apices
of the pentagons corresponds to the increase in energy required for the generation of these
gases (Hy, — CoHg — CHy — CoHy — CyHp) in the oil of a transformer in service, i.e.,
counterclockwise. This gas layout proved to be the most suitable in identifying the faults
in transformers in the pentagon representation [10].

D1 C,H,

D2

CH,

C:H, CH, C.H,

(a) (b)

Figure 2. Representation of fault areas in the Duval Pentagon: (a) DPg-1; (b) DPg-2.

7

Figure 2a shows the DPg-1 with six main areas usually associated with the “basic’
electrical or thermal faults used by the IEC standard, the IEEE standard and the DTr-1 (see
Table 5) and area “S” of stray gas correlated with the generation of gases during the normal
aging process of the complex insulation system of transformers.

When a thermal fault, such as T1, T2 or T3 occurs in DPg-1 after an analysis, it is
important to know to what extent paper carbonization is involved in the occurrence of the
fault, as this is an important factor in making an appropriate decision to avoid catastrophic
damage [6,8,10]. So this problem can be solved by using the DPg-2, which is represented in
Figure 2b, where the areas for the thermal faults are defined as follows:

e  O:overheating < 250 °C;
e  C:thermal faults with paper carbonization;
T3-H: faults at high temperatures occurring only in oil.

It was found that the results of the DGAs, which are shown in the “C” zone of
Pentagon 2 revealed the possible paper carbonization with a certainty of 100%, and, there-
fore, additional analyses with carbon oxides and furan compounds are needed for those
transformers, to determine the level of degradation of the solid insulation [10].

When, for the same set of DGA results, DPg-1, DPg-2 and DTr-1, DTr-4, DTr-5 for
mineral oils reveal different types of faults, this indicates that there is a combination of
faults in the said transformer. Thus, DPg-1 and DPg-2 are not intended to replace DTr-1,
DTr-4 and DTr-5, but to provide additional information that can help identify various faults,
especially in the case of the combinations of faults [4,7,12].

The Combined Duval Pentagon method, obtained by overlapping DPg-1 and DPg-2
is described in [10]. The purpose of this combination is to make full use of both original
pentagons and to make it easier for the faults in mineral oil-filled transformers to be
automatically identified by using computer programs.
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The proposed combined method presented in Figure 3 results in a number of 10 fault
areas (areas S, PD, D1 and D2, which represent thermal problems are identical in both
original pentagons) instead of 14 areas if both pentagons are used separately. The six areas
with thermal problems presented in the Combined Duval Pentagon are defined in Table 7.

H,

PD

C:H, S D1 CH,

D2

CH, C.H,

Figure 3. Duval Pentagon Combined with the ten fault zones.

Table 7. Defining the areas of thermal faults in the Combined Duval Pentagon.

Code Code

Code Combined Pentagon Pentagon 1 Pentagon 2

Defining the Fault or Stress

Confirmation of the thermal problem with the
T1-O T1 o predicted temperature <300 °C, but with no
carbonization of the solid insulation.

Confirmation of the thermal problem with the
predicted temperature less than 300 °C, but now
with the probable paper implication, which
shows the carbonization.

T1-C T1 C

Confirmation of the thermal problem, with a
temperature between 300 °C and 700 °C, but
unlikely to involve the solid insulation or the
carbonization of the paper.

T2-O T2 @)

Confirmation of the thermal problem with a
temperature between 300 °C and 700 °C, with
high probability of paper implication
(probability of 80%, based on data from
transformers with faults detected during the
internal inspection).

T2-C T2 C

Confirmation of the thermal emission only in oil,

3-H 13 3H temperature range above 700 °C.

Confirmation of the thermal problem at high
temperatures (above 700 °C) with paper
implication in the occurrence of the fault
(carbonization).

T3-C T3 C

The Duval Combined Pentagon is not created to replace DPg-1 and DPg-2, but to
supplement them and make easy the calculation of the 10 types of faults using software
applications.
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2.6. Single Gas Ratio Method

For the methods described above, References [5,6] have added three single gas ratios
(CO,/CO, Oy/N; and CyH,/H;), which can be used as complementary methods for
diagnosing transformer faults.

