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Abstract: Microgrid has flexible composition, a complex operation mechanism, and a large amount 
of data while operating. However, optimization methods of microgrid scheduling do not effectively 
accumulate and utilize the scheduling knowledge at present. This paper puts forward a microgrid 
optimal scheduling method based on Deep Deterministic Policy Gradient (DDPG) and Transfer 
Learning (TL). This method uses Reinforcement Learning (RL) to learn the scheduling strategy and 
accumulates the corresponding scheduling knowledge. Meanwhile, the DDPG model is introduced 
to extend the microgrid scheduling strategy action from the discrete action space to the continuous 
action space. On this basis, this paper holds that a microgrid optimal scheduling TL algorithm on 
the strength of the actual supply and demand similarity is proposed with a purpose of making use 
of the existing scheduling knowledge effectively. The simulation results indicate that this paper can 
provide optimal scheduling strategy for microgrid with complex operation mechanism flexibly and 
efficiently through the effective accumulation of scheduling knowledge and the utilization of sched-
uling knowledge through TL. 
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1. Introduction 
Microgrid is a small-scale power grid, composed of distributed power generation, 

load, energy storage devices, and energy conversion devices, which can effectively im-
prove the stability and power quality of a large number of distributed power sources con-
nected to the main grid, and realize the flexible application of distributed power genera-
tion [1]. However, the intermittence and instability of distributed generation make energy 
management more difficult. How to manage the energy of microgrid efficiently is a chal-
lenge for microgrid operation and scheduling. 

Classical mathematical methods and heuristic algorithms are frequently used to solve 
the optimal scheduling problem of microgrid. The classical mathematical method has ad-
vantages in solving speed and convergence [2], but it is easy to fall into local optimization 
or even fail when dealing with complex nonlinear, discontinuous objective functions and 
constraints [3,4]. In contrast, the heuristic algorithm is less dependent on the mathematical 
model and is easier to deal with nonlinear problems, so it has been widely used in different 
optimization problems of power systems [5], but the parameter setting of the heuristic al-
gorithm is more random and the result is greatly affected by it. Microgrid has flexible com-
position, a complex operation mechanism, and a large amount of data while operating, 
however, the above methods do not effectively accumulate and utilize the scheduling 
knowledge. 
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Transfer Learning, as an effective means to reuse knowledge, has shown excellent 
performance in image recognition, text classification, emotion classification, and so forth 
[6]. However, its application in the field of power systems is still in the exploratory stage. 
At present, scholars have made achievements in power system supply and demand inter-
active real-time scheduling [7], power system decentralized carbon energy composite flow 
optimization [8], economic risk scheduling [9], and so forth. In the above research, TL is 
frequently combined with Reinforcement Learning (RL) to achieve the purpose of 
knowledge accumulation and knowledge updating. With deep reused knowledge of TL, 
RL has been provided strong support. As an important theoretical branch in machine 
learning, RL has strong abilities of self-learning and memory, in which its agent can inter-
act with the environment to obtain the feedback to guide the action selection, then learn 
the best strategy and accumulate experience and knowledge. At present, it has been stud-
ied in power system security and stability control [10], automatic generation control [11], 
voltage and reactive-power control optimization [12], optimal power flow control [13], 
interaction of supply and demand [14], power market [15], power information network 
[16], and so on. In the microgrid scheduling problem, Liu et al. [17] studied the application 
of RL in the cooperation of wind power and energy storage. This study shows that RL has 
good adaptability to the uncertainty and complex constraints of the problem. However, 
the state and action space are discretized in the study, which leads to errors in the optimi-
zation results. Wang et al. [18] and Zhang et al. [19] proposed an economic scheduling 
model based on RL for the main grid-connected operation and island operation of mi-
crogrid, respectively. They used the deep neural network to approximately express the 
continuous state space, so the error caused by the discretization of the state space and the 
“Curse of Dimensionality” caused by the excessive state space was improved, but the ac-
tion space was still discrete, so the best optimal scheduling strategy could not be obtained. 

In this paper, we study the microgrid optimal scheduling method based on deep de-
terministic policy gradient and transfer learning. The optimized scheduling model is pro-
posed, which takes the minimum microgrid operating cost as the objective function. The 
study includes three parts: (1) the framework and learning process of deep deterministic 
policy gradient, (2) knowledge transfer rules in transfer learning, and (3) the combination 
of deep deterministic policy gradient and Transfer Learning. Finally, the feasibility and 
correctness of methodology was verified in line with simulation, in which Deep Deter-
ministic Policy Gradient (DDPG) extends the traditional RL from discrete action space to 
the continuous action space. This method can effectively reduce the error caused by dis-
cretization of traditional RL, while the actual supply and demand similarity-based TL uti-
lizes the scheduling knowledge effectively. 

