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Abstract: An experimental investigation of single Taylor bubbles rising in stagnant and downward
flowing non-Newtonian fluids was carried out in an 80 ft long inclined pipe (4◦, 15◦, 30◦, 45◦ from
vertical) of 6 in. inner diameter. Water and four concentrations of bentonite–water mixtures were
applied as the liquid phase, with Reynolds numbers in the range 118 < Re < 105,227 in countercurrent
flow conditions. The velocity and length of Taylor bubbles were determined by differential pressure
measurements. The experimental results indicate that for all fluids tested, the bubble velocity increases
as the inclination angle increases, and decreases as liquid viscosity increases. The length of Taylor
bubbles decreases as the downward flow liquid velocity and viscosity increase. The bubble velocity
was found to be independent of the bubble length. A new drift velocity correlation that incorporates
inclination angle and apparent viscosity was developed, which is applicable for non-Newtonian
fluids with the Eötvös numbers (E0) ranging from 3212 to 3405 and apparent viscosity (µapp) ranging
from 0.001 Pa·s to 129 Pa·s. The proposed correlation exhibits good performance for predicting drift
velocity from both the present study (mean absolute relative difference is 0.0702) and a database of
previous investigator’s results (mean absolute relative difference is 0.09614).

Keywords: Taylor bubble; non-Newtonian; countercurrent flow; drift velocity correlation; inclined pipe

1. Introduction

Gas bubble entry into a wellbore during oil and gas drilling operations can occur
under a variety of conditions. Their removal is usually required before drilling can continue.
In most operations where sedimentary formations are being drilled with wellbore fluid
pressure higher than that of the reservoir (i.e., overbalanced), gas bubbles are removed from
the wellbore at surface. Attempting to push the gas back into the reservoir via bullheading
will inevitably result in fracturing the rock being drilled—thereby jeopardizing the ability
to drill further. However, when drilling through highly fractured and vugular carbonate
reservoirs, wellbore fluid pressure is balanced with reservoir pressure. This is because the
highly productive fracture/vug network intersects the wellbore with width dimensions
too large to be plugged by drilled cuttings or drilling mud filter cake. Such conditions
make it relatively easy for gas bubbles to enter a well bore and migrate upward. However,
under these same conditions it is also possible to bullhead gas bubbles down a wellbore and
back into the reservoir without hindering continued drilling operations. The fluid injection
rate necessary to push a gas bubble downward depends on multiple factors—a key one
being fluid rheology. In this work, Bingham plastic fluids of varying plastic viscosities, µp,
and yield points, τy, were tested to determine their impact on gas bubble migration rates
under static and downward-moving (i.e., countercurrent) fluid conditions.

When gas bubbles enter a wellbore, the flow pattern can be characterized as gas–
liquid slug flow. In a vertical conduit, a typical slug unit contains a bullet-shaped nose
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with a cylindrical body, also known as Taylor bubble, followed by liquid slug. In an
inclined conduit, the Taylor bubble is non-concentric, hugging the top side of the flow
path. To make sure of the success of a bullheading operation, modeling two-phase slug
flow in wellbores is essential. Numerical models, including drift–flux models and two-
fluid models [1], are commonly used to represent two and three-phase flow in pipes and
wellbores, which requires closure relationships to robustly solve the partial differential
equations. One of the closure relationships required by slug flow is the translational velocity
of Taylor bubbles. Although the translational velocity determined by the experiments of
a single Taylor bubble rising in co-current flow fluids is extensively investigated, few of
them were carried out in countercurrent flow conditions [2,3]. Additionally, to calculate
translational velocity, the drift velocity of a Taylor bubble measured in stagnant liquid
should be determined. However, most of the drift velocity correlations were developed
from experiments with Newtonian fluids. These correlations may not be directly applicable
to the non-Newtonian behavior of drilling fluids in wellbore flow.

Although not considered in this paper, the shape and rise velocity of Taylor bub-
bles through annuli have been determined experimentally and numerically by several
researchers. Kelessidis and Dukler [4] studied the motion of Taylor bubble in vertical
concentric and eccentric annuli. They assumed the bubble in an annulus was a 2D bubble
of uniform thickness, and indicated that the asymmetric bubbles in an annulus take an
elliptic shape which results in higher rise velocities. Based on the work of Kelessidis and
Dukler, Das et al. [5] considered the 3D shape of the bubbles and took account of the film
thickness. Then, the rise velocity was proposed as a function of the annulus dimensions.
Agarwal et al. [6] extended the work of Das to evaluate the shape of Taylor bubbles in
annuli with extremely small inner diameter. The rise velocity for such situations showed a
better agreement with the prediction model proposed by Das. Lei et al. [7] investigated
the shape and motion of a Taylor bubble in a liquid flowing through a thin annulus; a 2D
gap-averaged numerical model was developed to evaluate the effects of gap thickness
and pipe diameter on the bubble motion in thin annuli. The bubble velocity was found
to be highly dependent on the cap structure, whereas it was independent of the bubble
length. Although Taylor bubble rising in the annulus is dominant in the drilling process,
the motion of Taylor bubbles in pipes is still significant when there is no drillstring in the
wellbore (i.e., when tripping out). Moreover, experimental study of Taylor bubbles rising
in downward-flowing non-Newtonian fluids in inclined pipes is limited, it is necessary
to investigate the movement of Taylor bubbles in the pipe to lay a foundation for the
subsequent research on the movement in the annulus.

In the present study, experimental work focused on single Taylor bubbles rising
in stagnant and downward flowing water and Bingham plastic fluids in near-vertical
and inclined pipes. Four concentrations of bentonite–water mixtures were considered.
The velocity and length of Taylor bubbles were determined by measuring differential
pressures along the flow path. The effect of liquid rheology and inclination angles on bubble
velocity and length are discussed in both stagnant and countercurrent flow conditions.
A closure relationship for the drift velocity in terms of apparent viscosity and inclination
angle is proposed. The performance of the proposed drift correlation is then compared to
that of other existing correlations using our experimental results. Finally, the proposed
drift correlation is applied to the experimental data from other investigators to further
gauge its performance.