2.6.1. CO,/CO Ratio

In case of cellulose degradation, atmospheric air ingress or transformer oil oxidation,
carbon monoxide (CO) and carbon dioxide (CO,) are generated. Until recently, these
carbon oxides were considered good indicators for the determination of paper involvement
in the occurrence of a fault diagnosed in the transformer, but recent research conducted by
specialists in the International Council on Large Electric Systems (CIGRE), IEC and IEEE
working groups has shown that this is not always the case [5,6,12]. Therefore, the new
viewpoints on the interpretation of carbon oxides and the CO, /CO ratio are:

e High values of CO (>1000 ppm) and/or ratios CO,/CO < 3, with no significant
amounts of other fault gases are not an indication of a C-type fault, i.e., paper car-
bonization, but it is due to the oxidation of the mineral oil under conditions that
correspond to low oxygen content in oil;

e  High values of CO (>1000 ppm) and ratios CO,/CO < 3 in the presence of significant
amounts of other fault gases and furans are considered as a confirmation of paper
involvement in the occurrence of a fault, with possible carbonization;

e  High values of CO, (>10,000 ppm) and ratios CO,/CO > 20 and high values of furans
(>5 ppm) show the slight overheating (<160 °C) with slow paper degradation until
low values of the degree of polymerization (DP) of paper are reached. This does not
prevent the transformer from operating normally, but there is concern that, due to the
low DP of paper, the cellulose insulation will not withstand stresses, such as short
circuits or transient overcurrent;

e Insome cases, the faults located in small volumes of paper do not generate significant
amounts of CO and CO, compared to the high amounts of the said gases in operation,
but these faults generate significant amounts of other hydrocarbon gases, allowing the
detection of faults in the paper using the Duval Pentagon 2 and the Duval Triangles 4
or 5.

Therefore, the implication of faults in the paper will not only be supported by CO
and CO,, but will also be verified by the generation of other gases or the analysis of furan
compounds [4,10,12,13].

2.6.2. 0,/N, Ratio

Oxygen (O,) and nitrogen (N3) dissolved in oil are detected due to contact with
atmospheric air in the tank of free-breathing transformers or air ingress through leakages
in the sealed equipment. At equilibrium with air, the concentrations of O, and N in oil are
approximately 32,000 and respectively 64,000 ppm, and the O, /Nj ratio is approximately
0.5 [5,6].

The decrease in the oxygen concentration or the O, /N, ratio during the functioning
of the transformer shows the oxidation of the oil due to its overheating and, thus, this ratio
can be used to confirm the thermal faults. An increase in the oxygen content or the O, /N
ratio in the sealed transformers shows a leakage to the air conservation system (nitrogen
blanket or membrane).

The normal value of the O, /Nj ratio is influenced by factors, such as: the type of
transformer, the loading and conservation system used. Thus, the specialists of the CIGRE
working group concluded that: the O,/Nj ratio is <0.2 for all of the nitrogen blanketed
transformers, and approximately 60% of the membrane-sealed transformers, and O, /N>
ratio is >0.2 for all air breathing transformers, and the rest of the 40% of the membrane-
sealed ones [12].
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2.6.3. CoH, /H, Ratio

In the power transformers equipped with on load tap changers (OLTC), oil contami-
nation may occur in the main tank, which leads to misdiagnosis, if there is a possibility
of communication with the oil or gas in the OLTC tank and the transformer main tank or
between the respective conservators.

Thus, the values between 2 and 3 of the C,H, /H ratio are considered an indication
of the contamination of the oil in the transformer main tank with the oil or gas from the
OLTC [5,6]. In this case, the evaluation of the DGA results from the transformer main
tank must be performed by decreasing the contamination in the OLTC or considered
inconclusive [7,11,12].

Modern OLTCs are designed so that they can no longer lead to the contamination of
the oil in the main tank of the power transformer.

2.7. C3 Hydrocarbon Method

The methods for the interpretation of the DGA presented above only consider C1
and C2 hydrocarbons. Some newer practical methods also use C3 hydrocarbon concen-
trations, and their authors consider them useful in making a more accurate diagnosis. C3
hydrocarbons are very soluble in oil and are not affected by the possible diffusion into the
ambient air, and, because of this, the result of the analysis largely depends on the method
of extraction used [4-6].

