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Abstract: Flexible, system-oriented operating strategies are becoming increasingly important in terms
of achieving a climate-neutral energy system transformation. Solid-oxide electrolysis (SOEC) can
play an important role in the production of green synthesis gas from renewable energy in the future.
Therefore, it is important to investigate the extent to which SOEC can be used flexibly and which
feedback effects and constraints must be taken into account. In this study, we derived a specific load
profile from an energy turnaround scenario that supports the energy system. SOEC short-stacks were
operated and we investigated the impact that the load profile has on electrical stack performance and
stack degradation as well as the product gas composition by means of Fourier-transform infrared
spectroscopy. The stacks could follow the grid-related requirement profiles of secondary control
power and minute reserves very well with transition times of less than two minutes per 25% of
relative power. Only short-term disturbances of the H2/CO ratio were observed during transitions
due to the adjustment of feed gases. No elevated degradation effects resulting from flexible operation
were apparent over 1300 h, although other causes of degradation were present.

Keywords: solid-oxide electrolysis; co-electrolysis; syngas production; renewable electricity; system
integration; flexibility potential

1. Introduction

The conversion of electrical energy from renewable sources into certain chemicals,
commonly known as Power-to-X (P2X), is conceived as an important building block for
de-fossilizing the chemical industry and to increase the flexibility of the electrical grid.
Various technical approaches to this are being discussed and high-temperature electrolysis
is regarded as a promising future technology. Due to its high efficiency and development
potential, it could even be a competitive alternative to current electrolysis technologies
(i.e., alkaline- and polymer membrane-based systems) in the future and play an important
role in building a GHG-neutral economy [1]. This also applies to high-temperature co-
electrolysis (HTCoEL), which is under consideration here for the integrated production of
synthesis gas with different stoichiometries.

In the case of co-electrolysis, water and carbon dioxide are simultaneously reduced
in a high-temperature solid-oxide electrolysis cell (SOEC) to yield a mixture of hydrogen
and carbon monoxide, also known as synthesis gas (syngas). On the fuel side (cathode)
of the electrolyzer, the reduction of water takes place according to Equation (1). The
reduction of carbon dioxide can follow the pathway of direct electrochemical reduction
according to Equation (2) or indirect heterogeneous reaction of H2 from Equation (1) with
CO2 (Equation (3)) on the catalytically active nickel surfaces of the electrode (also known
as the reverse water–gas shift reaction). However, recent reports suggest that in the case
of Ni/GDC electrodes, CO is almost fully produced catalytically/thermodynamically via
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the RWGS reaction and therefore the steam electrolysis reaction (Equation (1)) is totally
selective [2]. In any case, oxygen anions described in Equation (1) or (2) migrate through
the electrolyte to the air side (anode), where they are oxidized and ultimately yield oxygen.

2H2O + 4e− 
 2H2 + 2O2− (1)

2CO2 + 4e− 
 2CO + 2O2− (2)

CO2 + H2 
 CO + H2O (3)

2O2− 
 O2 + 4e− (4)

The produced syngas can be very flexibly used as a feedstock in traditional chemical
processes to produce complex chemicals [3,4]. Depending on the operating conditions
(foremost among these temperature and feedgas composition), different ratios of H2 to
CO for different upstream processes can be produced. This technology is currently in the
laboratory stage (TRL 3–4) in the form of cells, stacks, and a complete system, including
auxiliary units and test rigs, and is being continuously further developed. Techno-economic
analyses of the co-electrolysis-based synthesis of hydrocarbons show that there is poten-
tial for achieving energetic efficiencies of >60% given efficient heat integration [5]. A
future target could be the integration of co-electrolysis and direct methanation, and an
exergy efficiency of up to 81% using a combined SOEC-methanation reactor with a spatial
temperature gradient [6].

An important question in the context of the techno-economic analysis of high temper-
ature co-electrolysis is the definition of interfaces and requirements with respect to system
integration. Amongst other things, the aim was to assess the extent to which electrolysis
operation can take on system-related functions in power grid operation, i.e., how the flexi-
bility potential of HT co-electrolysis can be assessed. Thus far, the flexibility of HTCoEL
has been evaluated fairly cautiously in the literature. Smolinka et al. [7] estimated the
sensitivity of the ceramic of an SOEC to the mechanical stresses arising from temperature
changes in the stack due to changes in power consumption to be significantly greater
than, for example, the polymer membranes in proton exchange membrane electrolyzers
(PEMELs). The result could be a reduction in overall lifetime. Nevertheless, this attests
to the ability to follow load changes quickly [7,8]. Coupling to fluctuating energy sources
is considered possible under the condition that the stack is always kept at an elevated
temperature in standby mode and thus especially large temperature fluctuations and corre-
sponding ceramic stresses are avoided [8]. At Aalborg University, a project was carried out
in collaboration with Haldor Topsoe to improve the SOEC technology for system-oriented
use in future energy systems with a high proportion of fluctuating, renewable energy [9].
It was demonstrated that large SOEC stacks can also be operated for grid balancing in
Denmark. However, no specific statements were made with respect to degradation effects.
Recently, the simulation of dynamic co-electrolysis operation for tracking scaled wind
power input using a 3D stack model was shown and a control strategy evaluated for
stabilizing the stack temperature profile during load transitions [10].