2. Literature Review
2.1. Drift Velocity Correlation

The upward translational velocity of a Taylor bubble (UT) for all inclinations is mod-
eled by Nicklin et al. [8]:

UT = C0UL + Ud (1)

where C0 is the distribution coefficient which represents the impact of the velocity and
concentration profile. The value of constant C0 is approximately 1.2 for fully developed
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turbulent flow and 2.0 for laminar flow. The research of several authors [9–12] shows
that the distribution coefficient significantly depends on liquid viscosity and void fraction.
Equation (1) and its associated C0 values listed above are normally associated with co-
current flow. In this study, however, we investigate countercurrent flow, which will result in
C0 values much different from those stated above. To represent countercurrent conditions,
we can recast Equation (1) as:

UT = −C0UL + Ud (2)

where UL is the mean downward liquid phase velocity, and Ud is the upward drift velocity
measured in the stagnant liquid. The movement of Taylor bubbles has been studied numer-
ous times by researchers in different experiment conditions, and many correlations have
been proposed to predict the drift velocity.

When the gas viscosity is negligible, Dumitrescu [13] and Davies and Taylor [14]
formulated the bubble velocity inside a vertical (i.e., θ = 0

◦
) tube as:

Ud = Frθ

√
gD (3)

where D is the pipe diameter, g is the gravitational acceleration, and Frθ is the dimensionless
Froude number accounting for the liquid inertia. Other notable dimensionless groups such
as the E

..
otv

..
os number (E0) and Morton number (M0) have been applied to describe the

ratio of gravitational to interfacial forces and viscous to interfacial forces, respectively:

E0 =
ρLgD2

σGL
, M0 =

gµ4
L

ρLσ3
GL

, (4)

where ρL, σGL, and µL are the liquid phase density, gas–liquid interface tension, and viscos-
ity, respectively. As suggested by the work of Viana [15] and Morgado [16], the gas–liquid
interface tension (σGL) effect on the motion of Taylor bubbles can be negligible when
E0 > 40 and M0 < 10-5 The inverse viscosity number N f can be obtained by the Eötvös
number (E0) and Morton number (M0):

N f =

[
E3

0
M0

]0.25

=
ρL
√

gD3

µL
(5)

Bendiksen [17] studied the elongated bubbles rising in water in inclined pipes and
proposed a simplified correlation for drift velocity by accounting for vertical and horizontal
components:

Ud = 0.351cosθ
√

gD + 0.542sinθ
√

gD (6)

where θ is the well bore inclination relative to vertical.
Hasan and Kabir [18] correlated the drift velocity through the experimental data

gathered at various pipe inclination angles, defined as:

Ud = 0.35
√

cosθ(1 + sinθ)1.2√gD (7)

Gokcal et al. [19] extended the analysis of Benjamin [20] to evaluate the drift velocity
for a horizontal vase, and considered the effect of viscosity on vertical drift velocity:

Ud =

− 4µL
0.9(ρLD)

+

√
1.2
9

gD +
16

0.81

(
µL

ρLD

)2
cos0.7θ + (1− ξ)

√
2g[0.3D(1− cosγ)− ∆]sin1.5θ (8)

∆ =
−2.2(1 + ξ)

ξ

{
0.3D(1− cosγ)− 0.3D

[
1− (1− ξ)cosγ− 2

3π
sin3γ

]
/
(

1− ξ2
)}

(9)

ξ = (γ− 0.5sin2γ)/π (10)

γ = min[γ1, 1.444784] (11)
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γ1 = π − cos−1
( s

D

)
, i f

h
D

< 0.5 (12)

γ1 = cos−1
( s

D

)
, i f

h
D
� 0.5 (13)

s
D

=

√
1−

(
2

h
D
− 1
)2

(14)

h
D

= 0.1038lnµL + 0.9684 (15)

Note that Equation (15) is not dimensionally consistent, because taking the logarithm
of a dimensional quantity is not permitted. Here, µL is the magnitude of its dimen-
sional quantity.

Jeyachandra et al. [21] investigated the effects of high oil viscosities and pipe diameter
on the drift velocity for horizontal and upward inclined pipes by extending the work of
Gokcal et al. [19] for different pipe diameters and viscosity range. The proposed correlation
was formulated in terms of the Eötvös number and inverse viscosity number:

Frθ = 0.53 exp
(
−13.7N0.46

f E−1
0

)
sinθ +

[
− 4

0.9
N f +

√
1.2
9

(
ρL

ρL − ρg

)
+

16
0.81

N2
f

]
cosθ (16)

Based on the work in refs 19,21, Moreiras et al. [22] proposed a dimensionless closure
relationship for drift velocity applicable for a board range of liquid viscosity, inclination
angles, and pipe diameters:

Frθ = Frhsin1.2391θ + Frvcos1.2315θ + Q (17)

Frh = 0.54− N f /
(

1.886 + 0.01443N f

)
(18)

Frv =

(
0.35−

√
2

3

)√
ρL(

ρl − ρg
) − 8

3
N f +

√
2
9

(
ρL

ρL − ρg

)
+

64
9

N2
f (19)

Q =

0, Frv − Frh < 0

2.1589
(

Frv − Frh
)0.70412

cosθ(1− cosθ), Frv − Frh ≥ 0
(20)

The drift velocity correlation proposed by Lizarraga-Garcia et al. [23] was extracted
from a large database generated by numerical simulations covering a wide range of fluid
properties and pipe inclination angles:

Frθ = Frv

(
1− e−bθ

)
(1 + csin2θ) (21)

Frv = 0.34

[
1 +

(
14.793

E0

)3.06
]−0.58

1 + Na
f

31.08

(
1 +

29.8681.96

E1.96
0

)0.49
−a

1.029/a

(22)

a = −1.45
[
1 + (24.867/E0)

9.93
]0.094

(23)

b(E0, M0) = 47.06Frv + 4 (24)

c(E0, M0) = −0.9118Frv + 0.67 +
[
−0.0148(lgM0)

2 + 0.125lgM0 + 0.9118Frv + 1.118
]
/
[
(1 + E0/20)8

]8
(25)

The above correlations were built based on experimental or numerical data. Although
the applications of those correlations covered a large range of liquid properties, inclination
angles, and pipe diameters, none of them were built for non-Newtonian fluids; research
about the movement of a single Taylor bubble in non-Newtonian fluid is still necessary.
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Carew et al. [24] reported the rise velocity of slug bubbles in Newtonian and non-
Newtonian fluids, considering the effect of power-law rheology and inclination angles,
and a semi-theoretical correlation applicable for a high Reynolds number (Re) was derived:

.
γe f f =

Ud
D

[
122
(

90− θ

90

)3/2
− 443

(
90− θ

90

)5/2
+ 572

(
90− θ

90

)7/2
− 232

(
90− θ

90

)9/2
]

(26)

Re =
ρLUdD

k
( .