CIGRE specialists in [12] presented in detail methods for identifying faults using C3
hydrocarbons. Thus we can say that the additional ratios C3Hg/C3Hg and C;H,/CsHg are
used to confirm the temperature range for the thermal faults as is presented in Table 8.

Table 8. Confirmation of the temperature range for the thermal faults.

Temperature Range

Gas Ratios
150-300 300-700 >700
C3H6 /CgHg <2 2-6 <6
C2H4/C3Hg <3 3-15 <15

2.8. Method of Furan Compounds

As mentioned above, to determine the faults in the power transformers, in view of
establishing paper implication and the possible carbonization of the solid insulation, furans
can also be used, in addition to carbon oxides, thus allowing the determination of the
degree of degradation of the cellulose insulation [10,15,24-26].

Furans are a family of chemical compounds, which are detected as dissolved in the
power transformer oil; they are not generated by it, but occur exclusively as a result of the
degradation of the solid insulation and have an important significance in assessing the
condition of the solid insulation of the power transformer in operation and implicitly in
assessing its lifespan. Therefore, we can say that the furan compounds occur as a result
of specific conditions, which develop inside the transformer, hence their occurrence and
concentration may suggest a certain operating fault. The names of these furan compounds
and the most common causes of their occurrence are presented in Table 9 [13].

Table 9. Possible causes of the specific presence of the furan compound.

Furan Compound Causes of Occurrence
5-HMF (5-hydroxymethyl-2-furfuraldehyde) Paper oxidation (aging and heating)
2-FOL (2-furfuryl alcohol) High paper moisture
2-FAL (2-furfuraldehyde) General overheating or normal aging
2-ACF (2-acetyl furan) Caused by lightning (rarely detected by tests)

5-MEF (5-methyl-2-furfuraldehyde) Severe local overheating (hot-spot)
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A detailed review of the state-of-the-art application in terms of the furan compounds,
as well as the difficulties associated with the correlation between them and the actual DP
of the paper, are presented in [13-15]. According to these considerations, we can conclude
that 2-FAL (see Table 10) is the most important and most widely used furan compound in
determining the DP of the solid insulation and, based on its concentration, the following
interpretation was proposed for the condition of insulation depending on the DP [15,23-26]:

Table 10. Transformer condition according to the 2-FAL content.

2-FAL Content (ppm) Degree of Polymerization (DP) of Paper

0-0.1 1200-700

0.1-1 700-450
1-10 450-250
>10 <250

3. Description of the Intelligent System for Determining the Faults of Power
Transformers Based on Neural Networks

The general block diagram of the intelligent system for determining the faults of
power transformers based on neural networks (ISDFPT-NN) by using Deep Learning
Toolbox from MATLAB is presented in Figure 4. The first step in detecting the faults of
power transformers is to take oil samples which are then processed in the laboratory by
gas chromatography and high-performance liquid chromatography (HPLC). Following
the analysis of the samples from the laboratory, the concentrations of dissolved gases and
furan compounds will be obtained. The second step is to enter the obtained concentrations
in the ISDFPT-NN to get the types of faults.

| POWER TRANSFORMER OIL SAMFPLE :
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Figure 4. General scheme of the intelligent system for determining the faults of power transformers
based on neural networks (ISDFPT-NN).
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The ISDFPT-NN implements the flow chart of the diagnosis according to the methods
described in Section 2 and is presented in Figure 5. RBFNNs were used for concentrations
of Hy, CHy, CoHg, CoHy and CyHy, to implement the triangles and pentagons of the Duval
method, and FFNNs were used for CO, CO, and furan compounds to implement the
CO,/CO ratio method and the determination of DP, as is presented in Figure 5.