Essentially, the question of the flexibility potential can be addressed from two different
perspectives: On the one hand, the flexibility requirements can be formulated from a
system perspective and the reaction options of the process compared. Another approach is
to first define the flexibility properties from a process perspective and then to assess them
for their compatibility with the system’s flexibility requirements. This paper describes
the development of a requirement profile for a degradation test with a flexible operation
style for an SOEC stack in laboratory applications. For this, the requirements are first
derived from a system perspective. The specific properties of the test stand are then directly
incorporated into the formulation of the requirement profile. Other working steps, such as
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a detailed description of the flexibility options of the SOEC stack also in the context of its
system embedding, and which were carried out to estimate the flexibility potential, are not
the subject of this paper.

2. Experimental Procedure
2.1. Stack and Cell Design

We employed three four-layer stacks of the Jülich F10 design [11] in this study. This
design contains one anode-supported cell in fuel cell mode (ASC) per layer, yielding a total
active area of 80 cm². The details of the cells with the layer sequence and their respective
thicknesses are given in Table 1, which also states the contact layers and the protective
coatings of the interconnects (IC), as well as their thicknesses. The cells were produced
by CeramTec (Plochingen, Germany). The cerium-doped gadolinium oxide (CGO) barrier
layer was screen-printed and the protective coating at the interconnects was prepared by
means of atmospheric plasma spraying. The electrical contact between the IC and substrate
was achieved by nickel meshes. The sealing inside the stack was ensured by glass-ceramic
on all bonding surfaces and the external sealing by flat mica gaskets. Detailed descriptions
of the cell and stack design and assembly can be found in [12–15]. The stack temperatures
were monitored by nine thermocouples inserted about 40 mm-deep into the stack. In the
following, the sensor at the center of the stack between layers 2 and 3 and in the middle
between the gas entry and exit is designated as the stack temperature (TStack). Joining
of the stack was performed for 100 h at 850 °C in the furnace with a load of 100 kg. The
reduction of the substrate and fuel electrode was performed at 800 °C in an H2/Ar mixture
with stepwise increasing hydrogen concentrations between 9% and 62% H2.

Table 1. Cell and stack components of a repeating unit.

Component Thickness Material

substrate ~300 µm Ni/8YSZ
fuel electrode 7 µm Ni/8YSZ

electrolyte 10 µm 8YSZ
barrier layer 2 µm CGO (Ce0.8Gd0.2O1.9)
air electrode 20 µm LSCF (La0.58Sr0.4Co0.2Fe0.8O3−δ)

air-side contact layer 140 µm LCC10 (LaMn0.45Co0.35Cu0.2O3)
protective layer ~50 µm MCF (MnCo1.9Fe0.1O4)
interconnector 2.5 mm Crofer 22 APU

2.2. Gas Analysis

In order to determine the concentrations in the product gases, we employed a mobile
gas analysis system consisting of a Fourier-transform infrared spectrometer (FTIR; CX4000,
Gasmet, Helsinki, Finland) for IR-active gases and a thermal conductivity detector (TCD;
Conthos-3, LFE GmbH, Bruchköbel, Germany) for hydrogen. The interference error caused
by CO2 and CH4 in the TCD was thus compensated. The complete system, including the
sampling system a described elsewhere [16]. Although the gas analysis system supports
the measuring of hot gases, including steam, the test rig offered only a sampling port
after the exhaust cooler. Therefore all gas analyses presented here were performed with
dry gases (i.e., CO2, CO, H2, and CH4). For the gas analyses, a third stack identical in
construction was utilized.

2.3. Load Profile Development for Flexibility Assessment

With an increasing share of renewable energy in power generation, flexibility in the
power system is becoming ever more important to balance out fluctuations in power
generation and to ensure the supply of electricity at all times. By definition, the use of
flexibilities is “the modification of generation injection and/or consumption patterns in
reaction to an external signal (price signal or activation) in order to provide a service within
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the energy system.” ([17], p. 6). There are two types of flexibility: network-related (grid-
related) and system-related services, each of which has different flexibility requirements.

Grid-related flexibilities are concrete system services that are actively requested and
used by grid operators to stabilize the electricity grid and ensure its safe operation. This
includes in particular the provision of balancing services, the requirements of which are
precisely defined in the respective regulatory and technical guidelines (prequalification
procedures) for participation in the three balancing energy markets in Germany. These
requirements serve as a starting point to check the test stack for the provision of already
relevant performance gradients and response times. For this purpose, sample protocols
of the prequalification procedures taken from [18] for participation in the control energy
market are simulated. It is shown that the response times and performance gradients for
flexibility in the secondary control power product classes (activation time ≤5 min and
performance time of ≤10 min) and the minute reserve for the test stack in the laboratory
do not cause any difficulties from a purely technical point of view. The requirements of
the primary control power are not tested, as this is not considered useful for electrolyzers
due to the very frequent short-term clock cycles (≤30 s) in direct dependence on the target
frequency (50 ± 0.01 Hz).