γe f f

)n−1 (27)

log10 Frθ = −0.2
[(

1.08− log10 Re
0.8

)
+ 1
]0.5

+ 0.25
(
log10 Re− 1.08

)
(28)

Majumdar and Das [25] explored the dynamics of Taylor bubbles rising through power-
law fluids using CFD (Computational Fluid Dynamics) and a semi-analytical technique;
the expression for the drift velocity of Taylor bubble rising through a power-law fluid is
given as:

Ud =
0.738

(R− δ0)2

(ρLg
2K

) 1
n

[
2δ0

R
−
(

δ0

R

)2
] 1

n( n
1 + n

)[(
2n

3n + 1

)(
R

3n+1
n − (R− δ0

) 3n+1
n − R

n+1
n

(
R2 − (R− δ0

)2
]

(29)

δ0 =
−1 +

√
1 + 4NR

2N
(30)

N =

(
1.81

ρ2
Lg

µ2
e f f

)1/3

(31)

µe f f = K
(ρLg

2K

) n−1
n

[
R− (R− δ0)

2

R

] n−1
n

(32)

From Equations (26) and (27), we know that the drift velocity correlations developed
for non-Newtonian fluid are applied for a particular rheology model, and its applicability
vanishes for fluids having a yield point.

2.2. Theoretical Part

Shosho and Ryan [26] studied the velocity of long bubbles in terms of the Froude,
E

..
otv

..
os, and Morton numbers in Newtonian and non-Newtonian fluids in inclined tubes.

Kamışlı [27] proposed one-dimensional approximate equations for long bubbles in capillary
vertical and inclined tube filled with power-law fluid; he pointed out that the dimension-
less bubble radius decreases with decreasing the power-law index. Sousa et al. [28,29]
described the flow field of single Taylor bubble rising in carboxymethyl cellulose (CMC)
and polyacrylamide (PAA) polymer by the method of particle image velocimetry (PIV) and
shadowgraphy. Rabenjafimanantsoa et al. [30] performed experiments on the dynamics of
Taylor bubbles rising in polyanionic cellulose (PAC) in water by using PIV and differential
pressure techniques; a more stable and flat trailing edge of the Taylor bubble was found
in high viscosity fluids. Araújo et al. [31] focused on the CFD study about the rise of indi-
vidual Taylor bubbles through inelastic non-Newtonian fluids in stagnant, co-current, and
countercurrent conditions; the influence of shear-thinning and shear thickness rheology on
Taylor bubble was discussed.

The studies of Taylor bubbles rising in downward flowing non-Newtonian fluids are
more focused on the bubble shape and stability. Griffith and Wallis. [32] noted that the
stability of the bubble changes and becomes eccentric as the downward flowing liquid
velocity increased to a certain point. Lu and Prosperetti [33] studied the instability of
Taylor bubbles rising against an incoming liquid stream owing to the flattening of the
bubble nose as the liquid flowed downward. Fabre and Figueroa-Espinoza [2] pointed
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out that above some critical liquid velocity, the bubble symmetry was broken, and the
bubble nose moved close to the tube wall, resulting in a step-function increase in the Taylor
bubble upward drift velocity due to its more hydrodynamically efficient shape. Similar to
the work of Fabre and Figueroa-Espinoza [2], the relationship between the translational
velocity and Taylor bubble shape was investigated in a downward liquid pipe flow by
Fershtman et al. [3]. They pointed out that, at downward liquid velocity exceeding a critical
value, three different modes of bubble motion were observed (symmetric, asymmetric,
and transition between symmetric and asymmetric).

The literature review shows that single Taylor bubbles rising in stagnant Newtonian
fluids have been vastly studied. However, the influence of inclination angles, rheological
properties, and downward flowing velocities of non-Newtonian fluids, especially hav-
ing a yield point, on the characteristics of a single Taylor bubble’s translational velocity,
drift velocity, and length has not been so deeply investigated.

3. Experimental Work
3.1. Experimental Facility

Experiments were conducted on the University of Tulsa Low Pressure–Ambient
Temperature flow loop (LPAT). Figure 1 shows a general view and schematic view of the
experimental facility.
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Figure 1. General view and schematic view of the experimental facility.

The test section was approximately 80 ft long and consisted of a 6 in. inner diameter
(ID) transparent acrylic pipe. One end of the flow loop was attached to a vertically movable
platform, while the other was connected to a trolley, which enabled the experimental
operator to obtain any desired inclination angle between 4◦ to 90◦ from vertical [34–37].
Air as the gas phase was provided from an in-house air compressor (working capacity
0–125 psi, maximum 825 scfm capacity) to a buffer accumulator, through a regulator valve,
which filled the buffer accumulator with air at a fixed pressure. There were four air valves
corresponding to four injection ports at different locations (Figure 2). Port A1 was at the
bottom of the flow loop, which was used to release the air in stagnant liquid, we called
static condition. Ports A2 and A4 were installed approximately 20 ft from each end of
the acrylic pipe, and Port A3 was located in the middle of the other two, as shown in the
schematic view of the facility (Figure 1). Those three ports were used to inject air while
the fluid was flowing downward, which was the so-called countercurrent flow condition.
If necessary, air trapped at the top of the test section could be discharged directly to the
atmosphere through a vent hose.
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Figure 2. Buffer accumulator and air valve. (A1: release the air under static condition; A2, A3,
and A4: release the air under countercurrent flow condition).

A 75 hp centrifugal mud pump (maximum capacity of 650 gpm) was used to sup-
ply water and low-rheology fluids, which were injected from the top of the flow loop.
Figure 3a,b present the pump connection (inlet) and mud return (outlet), respectively. Flu-
ids were pumped into the riser pipe (Figure 3a) to the top of the text section to create
downward flow. At the bottom of the test section, a gate valve (Figure 3b) was used to
control pressure in the system. Maintaining adequately high pressures was necessary to
prevent the formation of vacuum bubble in the test apparatus—especially at inclinations
near vertical.
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Figure 3. Pump connection (a) and mud return (b).

For higher-rheology fluids, a triplex pump supplied by an oil-field service company
was used. Liquid flow rate was measured using a Micro-MotionTM Emerson (St. Louis,
MO, USA) mass flow meter. Figure 4 shows the flow rig built for this study.
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Figure 4. Flow rig built for this study.