| Duval Triangle4 |
| RBFNN |

e e ] = H:
I | Duval Triangle 1 | RIETENE L IR i :l':?/ Duval Triangle 4 ;_;I_Q(I FAULT 9
N RBENN | SRR e [ v
P CHi I L i i s 1 T
U CaHs Duval Triangle 1 P
C:H: AN -
g | Dl T CHq | u
S G ;I?/ Duval Triangle 5 f—;l—b( FAULT ( T
CaHe S
: Duval Triangle 5 :
L S
et s oo i = |
| Duval Pentagon1 |
| RBENN | o
I H: | | U
N CH: =‘=V Duval Pentagon 1 FAULT ( T
P C:H: L= . P
lTJ (c:i:: =i=?/ Duval Pentagon 2 %Iﬂ FAULT ( 11{
S | Duval Pentagon 2 | S
| RBFNN
“““““ o
;I FRAL | T oo oo oo I 9]
p |1, fruran anatysis /| RESULT T
U FACE IS ppandan e, 00/ ] P
5-MEF | U
T |
g L= | FURANSFENN | T
________ J S
1 | CO2andCO : 8
N FFNN
o ! [ T
K Co: : SO E0: /—L» RESULT r
I; P I ANALYSIS | U
— T
S s

Figure 5. General flow chart of the ISDFPT-NN.

The 210 data samples were used in the implementation of ISDFPT-NN, which were
taken from 94 power transformer units (step-up transformer, step-down transformer,
distribution transformer, auto-transformers) with operating life between 20 and 35 years,
from the laboratory database. These data samples were used to create, train, validate, and
test the RBFNNs and FFNNS.

Based on the good results that can be achieved with the help of RBFNN with clas-
sification issues [27-29], for each method of detecting faults by means of triangles and
pentagons, the Duval method has properly trained an RBFNN.

An RBFNN consists of three layers: the input layer (sensory layer), the hidden layer
consisting of radial functions, which constitutes a basis for the input vectors, and the output
layer. The transformation of the input space into intermediate layers is nonlinear and the
transformation of the intermediate layer into the output layer is linear. A justification for
these transformations is given by Cover’s theorem on the classification of patterns [29].
Among the usual methods for training the RBFNN, the method of fixed and random centers
is also chosen. The general form of a radial function that represents the output of a neuron
from the hidden layer is expressed in the following form:

M .
G(||x— t||2> = exp(—dZHx— tl-||2),z =1,2,....M 1)
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where M—number of centers, d—-maximum distance between the centers, X = (x1, xp, ...,
xn)T, x;inputs, Q = (t1, t, ..., t)T, input-associated weights.

Based on these, the neurons exit from the output layer based on its linearity in the
following form:

N
Y =F(X) =) wG(||X - Q) @
k=1

where w—output-associated weights.

For example, the code for the training and creation in MATLAB of a corresponding
RBFNN Duval Triangle 1 and the network structure and number of associated neurons are
presented in Figure 6.

1- ¢l
gy clossal; 4\ Radial Basis Network (view) - O X
3= clear all;
4 %% Training Side
5 load input_Tr1.mat
6 % Training Input Vector for Duval_Triangle_1: CH4,C2H2,C2H4. Layer Layer
A= load output_Tr1.mat
8 % Training Output Vector for Duval_Triangle_1: PD,01,02 71,72, T3,DT.
5
|10 % Create a RBFNN
131 % Train the Network
12 - net_Tr1 = newrb{input_Tr1" output_Tr1");
13 - save({'net_DTri.mat’,'net_Tr1");
|14 % train performance
|35 = y =sim{net_Tri,input_Tr1");
|26 = hold
17 - y=roundly); 210 1
18 = performance = (output_Tri==y')/si put_Tri,1)
(a) (b)

Figure 6. Example of the implementation of Duval_Triangle_1_RBFNN: (a) MATLAB code for creating and training the
Duval_Triangle_1_RBFNN; (b) structure example of Duval_Triangle_1_RBFNN.

Similarly, the implementation of the RBFNNSs corresponding to the methods presented
in Sections 2.4, 2.6 and 2.8 was done as above, and the results of the training performances
are presented in Figures 7-11. The performance represented is Mean Square Error (MSE)
and is presented in Table 11.

1/2
2
1 N

N L (4i = T) ©

i=1

MSE =

where N—number of observations, T;—observed values, A;,—predicted values.