2. Microgrid System Model and Optimization Model 
2.1. Component Model 
(1) Solar Power Generation 

The solar photovoltaic panel output is given by this expression: 
PV

s s ( )pv
tP A R tη=  (1)

where pv
tP  is the output from solar power generation at time step t ; PVη  is the con-

version efficiency of the solar photovoltaic panel; sA  is the solar photovoltaic panel array 
area; s ( )R t  is the radiation intensity of solar photovoltaic panel at time step t . 
(2) Wind Power Generation 

The wind power generation output can be approximately expressed by this expres-
sion [20]: 
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where sV  is the wind speed through the wind turbines at time step t ; ciV  is the start-
up wind speed; rV  is the rated wind speed; coV  is the cut-out wind speed;  rP  is the 
rated output of wind power generation. 
(3) Diesel Generator 

As a controllable component, diesel generator can provide electricity when the power 
supply of uncontrollable components is insufficient, and reduce the dependence of mi-
crogrid on the electricity of main grid. The fuel cost model of diesel generator can be ap-
proximately expressed by this expression: 

2( ) ( )die die die
t t tF P a P bP c= + +  (3)

where die
tP  is the diesel generator output at time step t ; a , b  and c  are the cost fac-

tors of diesel generator. 
(4) Battery 

SOC of battery at each time is determined by the previous moment SOC and ex-
change power of battery, it can be expressed by this expression: 
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(4)

where tSOC  is the SOC of battery at time step t ; -1tSOC is the SOC of battery at time 
step -1t ; 1

ess
tP −  is the exchange power at time step -1t ; 1 >0ess

tP−  and 1 <0ess
tP−  are means 

battery charge and discharge respectively, 1 =0ess
tP−  denotes battery does not act; η  and 

ξ  are the charge and discharge efficiency of battery respectively; tΔ  is the length of 
each time step on battery act; essS  is the battery capacity. 

In order to ensure the normal operation of the battery and extend its lifetime, the 
exchange power and SOC are constrained: 
(a) Exchange power constraint 

1 ch .max 1

1 dis.max 1

0       0 

0    0 

ess ess
t t
ess ess
t t

P P P

P P P
− −

− −

 < < >


< < <
 (5)

where ch.maxP  and dis.maxP  are maximum charge power and discharge power respectively. 
(b) SOC constraint 

According to the physical limitation on battery, If the battery is over charge or over 
discharge, it will affect the lifetime of the battery, thus the SOC of the battery needs to be 
controlled within its own limit. Set minSOC  and maxSOC  as the minimum and maxi-
mum limited SOC of the battery. The limits of SOC at time step t  is given by: 

min maxtSOC SOC SOC< <  (6)

(5) Load 
Load refers to the sum of all kinds of electrical equipment electric power consumed 

at a certain time, the changing trend of load curve relate to user behavior habits. At time 
step t , The load can be expressed as load

tP . 

2.2. Objective Function 
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In this paper, the optimization goal is to minimize the microgrid operating cost. The 
objective function is given by: 

1 2min( )F F+  (7)

The 1F  is the fuel cost of diesel generator, 2F  is the transaction cost of the transac-
tion power between the microgrid and main grid. 

2
1

t
( ( ) )die die

T

t tF a P bP c= + +  (8)

2 ( 1 )
T

buy grid sell grid
t t t t

t
F P t P tβα λ β α λ= Δ Δ -( - ）  (9)

where T  is the scheduling cycle; buy
tα  is the price of purchasing one unit of power from 

the main grid to microgrid at time step t ; sell
tα  is the price of selling one unit of power 

from microgrid to the main grid at time step t ; tΔ  is the scheduling interval; grid
tP  is 

the transaction power between the microgrid and the main grid; 0grid
tP <  means mi-

crogrid sells power to the main grid, =0β ; 0grid
tP >  means microgrid buys power from 

the main grid, =1β . As Equation (10), grid
tP  can be calculated by load

tP , pv
tP , wt

tP , 
die
tP  and ess

tP . 
grid load pv wt die ess
t t t t t tP P P P P P= − − − +  (10)

The transaction power is calculated by the formula does not include the network loss, 
which is cannot reflect the actual transaction power, thus this paper considers use the 
conversion coefficient λ  expression the network loss. 