The applied instruments include:

1. Ten fiber optic pressure transducers, sensitive enough to detect small pressure varia-
tions with an accuracy of ±0.1%, were installed approximately 5 ft apart for differen-
tial pressure and velocity measurements. The pressure and time resolutions of the
sensors were 0.001 psi and 0.1 sec, respectively.

2. Three non-contact nuclear densitometers (X96S: Valencia, CA, USA) using a gamma
radiation technique, which covered the entire pipe cross section area, for holdup and
velocity measurements, were located approximately 20 ft from each end of the test
section, and in its middle (spaced about 21 ft apart). The resolutions in density and
time were 0.001 ppg and 0.1 sec, respectively. All densitometers were pre-calibrated
by the full liquid/gas phase based on two-phase flow systems.

3. Eight high-speed Amcrest security video cameras (Houston, TX, USA) were used
for visualization. The non-Newtonian fluid applied in the experiment was opaque;
therefore, cameras were only used in the water test.

Figure 5 shows a part of the instruments positioned along the test section.
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Data acquisition was performed with LabViewTM (Austin, TX, USA) software which
automatically recorded data, including mud flow rate, mixture density, inclination angle,
pressure and differential pressure along the test section, and pressure and temperature at
the inlet and outlet of the test section.

3.2. Experimental Procedure and Test Matrix

In this test, bentonite–water mixtures were used as the liquid phase. The bentonite–
water mixtures were firstly prepared in a 100-barrel mud tank, then circulated into the
system for at least 30 min to fully mix, waiting for at least 24 h for its full hydration.
Rheology properties were checked before every new daily test.

In the static test, the fluid was firstly circulated at a high flow rate to make sure that
the flow condition was homogeneous and to flush out the air in the test section. Then,
the gate valve at the bottom was gradually closed while maintaining sufficient pressure on
the system with the pump to prevent the formation of vacuum bubbles. At this point, the
whole system was shut-in to avoid any effect of gas expansion on the bubble migration.
Using the injection port A1, a finite burst of air was released. The pressure of the air
accumulation chamber (Figure 2) was set anywhere between 20 to 50 psi above the pressure
at port A1. Air was released for a 3 sec interval. When the bubble reached the top of the
loop, the test was complete and data recording was stopped. The bubble was then purged
from the system in preparation for another test.

In the countercurrent flow test, for each inclination angle, fluids were downwardly
flowing at a given velocity; the Taylor bubble was released at port A2 and its rise velocity
was measured. The bubble was then purged from the system in preparation for another
test at a different countercurrent rate.

Water and four concentrations of bentonite–water mixtures were applied in the tests.
The physical properties and test matrix are described in Table 1. All the experiments were
carried out in inclined pipes at 4◦, 15◦, 30◦, and 45◦ from vertical. In the present study,
the gas–liquid interface tension of various concentrations of bentonite in water was applied
from the experimental results of Dadashev et al. [38]—the range of the Eötvös number was
3212 < E0 < 3405; therefore, the effect of σGL on the movement of the Taylor bubble was not
discussed in this work [15].

Table 1. Physical properties and test matrix.

Liquid Condition ID
(m)

θ
(◦)

ρL
(kg/m3)

µ1
p

(cp)
τ2

y

(lb/100 ft2)
UL

(m/s) R3
e

Water S/C 0.1524 4, 15, 30, 45 998 1 - 0.173~0.7 26,306~105,227
10 lb/bbl BW S 0.1524 4, 15, 30, 45 1014 2.4 0.75 0 -
30 lb/bbl BW S 0.1524 4, 15, 30, 45 1047 27 41.6 0 -
45 lb/bbl BW S/C 0.1524 4, 15, 30, 45 1063 76 162 0.22~0.7 477~1113

48.5 lb/bbl BW S/C 0.1524 4, 15, 30, 45 1076 101 230 0.073~0.7 118~803

1 Plastic viscosity (µp) is defined as µp = θ600 − θ300; 2 Yield point was obtained by τy = θ300 − µp, where θ600 and θ300 are the dial readings
at 600 rpm and 300 rpm, respectively, using a Fann 35 rotational viscometer with an R1B1 bob (using F1 and F2 springs as appropriate);
3 Reynolds number (Re) is defined as Re =

ρLUL D
µp

[39].

In Table 1, “10 lb/bbl BW” means 10 pounds per barrel bentonite–water mixture;
“S” and “C” represent the tests conducted in static or countercurrent flow conditions,
respectively; and µp and τy are the plastic viscosity and yield point in the Bingham plastic
model, respectively. Rheological behavior is presented in Appendix B. As can be seen,
countercurrent flow tests carried out in water were in a turbulent regime (Re > 2100) and a
laminar flow regime (Re < 2100) in non-Newtonian fluids.

3.3. Determination of Bubble Velocity and Length

The main objective of this study was to investigate the migration of a single Taylor
bubble in stagnant and downward non-Newtonian fluid flow in inclined pipes. The main
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hydrodynamic behaviors including translational velocity (UT), drift velocity (Ud), and the
length of the Taylor bubble (LTB) in the countercurrent flow condition were determined.

Velocities of Taylor bubbles are determined by the time for the Taylor bubble to travel
between a fixed distance. Then, with the known of velocity, the length of Taylor bubble can
be obtained by the time required for the bubble to pass through its own length (Figure 6).
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In the present study, differential pressure (∆P) was applied to determine the velocity
and length of Taylor bubbles.

3.3.1. Velocity of Taylor Bubbles

Figure 7 shows the differential pressure measured between two pressure transduc-
ers. ∆Pn measures the pressure difference between pressure transducer ∆Pn and ∆Pn+1,
while ∆Pn+1 measures the pressure difference between ∆Pn+1 and ∆Pn+2. Considering a
Taylor bubble moving inside the pipe, when its nose passes the pressure transducer PTn,
the hydrostatic pressure at PTn decreases, the differential pressure ∆Pn starts decreasing
synchronously. ∆Pn+1 remains stable until the bubble moves passed pressure transducer
∆Pn+1. Then, the same trend happens on ∆Pn+1.
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Thus, the time between two sudden drops on the differential pressure curves is the
duration of the Taylor bubble traveling between a fixed distance. The velocity of the Taylor
bubble is obtained by averaging the velocities measured across the various possible pairings
of pressure transducers:

Uθ =
1
n

n

∑
1

xn+1 − xn

∆tn
(33)
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3.3.2. Length of Taylor Bubbles

To determine the length of a bubble, two different scenarios are discussed.
The first scenario is when the length of Taylor bubble is shorter than the distance

between two pressure transducers, as can be seen in Figure 8a. As the bubble reaches
PTm, differential pressure ∆Pm starts decreasing reaching a minimum when the bubble tail
reaches PTm. As the tail of the bubble moves past PTm, there is a slight increase in ∆Pm
(shown between regions (1) and (2)). This is an artifact of the higher-pressure region behind
the bubble being sensed by PTm. The fluid moving past the bubble creates a pressure
reduction that is recovered in the wake of the upwardly migrating bubble. Region (2) is
the period where the entire bubble length resides between PTm and PTm+1. The transition
between regions (2) and (3) indicates when the bubble’s nose reaches PTm+1.
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Figure 8. Differential pressure to determine the length of Taylor bubble. (a) The length of the Taylor bubble is shorter
than the distance of two pressure transducers; (b) the length of the Taylor bubble is larger than the distance between two
pressure transducers.