Therefore, the focus of further investigations is on the system-supporting requirements
for flexibilities, on the basis of which a stabilization of the entire electrical energy system
during the transformation to a completely renewable power system (energy transition) is
pursued. This includes, in particular, the best possible adaptation of electricity demand and
generation with the aim of minimizing residual load, i.e., load minus renewable generation.
In order to be able to realize the further increasing share of volatile power generation in the
system in the context of the sustainable energy turnaround, future consumers must behave
as compatibly with the system as possible, making use of technologies such as electrolysis
as a link in the so-called sector coupling. The system-related requirements for the possible
applications of flexibilities are much more diverse than in the grid-related case, and can
vary greatly, depending on the energy system’s composition. Aside from the reaction times
(see above) as well as the amount and rate of load changes, these are mainly determined
by the necessary application or availability time. From the point of view of the electricity
system, this is the time over which an amount of energy can be shifted or a load changed.
This maximum period of time over which flexibility can be made available determines
its application potential with respect to the balancing of fluctuations in renewable power
generation, which can range from hourly, to daytime varying patterns, especially in case of
PV power feed-in, to extensive load reductions over days (“dark wind lull”).

In order to illustrate the system-related application possibilities of the high-temperature
laboratory stack under consideration and to determine the potentially resulting reaction
effects on the service life of the stack and the qualities of the product gas, a specific system-
serving requirement profile is derived on the basis of a certain scenario. This scenario
was developed by the Technical University of Munich (TUM) as part of the Kopernikus
P2X joint project (Phase 1) and made available for our analyses. It is a simplified scenario
that describes Germany in accordance with the “Climate Protection Scenario 2050” (Öko-
Institut/FhG-ISI) [19] with and without the use of Power-to-X technologies and aims to
reduce annual greenhouse gas emissions by at least 80% by 2050. In the reference sce-
nario without Power-to-X, the fluctuating renewable share of gross electricity generation
is approximately 78% ([20], pp. 57–61). The residual load curve (the difference between
electricity demand and renewable electricity feed-in) in terms of hourly resolution for
the year 2050 in Germany is derived from this scenario and is used as a basis for the
development of the system relevant requirement profile. The course of the residual load
is an important indication of the possible requirement profiles of flexibility demand in a
future energy system with a high proportion of fluctuating producers. The resulting annual
duration curve of the residual load of the reference scenario is shown in Figure 1. The
positive residual load (left-hand side) reflects the remaining demand for electricity before
the implementation of the flexibilities, whereas the negative residual load (right-hand side)
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indicates the corresponding surplus in the system. It is easy to see that there is a surplus
and shortfall of about half of the hours of a year. Overall, the entire electricity demand can
be covered by renewable electricity generation (on the balance sheet), with a slight annual
balance surplus of about 37 TWh.

Figure 1. Assumed residual load of German electrical grid for a year.

The technical specifications of the laboratory stack used for the degradation test
embody various premises that must be taken into account in the development of the
requirement profile.

1. The requirement profile should initially consist of fairly “flat” and short-term cycles
that do not exceed the exothermic operating spectrum of the stack. Two different
stages of load reduction (up to 50% or 75% of the nominal load) and one stage of
the load increase (up to 125% of the nominal load) in addition to standard operation
(100% nominal load) are defined as load change modes that are likely to be feasible
but are challenging.

2. The operational management of the stack under investigation also makes it necessary
to use cyclically recurring requirement profiles for the degradation test. For this
reason, a representative weekly profile (to be used as often as possible in the context
of the system requirements) was developed, and was then strung together for the test
over several thousand hours.

3. As the performance gradients of the secondary control power product class are
demonstrably feasible for the test stack, they are also used for the load change rate in
the degradation test.

For the development of an initial, comparatively flat requirement profile, two load
reduction and one load increase stages must be considered on the side of the stack, which
differ from normal operation (no load change). In order to determine the thresholds for
calling up the stages, the residual load is divided into segment areas according to the
annual hours (see Figure 1).

(1) The first third of the annual duration line summarizes the hours of moderate to
severe under-coverage in the system; in this example it corresponds to residual loads of
>17.1 GW. During these hours, different levels of load reduction are required due to the
deficit: For half of the hours (i.e., 1/6 of the year) a high level of load reduction (up to
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50% of the nominal load) is triggered in the case of high deficits (>30.5 GW) and for the
other half, i.e., in the case of deficits between 17.1 GW and 30.5 GW, a lower level of load
reduction (up to 75% of the nominal load) is triggered. (2) The second third of the annual
hours is categorized by situations with relatively low under- or over-coverage (between
17.1 GW and −17.1 GW). As the flexibility of the HTCoEL is comparatively costly, no load
change is assumed for these situations, with probably fairly low flexibility requirements
from the point of view of the electrical energy system. At the same time, it is assumed that
within this range, there will be cheaper alternatives in the set of flexibility options, which
will be used preferentially. (3) The last third with cover situations of <−17.1 GW will, in
turn, allow a moderate load increase corresponding to the potential of the stack in this test
of 125% of the nominal load.