3. Optimal Scheduling Method Based on Deep Deterministic Policy Gradient and 
Transfer Learning 

The renewable energy output and load demand are affected by climate and user be-
havior habits, respectively. Although they have strong uncertainty, the sudden change 
probability of climate and user behavior habits in the same area or adjacent areas is rela-
tively small. Therefore, the actual supply and demand curve in microgrid on similar days 
of same area or adjacent areas are very similar. Hence, this paper considers the effective 
accumulation and utilization of scheduling knowledge through using similarity to pro-
vide a priori knowledge for microgrid optimal scheduling. TL can establish knowledge 
connections for scheduling task groups with similarity; at the same time, the RL strong 
abilities of memory and self-learning can provide support for the learning, updating, and 
accumulation of knowledge. When combining with TL, it can realize the effective accu-
mulation and utilization of scheduling knowledge. The method schematic is shown in 
Figure 1. 
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Figure 1. Method schematic. 

3.1. DDPG 
RL is an artificial intelligence algorithm. In RL, an agent (agent is our artificial intel-

ligence) based on state takes actions within a true or virtual environment, relying on feed-
back from rewards to find out the foremost suitable policy to achieve its goal. Figure 2 
shows the principle of RL. 

State Reward Action

E n virom en t

A gen t

 
Figure 2. Schematic diagram of reinforcement learning. 

However, the traditional RL cannot deal with the continuous action space, thus, this 
paper introduces the DDPG of deep RL as a method to solve the microgrid optimal sched-
uling problem and combines TL to realize the utilization of scheduling knowledge. 

DDPG is a policy learning method that integrates a deep learning neural network 
into Deterministic Policy Gradient (DPG) [21]. DPG is an improved policy learning 
method based on policy gradient in RL. The policy gradient describes the optimal policy 
of each step state through the probability distribution function, and the action selection is 
based on the probability distribution, while the DPG directly obtains the definite value of 
the decision action at each moment through the policy function, that is, 

( )a sμ=  (11)

The DDPG network structure is shown in the Figure 3, It consists of two parts: the 
actor network and critic network. DDPG uses the actor network ( | )Asμ θ  and the critic 

network ( , | )CQ s a θ  to approximate the policy function ( )sμ  and state-action value 

function ( , )Q s a  respectively. Aθ  and Cθ  are the network weights of the actor net-
work and the critic network respectively. The main idea is to generate the action under 
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the guidance of the actor network, and the critic network uses the state-action value func-
tion to evaluate the action, then guides the update of its own network and actor network 
weights through the evaluation. 

Policy

Value
Function

Enviroment

State

Critic TD
error

Action

Reward

Actor

 
Figure 3. Schematic diagram of Deep Deterministic Policy Gradient (DDPG). 

The critic network uses Temporal-Difference to learn the state-action value function, 
so the loss function of the critic network can be defined as: 

2( ) [ ( , | ) ( ( ( , | ))]C C CL Q s a r Q s aθ θ γ θ− −= − +  (12)

where ( , | )CQ s a θ  is state-action value function obtained by the agent through the critic 
network, represents the future cumulative reward of the agent after executing the action
a  in its current state s . As the same, ( , | )CQ s a θ− −  represents the future cumulative re-
ward of the agent after executing the action a− in the next state s− . All execution actions 
are generated through the actor network. r  is the immediate reward obtained when the 
agent makes a transition from state s  to state s− perform action a  in current time. γ  is 
the discount factor of the cumulative reward value in the future. 

The optimization goal of the critic network is given by: 

min ( )CL θ  (13)

network weights update mode: 

( )C
C C C

C L
θ

θ θ α θ+ ∇←  (14)

The Cα  is a scalar step size, called the learning rate of critic network. 
The action generated by the actor network is measured by the evaluation of the critic 

network. The measure function is given by: 

( | )
( ) ( , | ) | A
A C

a s
J Q s a

μ θ
θ θ

=
=  (15)

The purpose of the actor network is to learn the optimal policy, that the action gen-
erated by the actor network can get the maximum cumulative reward value in the future. 
Therefore, the optimization goal of the actor network is given by: 

max ( )AJ θ  (16)

update weights using the chain rule of gradient: 

( | )
( , | ) | ( | )A A

A A C A
A a a s
Q s a s

μ θ θ
θ θ α θ μ θ

=
+ ∇ ∇←  (17)

The Aα  is a scalar step size, called the learning rate of actor network. 