Then, a second scenario is considered where a bubble’s length is larger than the
distance between two pressure transducers (Figure 8b). We start with the bubble reaching
PTm. Region (1) signifies when the bubble’s nose is moving between PTm and PTm+1.
Region (2) signifies when the bubble spans both PTm and PTm+1. Additionally, the transition
between regions (2) and (3) signifies when the tail of the bubble passes PTm.

In each scenario, ∆tm defines the time required for a Taylor bubble to pass PTm.
Thus, with the known bubble velocity and transit time across the sensor, the average

length of Taylor bubble can be obtained:

LTB =
1
m

m

∑
i=1

Uθ × ∆tm (34)

4. Results and Discussion

The experimental data collected from both static tests and countercurrent flow tests
were processed to obtain the velocity and length of the Taylor bubble.
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4.1. Static Tests
4.1.1. Influence of θ and µapp on Ud

The propagation of a Taylor bubble through various stagnant liquids is presented in
Figure 9, where the drift velocity is plotted as a function of inclination angles. Each line
corresponds to a particular fluid. As can be seen, the dependence of drift velocity on
inclination angle for non-Newtonian fluids is observed to be similar to Newtonian fluids.
In each case, the drift velocity increases as the inclination angle increases. This result is
consistent with Zukoski [40], who verified that the drift velocity would reach the maxi-
mum between 40◦ and 60◦, and then decrease as the inclination approaches horizontal.
Additionally, increasing the concentration of bentonite in our fluid, which increases plastic
viscosity and the yield point, decreased drift velocity. This reduction was more significant
at a lower inclination angle. It is noteworthy that an unexpected case was detected in
48.5 lb/bbl BW at 4◦, where the Taylor bubble stopped moving soon after it entered the
pipe. We will discuss this behavior in more detail in the subsequent section.
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The lower drift velocities in a more viscous fluid can be explained by the higher drag
forces imposed on the bubble’s flanks and by changes in the shape of the bubble’s nose.
Figure 10a–d illustrate the air–liquid mixture density (ρm) change with time as the bubble
migrates past the densitometers at 45◦ from vertical. As the Taylor bubble nose reached
the densitometer, the mixture density dropped because of the lower density of air. It also
shows that there was a flow development between densitometers D1 and D2 after the gas
bubble was released. The mixture density can be obtained by the relationship:

ρm = ρgαg + ρL
(
1− αg

)
(35)

where αg is the void fraction defined as the fraction of the cross-sectional area of the
channel that is occupied by the gas phase. In fluids with lower concentrations of bentonite
(Figure 10a,b), the mixture density gradually decreased during the passage of the bubble’s
nose. However, for higher concentrations of bentonite (Figure 10c,d), a steeper decrease in
the mixture density occurred, indicating a steeper increase in αg. This indicates that the
curvature of the Taylor bubble’s nose is blunted with a significant increase in viscosity and
yield point. This is also suggested by the experimental work conducted by Carew et al. [24],
who reported that an increase in the liquid viscosity caused the nose region of the bubbles
to become blunter and led to a decrease in the bubble rise velocities.
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Figure 10. Air–liquid mixture density (ρm) change with time at 45◦ from vertical. (a) 10 lb/bbl BW; (b) 30 lb/bbl BW;
(c) 45 lb/bbl BW; (d) 48.5 lb/bbl BW.

In this study, we used apparent viscosity as a singular measure of a non-Newtonian
fluid’s rheological state, which was useful in the formulation of our generalized bubble drift
correlation. The bentonite–water mixtures used in this study exhibited non-Newtonian
rheological behavior having a yield point, which can be represented by the Herschel–
Bulkley model:

τ = τy + k
.
γ

n (36)

where τ is the shear stress, τy is the yield point, k is the consistency index,
.
γ is the shear rate,

and n is the flow index. For a single Taylor bubble rising in stagnant liquid, the characteristic
shear rate around the bubble can be scaled as [18]:

.
γe f f =

Ud
D

(37)

Thus, the apparent viscosity is given by:

µapp =
τ

.
γe f f

=
τyD
Ud

+ k
(

Ud
D

)n−1
(38)

In this study, bentonite–water mixtures were represented by a Bingham plastic model,
having a yield point. Thus, the k in Equation (36) was the plastic viscosity (µp), and n
became unity.
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Therefore, the apparent viscosity for a Bingham plastic fluid can be written as:

µapp = µp +
τyD
Ud

(39)

From Equation (39), we know that when the pipe diameter is fixed, µapp is then
governed by both fluid properties and drift velocity.

Based on Equation (39), the quantitative influence of apparent viscosity on drift
velocity can be obtained—which is illustrated in Figure 11. For all fluids studied, the drift
velocity decreased dramatically with the increase in apparent viscosity, and this reduction
became even more significant when the inclination angle decreased. The apparent viscosity
for Bingham plastic fluids in terms of plastic viscosity and yield point became significant
when the plastic viscosity and yield point increased with the concentration of bentonite,
making it harder for the liquid film to flow around the bubble.
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4.1.2. Proposed Drift Velocity Correlation

Based on the variation of drift velocity with the inclination angles and apparent viscos-
ity ranging from 0.001 Pa·s < µapp < 129 Pa·s , the proposed correlation (3212 < E0 < 3405)
combines Bendiksen et al. [17] in terms of θ and a yield–power-law correlation in terms of
µapp [41,42]. The mathematical form of the proposed drift velocity correlation is given as:

Frθ =
(

a + b× µc
app

)[
0.35sindθ + 0.45coseθ

]
(40)

This proposed correlation is similar to Bendiksen et al. [17], and the proportional
value of the horizontal drift velocity component is modified as 0.45, which was inspired
by Gokcol et al. [19] and suggested by Bhagwat and Ghajar [10]. Fitted values of these
parameters are given as a = 0.99416, b = −0.18458, c = 0.21337, d = 0.48996, and e = 0.02661,
respectively.