Next, using the categorization of system-related applications described above, the
seasonal progression of the residual load curve was evaluated in order to identify a typical
week with a high proportion of recurring and short-term usage cycles. Such a course was
particularly favored by a high share of solar electricity, which is characterized by high
daily fluctuations and corresponding daily application situations lasting several hours.
Such daily fluctuations are less frequent in winter, however, when over- and under-cover
situations lasting several days alternate, which are characterized in particular by the
occurrence of windy phases with high and low wind speeds. These are less suitable as
indicators of load changes in degradation tests. Therefore, a summer week was selected
for the system-relevant requirement profile. Thus, the duration and frequency of under-
and over-cover situations were determined, which were assigned to the four deployment
categories derived above. For each category, the relative deviation from the weekly average
of the summer weeks was determined and the week that came closest to this average
selected. The result was that week 27 of the reference scenario year of 2050 best fulfills
these conditions, had all four deployment categories relatively often, each with common
durations, and was therefore used as a system relevant requirement profile as shown in
Figure 2, for the test of the SOEC lab stack.

Figure 2. System related requirement profile for the laboratory solid-oxide electrolysis (SOEC) stack derived from the
Technical University of Munich (TUM) reference scenario for week 27 in the year 2050.
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2.4. Stack Operation

The feed gas for the stack during long-term co-electrolysis operation was a mixture
containing 60% H2O, 30% CO2, and 10% H2 that produced a product gas with an H2O/CO2
ratio of 2.05–2.15. Technical grade hydrogen and CO2 (99.7%) were supplied with mass-
flow controllers (MFCs). Any volumes used in the following are given at a standard
reference temperature of 273.15 K and a pressure of 101,325 Pa. Electrical once-through
steam generators were employed for supplying the steam. The feed-water was introduced
by a diaphragm pump (stack A) and the flow rate was calibrated gravimetrically (offline)
and using a high-pressure dosing pump with two pistons (stack B). On the air-side, we
used an air flow rate of 2 L min−1 oil-free compressed air (dew point <−60 °C), which was
sufficient to flush the generated oxygen from the cell, but maintained a low differential
pressure across the electrolyte.

The stacks were operated galvanostatically at 800 °C in counter-flow mode. We opted
to operate the stacks in constant-current mode to keep the conversion ratio of the stack
constant for a given power level. Due to limitations in the test rig the feed gas flow rate
was constant for stack A, but stack B was operated with a constant conversion ratio of
70% (i.e., dynamic feed gas flows). The current densities for the different power levels
were derived as follows (example values for stack B): First the maximum current density
during continuous operation was chosen (0.7 A cm−2). The stack power needed to sustain
this current density with the feed gas mixture given above, at 800 °C, and a conversion
ratio of 70% at the beginning of the load-cycle experiments was defined as 125% relative
stack power (e.g., −264 W). The other power levels were defined relative to this level (e.g.,
−211 W corresponded to 100% relative power). To determine the current density for each
relative power level, a characteristic P–j curve of the stack was measured and then taken
into account (e.g., −0.7 A cm−2 at −264 W corresponded to 125% relative stack power and
−0.57 A cm−2 at −211 W corresponded to 100% relative stack power). The P–j curve of
stack B was measured at constant 70% conversion ratio, the one for stack A at a constant
feed gas flow rate suitable for 70% conversion ratio at the maximum current density. The
employed conversion ratio of 70% was regarded as being the lower end of a commercially
relevant window.

For choosing the maximum current density, two main constraints were considered.
The mass flow controllers and the steam generator had to support the flow rates for the
highest and lowest power level. The mass flow controller for hydrogen defined the lowest
possible total feed gas flow rate and the steam generator defined the largest possible total
feed gas flow rate. As the second constraint, we also intended to keep all layer voltages
during the experiments at or below the thermoneutral voltage to avoid a transition between
the two operating regimes (endothermal vs. exothermal) mid-experiment. Therefore the
current density of the highest power level was chosen in a way that the resulting voltages
at the given feed gas composition, 70% conversion ratio, and stack temperature of 800 °C
did not exceed 1.35 V (Uth calculated to 1.344 V). Additionally, we planned to have a large
voltage reserve allowing for a pronounced degradation of the cells during the experiment.

During electrolysis operation, the resistance of the stack was measured by applying
a small rectangular current modulation (2 A) to the DC current (known as the “linear
polarization resistance” method). This was repeated for 30–50 cycles every 6–8 h.

In the case of the load cycles with a static gas supply, the electrical current was
switched without a ramp as fast as the power supply unit could manage it, which could
be expected to be within a few tens of milliseconds. In the case of the load cycles with a
dynamic gas supply, the current was adjusted with a ramp of 60 A cm−2 min−1, roughly
corresponding to a change in the relative power of 133 min−1. The steam was changed
with a rate of 1.63 L min−2. The steam generator (SG) had the highest latency, which
was tested to be between 30 s and 60 s. The SG also had the slowest rate-of-change, and
therefore the other gases were changed with a matching ramp to finish their ramp at the
same time as the SG. To account for the latency, the carbon dioxide increase (in the case of
load increases) always followed with a 60 s delay after starting a ramp for the SG to prevent
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any potentially unsafe reductions in the H2O/CO2 ratio. This ratio (which also determines
the ratio of oxygen/carbon in the feed) is important to prevent any soot formation in the
pipes and components of the test rig and the stack. Therefore, our intention was, that
during transitions of power levels, the H2O/CO2 ratio may shortly increase but never
decrease. Finally, the current change ramp was started. In the case of load reductions, the
ramps for the current, steam, and carbon dioxide were started simultaneously and that for
the hydrogen reduction followed in order to always maintain hydrogen concentrations
of >=5% in the feed gas mixture.