Energies 2021, 14, 584 7 of 16 
 

 

In order to avoid the risk of overestimating, as shown in Figure 4, the DDPG network 
framework constructed in this paper, adopts the same double network structure as DDQN 
[22,23], that is, the actor network and critic network simultaneously construct two net-
works with the same structure but different weights, namely Evaluate net and Target net, 
The double network structure separates the generation of action a  and a− ; the calcula-

tion of state-action value ( , | )CQ s a θ  and ( ( , | )Cr Q s aγ θ− −+ . At the same time, the up-
dating mode of network weights was changed. Evaluate net is updated every time a state 
transition is performed, and Target net is updated in Soft update [19] mode. 

E valuate net Target net E valuate net Target net

A ctor net Critic net

Target value calculation：

TD  error O ptim izer

U pdate 
W eights

O ptim izer

U pdate 
W eights

Target net

soft 
update

soft 
update

s s−

a a− ( , )Q s a

s s−a a−

( , )r Q s aγ − −+

( , )Q s a− −

 

Figure 4. DDPG network structure diagram. 

3.2. Knowledge Transfer 
3.2.1. TL 

TL makes use of the idea of draw inferences about other cases from one instance. TL 
will effectively use the knowledge learned from the old tasks to similar but different new 
tasks, so as to improve the utilization of knowledge and the efficiency of new task learn-
ing. In TL, the old task is generally called the source domain, and the new task is called 
the target domain. The knowledge learned in the source domain is affected by the charac-
teristics of the source domain. In the process of knowledge transfer and reuse, the 
knowledge transfer rules are very important, especially considering the characteristic re-
lationship between the source domain and the target domain. When the knowledge selec-
tion is not appropriate, the knowledge transfer may cause some interference to the target 
domain, resulting in negative transfer and reduction of learning efficiency in the target 
domain. 

3.2.2. Knowledge Transfer Rules 
In the microgrid optimal scheduling, considering the similarity between tasks as the basis 

for selecting knowledge transfer in the source domain, the rules are formulated as follows: 
(1) According to the characteristics of the source domain, an appropriate similarity eval-

uation function is selected to evaluate the characteristic correlation between the 
source domain and the target domain. 

(2) For the target domain, according to the similarity evaluation function, the similarity 
between the target domain and the number of N source domains is calculated. The 
higher the value, the higher the similarity between the target domain and the source 
domain, which means that source domain knowledge is more instructive to target 
domain learning. 

(3) Selecting the source domain with the highest similarity for knowledge transfer. 
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3.2.3. Similarity Evaluation Function 
On the similarity evaluation function, this paper, we use the inverse number of Eu-

clid Distance as the evaluation similarity function to reflect the actual supply and demand 
curves similarity between the target domain and source domain. m ( )(m=1, , )P t N  and 

( )objP t  denotes the actual supply and demand in N source domains and target domain at 

each time respectively. The similarity mr  can be calculated by m ( )(m=1, , )P t N  and 

( )objP t , as shown in the following Equation (18): 

2[ ( ) ( )]obj m
m

t T
r P t P t

∈

= − −  (18)

3.3. State-Action Space and Reward Function 
3.3.1. State-Action Space 

The microgrid optimal scheduling based on DDPG can be formalized as a partially 
observable Markov decision process, where the microgrid is considered as an agent that 
interacts with its environment. In this paper, The state space S  consists of wtP , pvP , 
loadP  and SOC  of battery, it can be expressed by: 

{ }wt pv loadS P P P SOC= ， ， ，  (19)

where wtP , pvP  and loadP  are affected by climate and user behavior habits respec-
tively; which are uncontrollable components and can be obtained by prediction. The bat-
tery is a controllable component, SOC  of battery is determined by its own dynamic char-
acteristics, as shown in the Equation (4). 

As the controlled components of the microgrid, the operating power of the battery 
and diesel generator directly affects the scheduling strategy of the microgrid, so the action 
space is composed of the action power space of the battery and diesel generator. Action 
space A  can be expressed by: 

dis.max ch.max i .max[[ , ],[0, ]]d eA P P P= −  (20)

3.3.2. Reward Function 
The effective setting of the reward function can provide correct guidance for the ac-

tion selection of the agent, in order to obtain the desired goal. The reward function in this 
paper corresponds to the instantaneous reward at time t, which is obtained by the addition 
of the operating cost of the microgrid 1 ( )t tr a  and the penalty 2 ( )t tr a  caused by the bat-
tery violating the constraint. 