Performance of Proposed Correlation

Figure 12 presents the performance of the proposed and comparative correlations
against measured drift velocity (drift velocity measured in 48.5 lb/bbl at 4◦, which is zero,
is excluded). The correlations developed by Carew et al. [24] and Majumdar and Das. [25]
for power-law fluids were not applied for performance-comparison. Those correlations
utilize n and k and are, therefore, not aligned with our Bingham plastic model. The dashed
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lines are the ±15%, ±20%, and 50% error bands showing in Figure 12. It is obvious that
the proposed correlation shows good performance, slightly under-predicting the drift
velocity. The major differences among correlations occurred in the relatively low value
of Fr corresponding to non-Newtonian fluids. The Gokcal et al. [19], Moreiras et al. [22]
and Jeyachandra et al. [21] correlations show better prediction when Fr was high and
tend to overestimate the drift velocity when Fr < 0.4, which is thought to be caused by
over-predicting the influence of viscosity on drift velocity. Bendiksen [17] and Hasan and
Kabir [13] correlations were developed by water, which could have a relatively better
performance for low-viscosity fluids.
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Figure 12. Performance of the proposed correlation for predicting drift velocity (dataset in Appendix A).

Table 2 summarizes the quantitative performance of different correlations by using
the following statistical parameters:

Table 2. The quantitative performance of different correlations against experimental data.

Correlations 15% 10%
Statistical Parameter

ε1 ε2 ε3

Bendiksen 42.10% 21.05% 0.06619 0.3391 0.1782
Hasan and

Kabir 5.26% 0.00% −0.247 0.5575 0.2242

Gokcal 57.89% 36.84% 0.1079 0.35831 0.1988
Jeyachandra 47.37% 42.10% 0.1465 0.3903 0.2132

Moreiras 21% 16% 0.02351 0.3078 0.1622
Lizarraga-

Garcia 31.58% 10.53% −0.03655 0.2907 0.1628

Proposed
correlation 90% 80% 0.00201 0.0702 0.093
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Mean difference, ε1:

ε1 =
1
N

N

∑
i=1

(Frθi, cal − Frθi,mea) (41)

Mean absolute relative difference, ε2:

ε2 =
1
N

N

∑
i=1

∣∣∣∣ Frθi, cal − Frθi,mea

Frθi,mea

∣∣∣∣ (42)

Standard deviation, ε3:

ε3 =

√√√√ 1
N − 1

N

∑
i=1

[(Frθi, cal − Frθi,mea)− ε1]
2 (43)

As shown in Table 2, the proposed correlation predicted 90% of data points within
±15% error bands and 85% within ±10%. The proposed correlation had a mean absolute
relative difference value of 0.0702. The Gokcal et al. [19] correlation gave the best per-
formance among the comparative correlations within ±15%, but fewer data points were
within the±15% error band compared with the Jeyachandra et al. [21] correlation. The poor
performance of the Hasan and Kabir [18] correlation is thought to be because of the low-
viscosity fluid which they used to develop the correlation. Based on the performance of
different correlations for predicting drift velocity, we know that although the behaviors
of drift velocity against inclination angles between Newtonian and non-Newtonian fluids
are similar, those correlations developed for Newtonian fluids may not be applicable for
non-Newtonian fluids.

Validation of the Proposed Correlation

An additional database collected from Carew et al. [24], Sousa et al. [28], Eghorieta et al. [43],
and Livinus et al. [44] was applied to validate the applicability of the proposed correlation.
The database is summarized in Table 3 (inclination angles are measured from vertical).
The non-Newtonian fluids (power-law) experimental data reported by Carew et al. [24] and
Sousa et al. [28] are for different concentrations of CMC and Carbopol, covering a range of
pipe diameters and liquid viscosities. The Newtonian fluids used by Eghorieta et al. [43],
and Livinus et al. [44] were water and oil, respectively.

Table 3. Sources and properties of the database used for correlation validation.

Source Fluids Pipe Diameter
(mm)

Inclination Angle
(◦) µL(Pa·s) n k

Carew et al. Carbopol 981 25, 45, 70 0 - 0.386, 0.485 1.016, 2.927
Sousa et al. CMC 32 0 - 0.437~0.772 0.079~4.189

Eghorieta et al. Water 50.8 80, 83, 85, 87, 89, 90 0.001 - -
Livinus et al. Oil 57, 99 82.5, 85, 87.5, 89 0.16, 1.14 - -

According to the rheological model for Newtonian and power-law fluids, the apparent
viscosity for a Newtonian fluid is the same as liquid viscosity; the yield point in a power-law
fluid is zero. Thus, Equation (38) can be written as:

Newtonian : µapp = µL (44)

Power-law : µapp = k
(

Ud
D

)n−1
(45)
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The performance of the proposed correlation against the new database is shown
in Figure 13. It is evident that the proposed correlation exhibits good experimental per-
formance for both Newtonian and non-Newtonian fluid data points, but slightly over-
predicted by Carew et al. [24], who obtained data from small diameter pipes. The proposed
correlation shows a small value of mean absolute relative difference of 0.09614. This is
attributed to the apparent viscosity used in this study, which can be applied for both
Newtonian and non-Newtonian fluids.
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Figure 13. The performance of the proposed correlation against a database of other investigator’s
results (using both Newtonian and non-Newtonian fluids).

4.2. Countercurrent Flow Tests
4.2.1. Influence of θ on UT

In Figure 14, the translational velocity is plotted against inclination angles (curves
with UL= 0 m/s for reference). As can be seen, the translational velocity increases with
the increase in inclination angle; this behavior is similar to the results obtained in static
condition because of an increase in the drift velocity.