Table 11. Performances of the implemented neural networks.

MSE Value
Duval Triangle 1 4.4987 x 107%
Duval Triangle 4 0.0248083
Duval Triangle 5 2.05548 x 1072
Duval Pentagon 1 0.0119048
Duval Pentagon 2 0.01

In case of training of each RBFNN, for the triangles and pentagons Duval method, the
indicator of a training with good results is given by the parameter “Goal”, which is given
by the MSE defined by relation (3). In Figures 7-11 the parameter “Goal” is equal to zero,
which means a very good training of the RBFNNS.
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Performance is 4.4987x10%, Goal is 0
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Figure 7. Performance of training for Duval_Triangle_1_RBFNN.

Performance is 0.0248083, Goal is 0
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Figure 8. Performance of training for Duval_Triangle_4 RBFNN.
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Performance is 2.05548x10%, Goal is 0
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Figure 9. Performance of training for Duval_Triangle_5_RBFNN.
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Figure 10. Performance of training for Duval_Pentagon_1_RBFNN.
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Performance

0O 20 40 60 80 100 120 140 160 180 200
200 Epochs

1073

Figure 11. Performance of training for Duval_Pentagon_2_RBFNN.

The FFNN was used to determine cellulose degradation based on CO and CO, values.
The special interest in this type of neural networks is due to their ability to operate with
data different from those presented in the training stage and to learn from a random
distribution of the synaptic weights of the network. The algorithm chosen for the neural
network training is Levenberg—-Marquardt, which is a method with a rapid convergence of
the network, and is recommended for not very high input and output datasets [27,28,30].

For implementation, the Neural Network Fitting toolbox from the MATLAB program-
ming environment is used [27,28]. CO and CO; input data and transformer state output
data in terms of cellulose degradation are used as follows: 70% are used for training, 15%
for validation, and 15% for testing. The neural network consists of two layers, one that
represents the input layer and the other the output layer. For the input layer, 210 neurons
similar to the RBNN type networks implemented for triangles and pentagons were set.
The network’s performances are shown in Figures 12 and 13. Regression factor R has a
value close to 1, which denotes good training.
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Training: R=1 Validation: R=0.99973
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Figure 12. Regression parameter R for CO and CO, Analysis Feed Forward Neural Network (FFNN).

Best Validation Performance is 0.00063779 at epoch 66
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Figure 13. Performances of training for CO and CO, Analysis FFNN.

Similarly, the same type of neural network was chosen for the interpretation of the
insulation state according to the degree of polymerization. The 2-FAL input and the trans-
former state output data in terms of the polymerization degree are used as follows: 70% are
used for training, 15% for validation, and 15% for testing. The network’s performances are
presented in Figures 14 and 15.
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Figure 15. Performances of training for 2-FAL Analysis FFNN.

The block diagram of the implementation in MATLAB/Simulink of the main software
module of ISDFPT-NN is shown in Figure 16. Each RBENN and FFNN was created, trained,

tested, and validated to implement the general flowchart in Figure 5.



Energies 2021, 14, 588

18 of 22

[70.33 0 16.92)

INPUTS TRIANGLE 1
CH4, C2H2, C2H4

PP S
INPUTS TRIANGLE 4 = FAULT DUVAL
H2, CH4, C2H6 DUVAL_TRIANGLE_4_RBFNN TRIANGLE 4

[70.333 16.92 152.33]

|

DUVAL_TRIANGLE_1_RBFNN

NN_output Fault

FAULT DUVAL
TRIANGLE 1

NN_output Fault

)

INPUTS - CO and CO2

CD RESULT

INPUTS TRIANGLE 5 s FAULT DUVAL
CH4, C2H4, C2H6 DUVAL_TRIANGLE_5_RBFNN TRIANGLE 5
»| NN_output Fault > "T3"
FAULT DUVAL
DUVAL_PENTAGON_1_RBFNN PENTAGON 1
(12.62 70.33 0 16.92 152.33) - .
INPUTS PENTAGON
Hz' CH4' CZHZ’ CZH" e _ g - i I -
'I
FAULT DUVAL
DUVAL_PENTAGON_2_RBFNN PENTAGON 2
' {1 et o
INPUT - 2-FAL - FFNN DP RESULT
Estimation of DP
i h i NN_W -
FF

NN
Estimatinon of the degree of cellulose degradation

Figure 16. Neural software module of the ISDFPT-NN.