The load cycles were accelerated by a factor of 5 in order to accelerate testing and
increase the number of load changes, i.e., the derived representative week long sequence
of required relative stack power was performed in 1.4 days.

3. Results and Discussion

Several phases of stationary and dynamic operation at three short stacks were eval-
uated for this study. Table 2 gives an overview of these and summarizes the observed
degradation rates. Values for j are given for the 125% power level of the load-cycle opera-
tions and in case of phases with static gas supply (A1, A2, and A3) the values for CR are
also given for the 125% power level. The degradation rates given for stack A exclude data
for layer 4. For stack B, no layer was excluded. Further details will be discussed below.

Table 2. Operational phases.

Stack Phase Description j CR Duration Degradation

U R

A cm−2 % h mV kh−1 mΩ cm2 kh−1

Stack A A1 Load cycles S 0.71 75 552 31 44
Stack A A2 Load cycles S 0.71 70 336 37 52
Stack A A3 Load cycles S 0.71 70 264 36 50
Stack A A4 Stationary 0.60 70 360 8 14
Stack A A5 Stationary 0.71 70 397 18 25
Stack B B1 Stationary 0.70 70 239 62 89
Stack B B2 Stationary 0.70 60 297 46 66
Stack B B3 Stationary 0.70 50 129 43 62
Stack B B4 Stationary 0.70 70 86 64 91
Stack B B5 Stationary 0.70 70 96 55 79
Stack B B6 Load cycles D 0.70 70 1323 14 20

3.1. Load Cycles with Static Gas Supply

The first stack experiment varied the current density at stack A according to the
requested load profile, but limitations in the test rig necessitated keeping the feed gas flow
rate constant. Thus, the conversion ratio was different for each load level, with 70% net
conversion at the 125% relative power level and 34% at the 50% level.

About 1500 h of load cycles were performed in this manner. Then, 1152 h in three
distinct phases (A1, A2 and A3) were evaluated to estimate the degradation rate during this
type of stack operation. Figure 3 shows the timeplot of the individual layer voltages with
daily averaged values for the experiment with stack A. We also show the instantaneous
cell resistances at the operation point measured by the linear polarization resistance (LPR)
method in Figure 4. This parameter reacts with substantial sensitivity to changes in
operating conditions and state-of-health and enables us to clearly distinguish different
operational phases and discrete damaging events. These are characterized by sudden and
strong increases in the cell resistances. We identified specific changes in the operational
parameters that coincided with these sudden increases in the resistances. These changes
are shown in Table 3. We believe that these caused a significant degradation in the cell
performances. Furthermore, as these events were exceptional and are not related to the
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load cycle operation, we determined the given degradation rates during the three phases
of stable operation without damaging events.

Figure 3. Daily averaged layer voltages (top), relative power (center), current density, and stack
temperature (bottom) for stack A. Specific events are marked with capital letters, and operational
phases with red numbers.

Figure 4. Daily averaged cell resistances by the LPR method (top), relative power (center), current
density, and stack temperature (bottom) for stack A. Includes only the values measured at the same
time as the intermittent LPR measurements, which were only recorded at 0.71 A cm−2. Specific
events are marked with capital letters, and operational phases with red numbers.
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Table 3. Events at stack A.

Event Description

A Begin load cycle operation
B Replacement of water pump + recalibration
C conversion ratio 80% for 30 min
D Increase of steam generator temperature to 510 °C
E Increase of steam generator temperature to 520 °C

At the end of phase A1, we measured the steam concentration in the feed gas by FTIR
and concluded that the amount of steam was lower than intended, which increased the net
conversion ratio during phase A1 from the intended 70% to 75%. The pump for the feed-
water was replaced and calibrated to correct the amount of steam for the remainder of the
experiment. Between phases A1 and A2, no load-cycles took place, because we performed
a stack characterization with measurements of the product gases under different conditions.
In addition, during the night, the stack was kept on dry standby in pure H2. Therefore, the
daily averaged cell voltages were increased for 3–4 days, because they included periods of
open-circuit voltages. Directly before entering phase A2, we performed a short operation at
higher conversion (80%) and noticed a rapid increase in the cell voltage of layer 4. This was
also reflected by the increased resistances after we resumed normal load-cycle operation.
The other cells showed a small decrease in performance. While we have no direct proof of
what actually took place, we suspect a local starvation of steam in parts of the cell. This is
supported by an observation made during the post-mortem analysis, where we found a
partial delamination between the electrolyte and Ni/YSZ electrode near the gas-exit side.
This delamination was the largest for layer 4, followed by 1, and quite small for 2 and
3. As a result of this event, we excluded layer 4 from the determination of the average
degradation rates given in Table 2.