2

2

( ( )) ( )       0
1 ( )

( ( )) ( )       0

buy grid grid
t t die die t

t t sell grid grid
t t die die t

P t a P t bP t c P
r a

P t a P t bP t c P

α λ

α λ

− Δ − + + >= 
Δ − + + <

 (21)

ess min min

ess max max

( )    
2 ( ) ( )    

      0                                otherwise

t t

t t t t

k S SOC SOC SOC SOC
r a k S SOC SOC SOC SOC

− ⋅ − ≤
= − ⋅ − ≥



 (22)

The k  is the penalty coefficient for violating the constraint. 
The instantaneous reward ( )t tr a  is given by: 

( )= 1 ( ) 2 ( ) t t t t t tr a r a r a+  (23)

3.4. Algorithm Flow 
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The algorithm flow of the microgrid optimal scheduling method proposed in this 
paper is shown in Figure 5. The whole process consists of two parts: source domain learn-
ing and target domain learning, in which source domain learning adopts the DDPG to 
accumulate microgrid scheduling knowledge, while target domain learning adopts the TL 
and DDPG to utilize microgrid scheduling knowledge. 

BEGIN

Initialization state     ;
k=k+1

Actor network output action         ;

Perform the action  ，Get instant rewards  ，
Determine the next state   ，Store transfer 
process to memory

  t>T？

 k>Epoch?

32 transfer processes were selected 
from the memory database for training. 
The network weights were estimated by 
actor and critic. The target network 
weights were updated by soft update

END

N

Y

Y

N

source domain 
learning?

The observation information of 
target domain is obtained, and the 
state action space is established

The observation information of source 
domain is obtained, and the state action 
space is established

According to equation (18), the 
similarity between the target domain 
and each source domain is evaluated 
to select the transfer knowledge 

Transfer the network weights from 
the source domain network to the 
target domain network

Y

Ntarget domain 
learning

Initialization algorithm parameters: epoch, t, 
network weights, memory, k = t = 0

t t 1= +

ts

( )t t= | Aa sμ θ

ta tr

t+1s

t t t 1 t( , , , )s a s r+

 
Figure 5. Flow chart of algorithm. 

4. Simulation Verification and Analysis 
4.1. Simulation 
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In this paper, solar power generation, wind power generation, diesel generator, bat-
tery, load, and energy conversion device are included in the microgrid model, which has 
an example for simulation. The experimental data of the solar photovoltaic panel output 
and load are based on the radiation intensity data and user consumption of GitHub Project 
[24]. The wind power generation output is based on the wind speed data of Wind Energy 
Database Project. The capacity of the battery is 175 kWh, the charge and discharge effi-
ciency are 0.9, the maximum exchange power is 30 kW, the minimum SOC of battery is 
0.2, the maximum SOC of battery is 0.9, and the initial SOC of battery in this simulation is 
0.4. In the DDPG, the actor network has two hidden layers, and they have 50 neurons and 
20 neurons, respectively. The activation function is the Rectified Linear Unit (RELU) func-
tion. The hidden layer structure of the critic network is the same actor network, in which 
the variable learning rate and the variable discount coefficient are adopted in the training, 
and the initial learning rate of the actor network and critic network are set to 0.005. The 
initial value of discount coefficient factor is 0.9. 

The simulation sets up two experiments: source domain learning and target domain 
learning, which verify the effectiveness of DDPG in continuous action space, and the effective 
accumulation and utilization of scheduling knowledge based on DDPG and TL, respectively. 

Based on the consideration of the actual operation, the electricity price adopts the 
time-sharing unitary electricity price model [18], is shown as Table 1. 

Table 1. Electricity price. 

Electricity Buys Price (RMB/kWh) Electricity Sells Price (RMB/kWh) 
1.1 0.85 

The neural network input is the microgrid observation information extracted from 
the experimental data set: the solar photovoltaic panel output, the wind power generation 
output, load, and the SOC of battery complete the learning of source domain and target 
domain according to the flow in Section 3.4. 

In order to verify the effectiveness on reducing the discretization error, and obtaining 
excellent scheduling strategy, the proposed method in this paper and the method in [19] 
are used in the source domain learning experiment. By using the method based on RL in 
[19], named DDQN, the battery action space and diesel generator action space are discrete, 
which brings more error because the discrete action space cannot flexibly match the un-
balanced power between renewable energy output and load demand. However, by using 
the proposed method in this paper, named DDPG, both battery action space and diesel 
generator action space are continuous, which reduces the error because the continuous 
action space can flexibly match the unbalanced power between renewable energy output 
and load demand. 
(1) DDQN, the power of the battery, and the diesel generator are discretized to 13 and 5 

fixed actions respectively, so the action space is set as 1 2 13 5{ , , , }A a a a ×=  . 
(2) DDPG, the action space is set as [[ 30, 30],[0, 40]]A = − , action a A∈ . 