RBENNS capable of classifying the faults of power transformers according to the dis-
solved gases present in the oil, following the triangles and pentagons Duval method were
created, tested, and validated. Furthermore, using the Neural Network Fitting toolbox from
MATLAB, FFENN s capable of classifying the faults of power transformers depending on CO
and CO, gases and 2-FAL, following CO,/CO ratio and furan compounds methods were
created, tested and validated. The software objects represented by RBFNNs and FFNNs
created and trained are inserted in a Simulink subsystem (see Figure 16), which constitutes
the software interface of ISDFPT-NN. This section presents an improvement of the classi-
fication algorithms, but, as in [24-26], ISDFPT-NN writes in a MySQL database in order
to maintain a history, but also the usual communication facilities on the Intranet/Internet
network.

4. Testing and Validation of the ISDFPT-NN

The validation of the proposed system was also done by comparing the results ob-
tained against actual cases where certain refurbishments and repairs were performed.

Case 1. Free-breathing, mineral oil-filled three-phase step-down transformer, of
25 MVA rated power, 35/6.3 kV voltage ratio, and 32 years in service. The routine physical
and chemical analyses, which also include the DGA (performed according to IEC 60599)
and furan analysis showed that the oil is wet, strongly degraded, and the transformer has
temperature points >700 °C (case of fault T3). The analysis using the proposed system
revealed the faults presented in Tables 12 and 13, and the ratio CO,/CO < 3 shows the
degradation of the paper insulation.
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Table 12. Dissolved Gas Analysis (DGA) analysis and fault identification.

Dissolved Gas Concentration Faults Identified

Hz CH4 Csz C2H4 C2H6 cO COZ Trl TR5 Pgl PgZ
27 70 10 306 81 1055 2849 T3 C T3 T3-H

Table 13. Analysis of furans and their interpretation.

Furans ppm Interpretation
5-HMF 0.345

2-FOL 0.0417 I

2-FAL 1931 Paper c;)si;;t;c;g I?nd local
2-ACF 0.0232 &
5-MEF 0.391

The faults were confirmed after un-tanking, as follows: the phase A low voltage
(LV) insulator had a loose nut, and the terminal was smutty with traces of overheating.
Moreover, because of the loosening of the tightening nuts, the insulation of the hoses
was damaged due to the local overheating of both the hoses and the terminal. This was
consistent with the faults identified in Table 12 as a mixture of faults C and T3-H.

The faults were remedied by cleaning the terminal and the nut, by completely re-
moving the degraded insulation and replacing it with new cotton tape, and finally, the
tightening was done to the right torque.

Case 2. The routine physical and chemical analyses for the three-phase transformer
in oil under load-oil natural air forced (TTUS-ONAF) step-down transformer, of 40 MVA
rated power, 110/6.3 kV voltage ratio, and 27 years in service showed a wet oil, and the
DGA (performed according to IEC 60599) showed that the transformer has high-energy
electric arc discharges followed by: oil breakdown by arcing between coils or between
terminals and earth or arcing in the OLTC along the contacts during switching, followed
by oil leaks in the main tank. To determine whether or not the oil was contaminated by
any leaks in the OLTC compartment, the CoHj, /H) ratio was calculated, and its value of
2.3, according to IEC 60599, clearly shows the contamination.

The results obtained with the proposed system are presented in Tables 14 and 15.

Table 14. DGA analysis and fault identification.

Dissolved Gas Concentration Faults Identified
Hz CH4 Csz C2H4 C2H6 CO COZ Trl Pg]. sz
51 83 118 73 39 534 4229 D2 D2 D2
Table 15. Analysis of furans and their interpretation.

Furans ppm Interpretation

5-HMF 0.345

2-FOL 0.072

2-FAL 0.71 Paper oxidation.