Events D and E between phases A2 and A3 were both an increase in the operating
temperature of the steam generator, and were both followed by a significant increase in cell
resistances for several days. We think it is likely that this led to a volatilization of poisoning
substances from the feed-water or steam generator itself. Investigations of this effect are
underway and their results will be reported soon, but are unfortunately beyond the scope
of this publication.

The general upward trend of the relative power observable in Figures 3 and 4 also
reflects the cell degradation, because increased power is needed to sustain the current.
Overall, the degradation rates during the load cycles with static gas supply were fairly
consistent over the three distinct operational phases. Unfortunately, they were on a fairly
high level of 5.5% kh−1 to 6.3% kh−1 relative to the initial cell resistances and 2.5% kh−1 to
3% kh−1 relative to the initial cell voltages.

3.2. Load Cycles with a Dynamic Gas Supply

We then performed an improved stack experiment and varied the current density
at stack B according to the requested load profile and automatically adjusted the feed
gases accordingly in order to keep the net conversion constant at 70% for each power level.
Figure 5 shows an example of one accelerated sequence in stack B with a dynamic feed
gas supply and a constant conversion ratio of 70%. The measured profile corresponds to
the requested profile from Figure 2 very well. There are only very minor and short-term
overshoots in the relative power that are caused by the lagging adjustment of feed gases.
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Figure 5. Single sequence of load changes at stack B. The cell potentials (top), feed gases and stack temperature (center),
current density and relative stack power (bottom) are shown. (Curves for the layers two and three are overlaid by the one
for layer 4).

The stack temperature changes for the entire profile remained below 2 K. Given a
thermoneutral voltage of 1.344 V for the given gas mixture, the heat consumption at the
125% power level is estimated to about 32 W for the complete stack. The lower power
levels had lower layer voltages (i.e., larger difference to the thermoneutral voltage) and
therefore larger heat demand per mole converted gas. They also had lower currents. The
heat demands are estimated to 36 W (100%), 35 W (75%), and 29 W (50%) for the other
power levels. This explains why the stack temperature is lowest (and nearly the same) for
the 100% and 75% levels and highest (and also nearly the same) for the 125% and 50% levels.
The maximum difference in heat demand is 7 W. Taking into account the small stack size
and good thermal conductivity within the stack, this is the reason for the small difference
in stack temperature. While it was not a primary constraint of the power profile, this shows
that it is possible to build the power profile in a way that not only suits the energy system,
but also maintains a flat temperature profile that minimizes mechanical stresses.

A total of 1323 h of load cycles were performed in this manner and evaluated to
estimate the degradation during this type of stack operation. Figure 6 shows a time plot
of the individual layer voltages with daily-averaged values for the experiment with stack
B. We also show the instantaneous cell resistances at the operating point measured by the
LPR method in Figure 7.
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Figure 6. Daily averaged layer voltages (top), relative power (center), current density and stack
temperature (bottom) for stack B. The operational phases are indicated with red numbers.

Figure 7. Daily averaged cell resistances by the LPR method (top), relative power (center), current
density, and stack temperature (bottom) for stack B. Includes only the values measured at the same
time as the intermittent LPR measurements, which were recorded at 0.70 A cm−2. The operational
phases are indicated with red numbers.

No discrete damaging events occurred during this experiment. The overall degrada-
tion was fairly constant during the experiment and amounted on average to 20 Ω cm2 kh−1

(3.6% kh−1) and 14 mVkh−1 (1.2% kh−1). This is strikingly less than we observed above for
the load-cycles with a static gas supply and also less than during the stationary operation
of both stacks. We regard this as a clear indication that a dynamic stack operation that
supports an electrical grid does not cause increased degradation rates in the stack during
co-electrolysis.

We found it difficult to accept that the dynamic gas supply is the deciding factor in this
much reduced degradation rate in comparison to the load-cycles with a static gas supply.
A common degradation phenomenon in Ni/YSZ electrodes is the loss of active nickel from
the functional layer of the electrode. This effect is, in our experience, most pronounced in
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the first ~2–3 kh of operating hours and often the dominating component in the overall
degradation. When most of the finer nickel particles in the vicinity of the electrode have
migrated away, the degradation rates drop. We performed the load cycle operation at stack
A rather at the beginning of the stack’s life, at between 1200 h and 2700 h. For stack B, the
experiment was performed at between 3330 h and 4660 h. This may place both experiments
in a different intrinsic degradation regime. In this case, a direct comparison is difficult.
Unfortunately, this is a common problem for experiments on real stacks. Moreover, the
discrete damaging events at stack A, especially the suspected introduction of poisoning
substances, probably had some long-term impacts as well.

Another potential cause for increased degradation may have been the speed of current
changes, which was performed much faster on stack A than stack B, as no gases had to
be adjusted. An issue could have been significant overshoots in the galvanostatic control
loop, but the current steps were limited in magnitude (to roughly 0.125 A cm−2), which
makes this unlikely in our setup. Moreover, temperature changes, which in theory could
induce thermal strains, were minor (<2 K) for the current steps used. Sufficient amounts of
reactants were always available, and so no starvation upon fast current switches could be
expected. In summary, we could not fully rule out this possibility at the moment, but we
regard it as remote.