In order to further verify the superiority of transfer learning, we designed a compar-
ative experiment (using TL and without using TL). The best source domain can be ob-
tained according to the knowledge transfer rules in Section 3.2.3. Then, the scheduling 
knowledge in the best source domain is used for knowledge transfer. In addition, two 
source domains randomly selected for knowledge transfer are compared to analyze the 
TL performance in different similarity source domains. 

4.2. Source Domain Learning 
In the source domain learning, one-year knowledge accumulation is carried out. 

However, in order to analyze the performance of the scheduling method based on DDPG, 
this paper takes a typical day as an example to analyze the performance of scheduling 
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strategy based on DDPG. Figure 6 shows the scheduling strategy of a typical day in dif-
ferent methods. 

  
(a) DDQN (b) DDPG 

Figure 6. Typical daily scheduling strategies in different methods. 

Figure 7 shows clearly the differences between DDQN and DDPG in battery action, 
diesel generator action, transaction power. According to the Figures 6 and 7, it can be 
concluded that during the whole scheduling cycle, the exchange power of the battery and 
the output of the diesel generator in DDPG are more flexible, and the transaction power 
between the microgrid and the main grid in DDPG is less than DDQN. Between 0:00–7:00 
and 11:00–14:00, the actual supply of renewable energy in the microgrid exceeds the load 
demand. At this time, neither DDQN nor DDPG have action on the diesel generator, and 
both DDQN and DDPG have absorbed excess energy by battery charging. When the bat-
tery capacity reaches the limit, the battery remains idle in two methods. Compared with 
the discrete actions in DDQN, the choice of action in DDPG is more flexible, and DDPG 
also has less trading power than DDQN. Between 7:00–10:00 and 14:00–0:00, the actual 
supply of renewable energy in the microgrid is lower than the load demand. At this time, 
both DDQN and DDPG use a battery and diesel generator to meet the energy shortfall. 
As shown in Figure 7, compared with DDQN, the diesel generator output and the trans-
action power between the microgrid and the main grid in DDPG are less. This is because 
the continuous action space improves the flexibility of action selection, enhances the reli-
ability of the microgrid itself, reduces the dependence on the main grid, and further re-
duces the operation cost of microgrid. 

 
Figure 7. Comparison of typical daily microgrid scheduling strategies in different methods. 

It can be seen from Table 2 that in two methods, DDPG obtains the lowest microgrid 
operating cost: 142.75 RMB. Experiment verifies the effectiveness of the microgrid optimal 
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scheduling method based on the DDPG, and shows that the continuous action space set-
ting can improve the flexibility of action selection, thus reducing the operating cost of the 
microgrid. 

Table 2. Operation income and electricity purchase of microgrid in each method. 

Index DDQN DDPG 
Operating cost of microgrid (RMB) 176.26 142.75 

Diesel generator fuel cost (RMB) 118.77 95.50 
Transaction cost (RMB) 57.49 47.25 

The microgrid buys electricity from the main grid (kWh) 8.92 3.014 
The microgrid sells electricity to the main grid (kWh) 68.84 51.06 

4.3. Target Domain Learning 
In this part, we set the adjacent area scheduling task as the target domain task, and 

verify the superiority of transfer learning in utilization of scheduling knowledge. The sim-
ilarity between the target domain and the source domain are evaluated by Equation (18). 
As shown in Figure 8, the target domain 330 has the highest similarity with the source 
domain. The source domain 300 is selected for knowledge transfer. At the same time, the 
other two source domains (source domain 155 and source domain 274) are randomly se-
lected to analyze the performance of TL. 

 
Figure 8. Similarity between target domain and source domain. 

Figure 9 shows the scheduling strategy of target domain obtained by target domain 
learning. During the scheduling cycle, when the output of renewable energy exceeds the 
load demand, the battery is charged as much as possible within the constraint range; when 
the output of renewable energy is lower than the load demand, battery discharge cooper-
ates with diesel generator to meet the energy shortfall. In addition, the main grid is also 
mobilized to absorb the unbalanced power. The scheduling strategy is fully in line with 
the actual operation, which proves that the microgrid optimal scheduling method based 
on DDPG and TL proposed in this paper is feasible. 
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Figure 9. Target domain scheduling strategy. 