4.2.2. Influence of Liquid Viscosity on UT

Figure 15a,b indicate the influence of liquid viscosity induced by different concen-
trations of bentonite–water solutions on bubble velocity under fixed downward liquid
velocities. As can be seen, in agreement with the observations in stagnant liquid test,
an increase in the liquid viscosity results in a reduction in the bubble velocity for a given
countercurrent flow liquid velocity. This reduction in the translational velocity is qualita-
tively the same as the inclination angle increases.
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Figure 15. Influence of liquid viscosity on UT . (a) UL = 0.218 m/s; (b) UL = 0.5 m/s.
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4.2.3. Distribution coefficient, C0

Once the UT measured in countercurrent flow and Ud measured from static test are
obtained, the distribution coefficient Co can be calculated by Equation (2) in the form of
C0 = (Ud −UT)/ UL. Figure 16a,b plot C0 against the inclination angles for both water
and non-Newtonian fluids. C0 tends to increase with the increase in inclination angle.
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Figure 16. Co against the inclination angles. (a) Water; (b) Bingham plastic fluid.

The general increasing trend of Co with wellbore inclination is the result of Ud increas-
ing more rapidly than UT as θ increases. Ud is measured under static fluid conditions; in a
near-vertical wellbore, a Taylor bubble’s shape is relatively concentric, thus minimizing Ud
(because it is hydrodynamically inefficient). As wellbore inclination departs from vertical,
buoyancy forces lateral to the bubble increasingly deform its shape to make the bubble is
more hydrodynamically efficient, resulting in significantly higher Ud values. UT , on the
other hand, is the translational velocity of a Taylor bubble that, because of countercur-
rent flow, is always in a non-concentric (and, thus, a hydrodynamically efficient) shape,
regardless of the flow conduit’s inclination for all our experiments. Hence, a progressively
increasing θ drives greater increases in Ud measured under static conditions (see Figure 9)
than UT measured under constant UL conditions (see Figure 14).

According to Zuber and Findley [45], the value of C0 could be less than unity when
the ratio of the volumetric gas concentration evaluated at the wall, αw, and at the centerline,
αc, of the duct is greater than one, αw > αc. This occurs when a Taylor bubble flows inside
an inclined pipe, where a loss of symmetry is observed due to the component of buoyancy
force leading to the liquid film thickness between the top wall of the pipe and Taylor bubble
decreasing when inclination angle is increased from vertical. Although Zuber and Findley’s
insight comes from an analysis based on a co-current flow perspective, their finding
correctly applies to our countercurrent test results, regardless of inclination. This is because
our imposed countercurrent flow conditions always result in a non-concentric Taylor
bubble that tracks along the flow conduit wall.

Additionally, under co-current flow conditions, C0 values obtained for non-Newtonian
fluid is generally greater than that in Newtonian fluid (e.g., water), which is due to the
different flow profiles between Newtonian fluids and non-Newtonian fluids (Figure 17).
For Newtonian fluid (Poiseuille flow), the flow profile is parabolic, while for shear-thinning
non-Newtonian fluid, such as a Bingham plastic, the profile of the flow is flatter in the
middle, called the plug region, and decays faster towards the wall. For a Taylor bubble
rising in co-current flow liquid in a vertical orientation, the leading nose will follow the
highest velocity, which is at the center of the pipe. In contrast, the bubble will tend
to follow the lowest liquid velocity which is at the wall in countercurrent flow liquid.
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As shown in Figure 16, under countercurrent conditions, there is little difference in the
values of C0 between Newtonian and non-Newtonian fluids. Again, this is because our
imposed countercurrent flow conditions always result in a non-concentric Taylor bubble
that tracks along the conduit wall. A break from this trend only occurs at higher bentonite
concentrations where viscous forces are so high that plug flow occurs (i.e., when C0 = 1
and Ud = 0 m/s).
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4.2.4. Length of Taylor Bubbles

The influence of downward flowing velocity and inclination angle on the length of
Taylor bubble (the volume of the Taylor bubble is the same in all cases) in water is visual-
ized in Figure 18a–d. The reason why all pipes appear to be vertically orientated is because
the camera was mounted right above the pipe. As shown in Figure 18, the bubble becomes
asymmetric with a fluctuating nose under countercurrent flow condition. The liquid ve-
locities of water from left to right for each figure are 0.173 m/s, 0.346 m/s, and 0.692 m/s,
respectively. In higher downward flowing velocities, bubble surface waves start from the
nose and are swept down to the tail. It is obvious that for each inclination angle, the length
of the Taylor bubbles decrease with the increase in downward liquid flow velocity because
of increasing liquid film thickness/holdup and increasing entrainment of gas into the
wake region. However, no direct relationships between the Taylor bubble length and the
inclination angle were observed.

Influence of θ and UL on LTB

Figure 19a,b present the dimensionless bubble length (LTB/D) as a function of inclina-
tion angle under different downward liquid flow velocities for the experiments performed
with Newtonian and non-Newtonian fluids. Figure 19a,b show the length of two different
volumes of the Taylor bubbles measured in water. Figure 19c,d illustrate the bubble length
measured in 45 lb/bbl BW and 48.5 lb/bbl BW, respectively. As can be seen, two differ-
ent volumes of Taylor bubbles present similar behavior with the change of inclination
angles and liquid velocities. It is evident that the length of Taylor bubble decreases as the
downward liquid velocity increases, independently of the fluids considered.
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Influence of Liquid Viscosity on LTB

The influence of liquid viscosity induced by higher concentration of bentonite on LTB
under fixed downward liquid velocities is presented in Figure 20a (UL = 0.218 m/s) and
Figure 20b (UL = 0.5 m/s). As can be seen, an increase in the liquid viscosity results in a
reduction in the bubble length for a given countercurrent flow velocity. As discussed before,
the reduction in the translational velocity as the liquid viscosity increases is qualitatively
the same as the inclination angle increases. However, the decrease in the bubble length due
to viscosity increase is different as the inclination angle increases, which indicates that the
translational velocity is independent of bubble length.
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4.3. Unexpected Case: The Stagnant Taylor Bubble

In the static test of 48.5lb/bbl BW at 4◦, the Taylor bubble stopped moving soon after
it entered the pipe (Figure 21). This was because of the thixotropic properties of bentonite–
water mixtures. When a thixotropic material is sheared, the buildup and breakdown of
gel structure processes compete, and a dynamic equilibrium eventually results. For high
concentrations of bentonite, a strong gelled structure is formed over little time when not
subject to shearing. This provides resistance to the bubble movement, eventually resulting
in a stagnant bubble.
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Figure 21. Gel strength caused a stagnant Taylor bubble in 48.5 lb/bbl BW at 4◦.