Figure 8 shows an accompanying analysis of the product gases for several load
transitions between the load levels, as well as the electrical parameters and feed gas flows.
It does not show a complete profile, but the applied load levels and transitions were
precisely reproduced. During power reductions, the current reduction ramp starts and
then the feed gases follow a few seconds later with a corresponding ramp. During power
increases, the feed gas flows start their ramp-up first, and shortly after the current ramp-up
with the corresponding speed is initiated. In addition, the ramp-up for the steam is always
initiated slightly in advance of the other gases in order to take the latency of the steam
generator into account. In both cases, this led to a short reduction in the conversion ratio
and a short disturbance in the H2/CO ratio in the product gas which could clearly be seen.
Moreover, the measured concentrations follow the change in operating conditions with
about a 60 s delay, which is determined by the dead volume between the stack and FTIR
spectrometer. An additional dead time of 30 s exists between the gases measured by FTIR
and H2 and these two effects correspond to a phase shift and cause a dispersion in the
observed peaks in the measured concentration and especially the H2/CO ratio.

Figure 8. Gas analysis during dynamic load cycles (top), current density and voltages (center), feed
gas flows and measured H2/CO ratio (bottom).
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As expected, for constant loads, the product gas concentrations for the different load
levels are nearly the same and the H2/CO ratios are very similar. Deviations in this
ratio could interfere with up-stream processes. During load transitions, such short-term
deviations are difficult to avoid because of the latency and limited rate-of-change of the feed
gas supply. In this respect, the most critical BOP equipment is the steam generator whereas
the mass flow controllers react more quickly. The change in the electrical parameters of
the stack took about 6 s to achieve a 25% load level change, and the adjustment of gases
took about 80 s. Not surprisingly, short-term (about 2 min) disturbances between 2.1 and
2.8 were clearly observed in this experiment. For load reductions, the flows of steam
and CO2 and electrical current were reduced simultaneously, but for increases, the steam
flow was first increased to always ensure safe H2O/CO2 ratios in the feed. Therefore,
the deviations were usually smaller for load reductions. However, given the short time
to restabilization, we considered them relatively minor and the transitions could still be
optimized in a well-known system. Moreover, the gas transfer between the stack and any
up-stream process can likely be designed in a suitable way to level out these changes in
concentrations (e.g., with a buffer vessel). Our assumption is that load changes in the stack
as performed here were unlikely to be a serious problem for an upstream process, as only a
few per day occurred.

3.3. Stationary Electrolysis

To compare both variants of the load-cycle operation with the degradation rates during
stationary operation, we performed phases of stationary operation with both stacks.

In stack A, two periods (A4 and A5) with differing current densities were conducted
after the load-cycle operation (shown in Figures 3 and 4, refer also to Table 2). A4 corre-
sponded to the 100% and A5 to the 125% power levels of the load profiles used for the
load-cycle operation, and both showed a reduced degradation rate. With stack B, we exe-
cuted several phases of stationary electrolysis that varied in conversion ratio, but all had the
same current density (shown in Figures 9 and 10). Phases B1 and B4 corresponded to the
125% power level. In all cases, very large degradation rates were observed. In particular,
they were significantly larger than those determined for all load-cycle experiments. As we
already pointed out above, the degradation rates early on in stack experiments are often
higher than in later phases of operation, and so this observation was borne out. Independent
of the type of operation, the highest degradation rates occur early in the stack’s life, i.e.,
with the measured rates more influenced than the stationary or dynamic operation.

Figure 9. Daily averaged layer voltages (top), relative power (center), current density, and stack
temperature (bottom) for stationary operation in stack B. The operational phases are indicated with
red numbers.
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Figure 10. Daily averaged cell resistances by the LPR method for the stationary operation of stack B
(top). Averaged relative power (center), current density and stack temperatures (bottom) at the time
of the LPR measurements. The operational phases are marked with red numbers.

The direct comparison of A4 and A5 suggests that an increased current density clearly
impacts the durability; however, it cannot be determined if it is caused by only the j or the
accompanied increase in the cell voltages. In this experiment, the voltages increased well
above the thermo-neutral levels, as the stack was near the end of its useful life.