Figure 10 shows the learning performance of transfer learning for scheduling 
knowledge in different similarity source domains. It can be observed that when 
knowledge transfer is not used, learning converges to epoch = 505. When using 
knowledge transfer, the agent can quickly lock the optimal strategy interval at the initial 
stage of training. After fine-tuning training, an agent for target domain learning in the 
source domain 330 with the highest similarity achieves convergence at epoch = 152, while 
for the agent that carried out the knowledge transfer on the source domain 65 in which 
the similarity is middle, the relative advantage of convergence rate is small. An agent for 
knowledge transfer to the source domain 274 with less similarity, the convergence result 
has deviation; the strategy obtained is inferior to the agent without using TL because the 
similarity between the target domain and the source domain is low, so the knowledge 
validity of the source domain cannot be guaranteed. It can be concluded that the similarity 
between the target domain and the source domain is positively related to the effectiveness 
of knowledge. The higher the similarity, the higher the effectiveness of knowledge and 
the better the target domain reuses transfer knowledge. 

 
Figure 10. The score curves. 

5. Conclusions 
Since the optimization methods of microgrid scheduling do not effectively make 

good use of the scheduling knowledge effectively at present, aiming to solve this problem, 
this paper proposes a method in which there is optimal scheduling of microgrid based on 
DDPG and TL. 

The findings are listed as follows. 
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(1) This paper provides an optimal scheduling strategy for microgrid with complex and 
changeable operation mode flexibility and efficiency through the effective accumula-
tion of scheduling knowledge and the utilization of scheduling knowledge through 
knowledge transfer. 

(2) The DDPG model is introduced into RL, and the action space of traditional RL is ex-
tended from discrete space to continuous space. 

(3) A microgrid optimal scheduling TL algorithm based on the actual supply and de-
mand similarity is proposed and the effective utilization of scheduling knowledge 
achieved the transfer of scheduling knowledge. 
The scheduling model in this paper does not consider the system power flow con-

straints and verifies its practicability in large-scale systems; therefore, improving the 
scheduling model and studying on the state space establishment of large-scale system are 
the further works. 
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Nomenclature 
RL Reinforcement Learning 
TL Transfer Learning 
DPG Deterministic Policy Gradient 
DDQN Double Deep Q Network 
DDPG Deep Deterministic Policy Gradient 
RELU Rectified Linear Unit 
diesel Diesel Generator 
t , T Time indices 
pv , PV Photovoltaic (PV) indices 
wt , WT Wind turbine (WT) indices 
Parameters 
N  Number of source domains 

PVη  Efficiency of PV 
sA  Total area of PV 

i .maxd eP  Maximum climbing power of diesel generator 
wt
tP  Power generated by WT 
rP  Total rated power of WT 
ciV  Cut-in speed of WT 

rV  Rated speed of WT 
coV  Cut-off speed of WT 
essS  Capacity of battery 

η  Efficiency of battery in discharge state 
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ξ  Efficiency of battery in charge state 
ch.maxP  Maximum charge power of battery 
dis.maxP  Maximum discharge power of battery 

minSOC  Minimum SOC  of battery 
maxSOC  Maximum SOC  of battery 

buyα  Electricity buy price of microgrid from main grid 
sellα  Electricity sell price of microgrid to main grid  

λ  Network loss conversion coefficient 
, ,a b c  Cost factors of diesel generator 

Decision variables 
pvP  Power generated by PV 
loadP  The load demand 
gridP  Transaction power between microgrid and main network 
wtP  Power generated by WT 
dieP  Power generated by diesel 
essP  Change Power of battery 
SOC  The state of charge 
β  Univariate variable of gridP , =1β , 0gridP > , =0β , 0gridP <  

objP  
Difference power between renewable energy output and load 
demand at each time in the target domain 

mP  
Difference power between renewable energy output and load 
demand at each time in m source domain, m=1,2 ,N  

mr  The similarity between target domain and source domain 

sV Wind speed 
sR  Solar radiation intensity 

References 
1. IEEE Power Engineering Society Winter Meeting. In IEEE Power Engineering Review, Volume PER-4; IEEE: New York, NY, USA, 

1984; p. 18, doi:10.1109/MPER.1984.5526495. 
2. Zhang, J.; Fan, L.; Zhang, Y.; Yao, G.; Yu, P.; Xiong, G.; Meng, K.; Chen, X.; Dong, Z. A Probabilistic Assessment Method for 

Voltage Stability Considering Large Scale Correlated Stochastic Variables. IEEE Access 2020, 8, 5407–5415. 
3. Dai, C.; Chen, W.; Zhu, Y.; Zhang, X. Seeker Optimization Algorithm for Optimal Reactive Power Dispatch. IEEE Trans. Power 