The effect of gel strength can be directly obtained by comparing the drift velocities
at different positions along the pipe. Figure 22a–d show the drift velocity measured at
different pressure transducers against the distance it travels, each line representing a
particular inclination angle. As can be seen, in the lower concentrations, the drift velocity
remains relatively constant during the bubble movement in all inclination angles, while a
slight decrease in drift velocity can be observed in 45 lb/bbl bentonite at 4◦ as the bubble
migrates (Figure 22c), then a great reduction in drift velocity is shown in 48.5 lb/bbl
bentonite at even higher inclination angles (Figure 22d), which is owing to the lower drift
velocity at low inclination angles corresponding to a longer stationary time, eventually
resulting in a stronger gel structure.

Gel structure breakdown can be induced by shearing. Figure 23 shows the propagation
of a Taylor bubble against a range of downward liquid velocities (0.073 m/s < UL < 0.5 m/s)
at 4◦ in 48.5 lb/bbl bentonite–water mixtures after it has been circulated. Notice that at
UL = 0 m/s the bubble migration stops. This is due to the fluid gelling tendency. However,
under a shearing condition (UL > 0 m/s) the gel structure is broken, and the bubble
migration becomes dependent on UL. The relationship between the UL and UT under
countercurrent flow condition can be fitted in a linear function (red dash line), as suggested
in Equation (2). The second constant (0.172 m/s) is normally interpreted as the drift velocity.
In this case, however, the strong gelling nature of the fluid invalidates this interpretation.
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5. Conclusions

The movement of single Taylor bubble rising in stagnant and downward flowing
non-Newtonian fluids in inclined pipes has been experimentally studied. The following
conclusions can be drawn:

1. A flow rig has been built for the purpose of investigating the movement of a single
Taylor bubble rising in stagnant and downward flowing bentonite–water mixture in
inclined pipes (4◦ < θ < 45◦ from vertical).

2. The measured drift velocity (Ud) data presented in this study can contribute to im-
prove the knowledge of a single Taylor bubble rising in stagnant non-Newtonian
fluids having a yield point.

3. The experimental results indicate that for all fluids tested, the bubble velocity in-
creased as the inclination angles (θ) were increased, while velocity decreased with
an increase in plastic viscosity (µL) and yield point (τy). The length of the Taylor
bubble (LTB) decreased as the downward flowing liquid velocity (UL) and τy/µp were
increased. The bubble velocity was found to be independent of the LTB.

4. A reduction in drift velocity along its migration was detected, because increasing
the concentration of bentonite results in a strong gel strength buildup. Eventually,
a stagnant Taylor bubble can occur.

5. The drift velocity is formulated by combining a function of θ and a yield–power-
law correlation in terms of apparent viscosity (µapp), making it applicable for non-
Newtonian fluids with the Eötvös number (E0) ranging from 3212 to 3405 and ap-
parent viscosity (µapp) ranging from 0.001 Pa·s to 129 Pa·s. The proposed correlation
shows good performance for predicting drift velocity from both the present study
(mean absolute relative difference is 0.0702) and a new database (mean absolute
relative difference is 0.09614).
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Appendix A

Table A1 summarizes the experimental data for single Taylor bubbles rising in stag-
nant water and Bingham plastic fluids in inclined pipe, to provide traceability from the
experimental measurements to the final conclusions.
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Table A1. Experimental Taylor bubble drift velocity data in inclined pipes.

Fluid θ
(◦)

ID
(m)

ρL
(kg/m3)

µp
(Pa·s)

τy

(lb/100 ft2)
µapp

(Pa·s) Eo
Ud

(m/s) Frθ

Water

4 0.152 998 0.001 0 0.001 3240 0.661 0.541
15 0.152 998 0.001 0 0.001 3240 0.725 0.593
30 0.152 998 0.001 0 0.001 3240 0.787 0.644
45 0.152 998 0.001 0 0.001 3240 0.850 0.695

10 lb/bbl
BW

4 0.152 1015 0.002 0.75 0.189 3212 0.627 0.513
15 0.152 1015 0.002 0.75 0.167 3212 0.693 0.567
30 0.152 1015 0.002 0.75 0.153 3212 0.756 0.618
45 0.152 1015 0.002 0.75 0.146 3212 0.792 0.648

30 lb/bbl
BW

4 0.152 1047 0.027 41.6 12.765 3314 0.540 0.442
15 0.152 1047 0.027 41.6 11.045 3314 0.573 0.469
30 0.152 1047 0.027 41.6 10.042 3314 0.633 0.518
45 0.152 1047 0.027 41.6 9.816 3314 0.660 0.540

45 lb/bbl
BW

6 0.152 1063 0.076 162 78.666 3364 0.314 0.257
15 0.152 1063 0.076 162 54.734 3364 0.451 0.369
30 0.152 1063 0.076 162 51.963 3364 0.476 0.389
45 0.152 1063 0.076 162 48.471 3364 0.510 0.417

48.5
lb/bbl

BW

4 0.152 1076 0.101 230 undefined 3405 0 0
15 0.152 1076 0.101 230 129.443 3405 0.271 0.222
30 0.152 1076 0.101 230 94.803 3405 0.351 0.287
45 0.152 1076 0.101 230 84.606 3405 0.415 0.339

Appendix B

Figure A1 displays the measured shear-stress/shear-rate relationship for the fluids
used in this study. All data were measured using a Fann 35 rotational viscometer at
rotational speeds of 3, 6, 100, 200, 300 and 600 rpm. The dotted line y-axis intercept for each
fluid represents its theoretical yield point, τy, for a Bingham plastic fluid. The curves for
30, 45 and 48.5 lb/bbl BW mixtures, at initial inspection, suggest that τy does not actually
represent a physical characteristic of these fluids. This intuitive conclusion, however, would
not be correct. Under the dynamic conditions of a rotational viscometer, the low-shear-rate
behavior shown below is common for a bentonite–water mixture. However, under static
conditions, bentonite particles quickly build a gel structure that results in an actual τy
reasonably approximated by the theoretical Bingham plastic τy. Thus, the yield point of
a fluid is certainly a meaningful physical characteristic for understanding Taylor bubble
behavior under static fluid conditions, and the shear stresses observed at low shear rates
are material to dynamic fluid conditions. Considering that both static and dynamic fluid
conditions play a role in this analysis, our method for estimating apparent viscosity based
on a Bingham plastic model is a reasonable tool for use in our correlation. Furthermore,
our preference for using the theoretical Bingham Plastic τy instead of a measured τy in our
analysis stems from the difficulty of obtaining consistent ultra-low-shear measurements
for high-viscosity fluids. The theoretical Bingham Plastic τy is an easier-to-use and more
consistent proxy for direct τy laboratory measurements.
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