When comparing B1 to B4, there is a clear dependency of the degradation rates on
the conversion rates. Our experimental findings until now did not suggest a significant
influence of the conversion rate on the degradation rate, unless the conversion rate were
to become very high. However, these were mainly undertaken with steam electrolysis.
We emphasize here that the step from 70% to 60% had a large impact, whereas further
reductions do not change as much. The observed higher degradation at higher conversion
ratios also fits the event C in stack A (see Table 3). In the feed gas we used, the convertible
gases were 66% H2O and 34% CO2. This means that, at a conversion ratio of about 60%
or lower, the electrolysis current could only be sustained by steam conversion, which is
thermodynamically favorable. At higher conversion rates, at least some CO2 must also be
converted. It is currently accepted that, in the case of co-electrolysis, most CO2 is converted
by the reverse water-gas shift reaction (reaction (3)) instead of direct electrochemical
conversion (reaction (2)). The speed of this reaction in regenerating water from CO2 and
H2 (which can then be electrolyzed again) is finite and takes place on the same nickel
surfaces as the electron transfer reactions. In particular, at high conversion rates this
likely causes competition by both reactions for the same surfaces of the functional layer.
Therefore, it seems highly possible that local conditions with relatively high CO2 and H2
and very low H2O concentrations can be formed. Reference [2] recently reported that a
high coverage of adsorbed H2 could inhibit the dissociative CO2 adsorption, which is part
of the direct electrochemical reduction pathway, and thus would decrease the intrinsic
catalytic activity for CO production. In any case, the direct CO2 reduction pathway
anyway requires higher potentials for sustaining the same current. This effect could in
addition lead to a kind of local pseudo-starvation and also increase local potentials, perhaps
up to damaging levels. Even if the current flow shifts to other cell areas, gas mixtures
with very low water activity might promote carbon deposition, which can then damage
the microstructure. Some time ago, we observed that the concentration of methane in
the product gas rises above the values expected in thermodynamic equilibrium at high
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conversion ratios, suggesting a change in the reaction mechanism [16]. This may also relate
to direct CO2 reduction at higher potentials and the formation of side products. We intend
to follow up this observation with further experiments at high conversion ratios, including
dedicated product gas analyses.

3.4. Limitations

Compared to the flexibly operable SOEC laboratory stack, the flexibility is expected
to decrease when the stack is embedded in future applications. This is in particular due
to additional non-electrical components in the gas and thermal management (especially
steam generators and heat exchangers). An extension of the considered system boundaries
from the stack in the laboratory environment to the overall system of an HTCoEL leads to
new aspects that have to be taken into account when considering flexibility. In this respect,
the following requirements and obstacles can be derived, which will have to be analyzed
further in the future:

1. In the context of the system’s overall embedding, the guarantee of a continuous
feed supply to the SOEC and its thermal management represents a major obstacle
to flexibility. Even without the goal of flexibilization, these aspects represent very
sensitive parameters in the system’s design.

2. As the HTCoEL takes place at very high temperatures, sophisticated heat management
is essential for its operation. In order to enable the flexible operation of HTCoEL,
additional heating capacities or buffer storage tanks, for example, must be taken into
account in the design of the heat integration mechanism. This may lead to a loss of
efficiency and an increase in system costs.

3. Consideration of a flexible mode of operation in the design also means an increase in
investment costs for other components. For example, conventionally used compres-
sors are not designed for many load changes, and so higher quality compressors must
be used.

4. Conclusions

SOECs can be flexibly operated with consideration to process-technical conditions
and provide system services. For this purpose, two different requirements with different
objectives must be distinguished: grid-related ones to stabilize grid operation and system-
related ones to stabilize the entire power system. The SOEC lab stack considered in this
study can follow the grid-related requirement profiles of secondary control power and
minute reserve (short ramps with different durations) very quickly and sufficiently effective.
From the SOEC point of view, flat and short cycles were first considered reasonable for
the system utilization and, accordingly, a requirement profile was derived from an energy
turnaround scenario with four different utilization classes (load changes: −50%, −25%,
0%, and +25%).

The relative stack power followed the requested profile with minor overshoots during
transitions. The H2/CO ratio and stack temperature were kept nearly constant at all power
levels. It was disturbed for a very short time period during the transitions and stabilized
very quickly. A 25% power transition, including the adjustment of feed gases and the
restabilization of the product gases, was performed within 2 min. We believe that the
transitions can still be optimized in a commercial system to better match the changes in
electrical current and feed gas supply. The degradation during 1323 h of dynamic operation
was found to be less than that during stationary operation. We do not in fact regard the
dynamic operation to be beneficial for a stack’s state of health, but consider this observation
as a clear sign that it does not necessarily increase degradation rates, and other factors have
a much higher impact on them.

For the development of the system-supporting potentials of SOECs, an early, inte-
grated orientation of further research and technical development with regard to a flexibi-
lization of the overall SOEC system is advantageous.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

8YSZ 8 mol-% yttria-stabilized zirconia
APS atmospheric plasma spraying
CGO Ce0.8Gd0.2O1.9
CR net conversion ratio (utilization) of H2O and CO2
DC direct-current
EDX energy-dispersive X-ray spectroscopy
FTIR Fourier-transform infrared spectroscopy
GDC Ce0.8Gd0.2O1.9
GHG green-house gases
HT high-temperature
HTCoEL high-temperature co-electrolysis
j current density [Ω cm−2]
LCC10 LaMn0.45Co0.35Cu0.2O3
LPR linear polarization resistance
LSCF La0.58Sr0.4Co0.2Fe0.8O3−δ

MCF MnCo1.9Fe0.1O4
MFC mass flow controller
P2X Power-to-X
PEMEL proton-exchange membrane electrolyzer
Pr power relative to nominal stack power
RWGS reverse water–gas shift
RLPR instantaneous slope of the U-j curve [Ω cm2]
SEM scanning electron microscope
SG steam generator
SOEC solid-oxide electrolysis cell
syngas synthesis gas
TCD thermal conductivity detector
Uth thermoneutral voltage
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