Syst. 2009, 24, 1218–1231. 
4. Fumin, Z.; Zijing, Y.; Zhankai L.; Shengxue T.; Chenyang, M.; Han, J. Energy Management of Microgrid Cluster Based on Ge-

netic-tabu Search Algorithmy. High Volt. Eng. 2018, 44, 2323–2330. 
5. Ge, S.; Sun, H.; Liu, H.; Zhang, Q. Power Supply Capability Evaluation of Active Distribution Network Considering Reliability 

and Post-fault Load Response. Autom. Electr. Power Syst. 2019, 43, 77–84. 
6. Zhuang, F.-Z.; Luo, P.; He, Q.; Shi, Z. Survey on Transfer Learning Research. J. Softw. 2015, 26, 26–39. 
7. Xiaoshun, Z.H.A.N.G.; Tao, Y.U. Knowledge Transfer Based Q-learning Algorithm for Optimal Dispatch of Multi-energy Sys-

tem. Autom. Electr. Power Syst. 2017, 41, 18–25. 
8. Zhang, X.; Yu, T.; Yang, B.; Zheng, L.; Huang, L. Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-

energy combined-flow in multi-energy power systems. Energy Convers. Manag. 2015, 106, 543–556. 
9. Xiaoshun, Z.H.A.N.G.; Tao, Y.U. Optimization Algorithm of Reinforcement Learning Based Knowledge Transfer Bacteria For-

aging for Risk Dispatch. Autom. Electr. Power Syst. 2017, 41, 69–77. 
10. Tao, Y.; Bin, Z.; Weiguo, Z.H.E.N. Application and development of reinforcement learning theory in power systems. Power Syst. 

Prot. Control 2009, 37, 122–128. 
11. Ahamed, T.I.; Rao, P.N.; Sastry, P.S. A reinforcement learning approach to automatic generation control. Electric Power Syst. Res. 

2002, 63, 9–26. 
12. Li, T.; Liu, M. Reduced Reinforcement Learning Method Applied to Multi-objective Coordinated Secondary Voltage Control. 

Proc. CSEE 2013, 33, 130–139. 
13. Sanseverino, E.R.; Di Silvestre, M.L.; Mineo, L.; Favuzza, S.; Nguyen, N.Q.; Tran, Q.T.T. A multi-agent system reinforcement 

learning based optimal power flow for islanded microgrids. In Proceedings of the 2016 IEEE 16th International Conference on 
Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–6. 



Energies 2021, 14, 584 16 of 16 
 

 

14. Zhang, X.; Bao, T.; Yu, T.; Yang, B.; Han, C. Deep transfer Q-learning with virtual leader-follower for supply-demand Stackel-
berg game of smart grid. Energy 2017, 133, 348–365. 

15. Jiazhi, Z.E.N.G.; Xiongfei, Z.H.A.O.; Jing, L.I. Game among Multiple Entities in Electricity Market with Liberalization of Power 
Demand Side Market. Autom. Electr. Power Syst. 2017, 41, 129–136. 

16. Li, S.; Wang, X.P.; Wang, Q.D.; Niu, S.W. Research on intrusion detection based on SMDP reinforcement learning in electric 
power information network. Electric Power Autom. Equip. 2006, 12, 75–78. 

17. Liu, G.; Han, X.; Wang, S.; Yang, M.; Wang, M. Optimal decision-making in the cooperation of wind power and energy storage 
based on reinforcement learning algorithm. Power Syst. Technol. 2016, 40, 2729–2736. 

18. Yadong, W.; Chenggang, C.; Shensheng, Q. Research on Energy Storage scheduling Strategy of Microgrid based on Deep rein-
forcement Learning. Renew. Energy Resour. 2019, 37, 1220–1228. 

19. Zhang, Z.; Qiu, C.; Zhang, D.; Xu, S.; He, X. A Coordinated Control Method for Hybrid Energy Storage System in Microgrid 
Based on Deep Reinforcement learning algorithm. Power Syst. Technol. 2019, 43, 1914–1921. 

20. Zhang, J.; Xiong, G.; Meng, K.; Yu, P.; Yao, G.; Dong, Z. An improved probabilistic load flow simulation method considering 
correlated stochastic variables. Int. J. Electr. Power Energy Syst. 2019, 111, 260–268. 

21. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep rein-
forcement learning. Comput. Sci. 2016, 8, A187. 

22. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep rein-
forcement learning. In Proceedings of the Workshops at the 26th Neural Information Processing Systems 2013, Lake Tahoe, NV, 
USA, 5–8 December 2013; pp. 201–220. 

23. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Os-
trovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. 

24. François-Lavet, V.; Taralla, D.; Ernst, D.; Fonteneau, R. Deep reinforcement learning solutions for energy microgrids manage-
ment. In European Workshop on Reinforcement Learning (EWRL 2016); University of Liege: Barcelona, Spain, 2016. 