2-ACF -

5-MEF 0.0571

It was decided to untank the transformer and the following was noted: the connections
to the selector switch of the OLTC were loosened, and the hose insulation was smutty
because of the local overheating caused by the electric arc formed during switching and,
indeed, the tank of the OLTC was leaking.

The tank leak was repaired, and the selector switch of the OLTC was cleaned and the
tightening of the connections on its plots was redone. The transformer conservator was
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also replaced with an atmoseal conservator with two chambers, one for the transformer
tank, and the other for the tank of the OLTC, each equipped with silica gel filters.

Case 3. For the step-up transformer of 63 MVA rated power, 10.5/121 kV voltage
ratio, and 25 years in service, the routine measurements showed that the DGA analysis,
according to the IEC 60599 standard indicates the thermal fault with temperatures of
150-300 °C (fault case T1). The analysis using the proposed system revealed the faults
presented in Tables 16 and 17, and the ratio CO,/CO > 3 and the furan analysis show a
moderate degradation of the paper insulation.

Table 16. DGA analysis and fault identification.

Dissolved Gas Concentration Faults Identified

H, CHy GCH, CHy; CHs CO CO, Tr1 T4 TR5 Pgl Pg2
1262 7033 0 1692 15233 22079 365656 TI O O T1 e

Table 17. Analysis of furans and their interpretation.

Furans ppm Interpretation
5-HMF 0.05

2-FOL 0.021

2-FAL 0.32 Paper oxidation.
2-ACF -

5-MEF -

This case is presented as the results of using the neural software module of the
ISDFPT-NN, which are shown in Figure 16.

Because it was intended to make some improvements to the transformer, namely:
mounting a Qualitrol-type pressure relief valve and replacing the free-breathing conserva-
tor with an atmoseal bag conservator, equipped with a separate compartment for the oil of
the on-load tap-changer, the transformer was untanked. After the untanking, it was found
that the insulation of the transformer is not smutty and shows no traces of degradation or
carbonization, so it has a color specific to moderate aging; thus, confirming that the faults
detected using the proposed system correspond to reality.

The ISDFPT-NN was tested on more than 80 power transformer units and compared
to the results obtained in [24-26]. It was noted that there is an increase in accuracy from
95% to 95.7% and precision from 93% to 93.5%.

5. Conclusions

Since power transformers are key pieces of equipment in the electricity transmission
and distribution systemes, it is very important to diagnose their operating conditions and
identify as accurately and early as possible the transformer failures. Ratio-based methods,
such as Doernenburg, Rogers, and IEC can only be used if there is a substantial amount of
gas used in the ratios, otherwise these methods lead to ratio values outside of the specific
range, and the type of malfunction cannot be identified. Therefore, these methods can
be used to identify faults rather than detect them. The methods of Duval triangles and
pentagons can be used with a high percentage of accurate predictions compared to classical
known methods (key gases, IEC reports, Rogers, Doernenburg), because, in addition to
the six types of basic faults, they also identify four subtypes of thermal faults that provide
complementary information, which is very important for the appropriate corrective actions
to be applied to the transformer.

In this article, a new approach was proposed consisting of the complementarity
between the analysis of dissolved gases in the oil of power transformers and the analysis of
furan compounds, in order to identify the operating conditions of the power transformers,
according to the paper degradation condition using artificial neural networks of the RBFN
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and FFNN type. Moreover, 210 data samples were used in the implementation of the
ISDFPT-NN, which were taken from 94 power transformer units (step-up transformer,
step-down transformer, distribution transformer, auto-transformers) with operating lives
between 20 and 35 years, from the laboratory database, and have been tested on more than
80 power transformer units, and compared to the results obtained in previous researches.
It has been noted that there is an increase in accuracy, from 95% to 95.7%, and precision
from 93% to 93.5%.

Proposals for future work consist of the development of a diagnostic system that also
includes: the influence of oxygen, nitrogen, and their ratios, methods of interpreting faults
using C3 hydrocarbon gases, and interfering with methods of diagnosing the conditions
of the adjustment switch under loads, since it was found that transformer faults could
occur mainly in = transformer insulation systems, transformer windings, bushings, and
the OLTC.
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