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Abstract: With the roll-out of smart meters and the increasing prevalence of distributed energy
resources (DERs) at the residential level, end-users rely on home energy management systems
(HEMSs) that can harness real-time data and employ artificial intelligence techniques to optimally
manage the operation of different DERs, which are targeted toward minimizing the end-user’s
energy bill. In this respect, the performance of the conventional model-based demand response
(DR) management approach may deteriorate due to the inaccuracy of the employed DER operating
models and the probabilistic modeling of uncertain parameters. To overcome the above drawbacks,
this paper develops a novel real-time DR management strategy for a residential household based
on the twin delayed deep deterministic policy gradient (TD3) learning approach. This approach is
model-free, and thus does not rely on knowledge of the distribution of uncertainties or the operating
models and parameters of the DERs. It also enables learning of neural-network-based and fine-
grained DR management policies in a multi-dimensional action space by exploiting high-dimensional
sensory data that encapsulate the uncertainties associated with the renewable generation, appliances’
operating states, utility prices, and outdoor temperature. The proposed method is applied to the
energy management problem for a household with a portfolio of the most prominent types of DERs.
Case studies involving a real-world scenario are used to validate the superior performance of the
proposed method in reducing the household’s energy costs while coping with the multi-source
uncertainties through comprehensive comparisons with the state-of-the-art deep reinforcement
learning (DRL) methods.

Keywords: demand response; distributed energy resources; deep neural network; deep reinforcement
learning; renewable energy; smart grid

1. Introduction
1.1. Background and Motivation

The energy sector is currently undergoing a fundamental transition, with the major
agenda being building a low-carbon future. To achieve this goal, a large-scale integration
of renewable energy sources (RESs) at the generation side and electrification of transport
and heat technologies at the demand side have been witnessed. However, significant
challenges have emerged alongside this transition for electricity systems worldwide, since
RES generation is inherently characterized by its intermittency and uncontrollability, while
the introduction of electric vehicles (EVs) and heating loads contributes to the greater
number of variable electrical demand profiles and higher demand peaks, which are dis-
proportionately higher than the increase in energy consumption [1]. To address these
challenges, an urgent need to enhance the flexibility of electricity systems has arisen in
order to achieve the required generation and demand balancing in a cost-effective manner.
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To this effect, energy storage (ES) and =flexible demand (FD) technologies exhibit a huge
flexibility potential, and have thus attracted unprecedented interest from both the research
and industry communities.

In the arising decentralized and digitalized energy paradigm, a large proportion of RES
generation, FD, and ES technologies will be owned and operated by small-scale residential
end-users, and are thus becoming collectively known as distributed energy resources
(DERs) [2]. Complemented by the increasing prevalence of advanced metering, information,
and communication technologies, advanced home energy management systems (HEMSs)
endow residential end-users with the ability to monitor and proactively control their
consumption, generation, and storage of electricity in close in near-real time in order to
minimize their energy bills. However, developing an effective HEMS for end-users is a
non-trivial task driven by the existence of multi-source uncertainties in the residential
environments. Tied to the end-user’s living habits, the operational times and durations of
the demands of their appliances are usually uncertain and cannot be accurately predicted.
An analogous argument holds for photovoltaic (PV) generation by end-users, as it is
inherently weather-dependent. Furthermore, it poses significant challenges for an HEMS
to devise a demand response (DR) strategy that can respond to the time-varying electricity
prices in a cost-effective fashion. Nevertheless, an effective HEMS is vital for uncovering
and harvesting the flexibility associated with the end-users’ DERs.

1.2. Literature Review

The existing literature that is targeted toward optimal DR management problems
can be predominantly divided into two categories; their key features, advantages, and
limitations are summarized in Table 1.

Table 1. Summary of the existing methods used in optimal demand response (DR) management.

Category Key Features Modeling Method Advantages or Limitations

Model-based

- Relies on full knowledge of
distributed energy resource’s (DER’s)
operating model and parameters
- Relies on an accurate forecast of exogenous
parameters
- Unable to deal with the multi-source
uncertainties effectively and efficiently

Deterministic - Unable to deal with uncertainties

SP

- Unable to accurately estimate the
probability distribution of uncertain
parameters
- Computationally inefficient

RO - Leads to overly conservative solutions

Model-free

- Requires no full system identification
and no a priori knowledge of the system
- Employs data-driven and machine
learning approaches to learn a generalizable
DR strategy
- Computationally efficient at deployment

RL
- Unable to deal with problems with
high-dimensional continuous states
and/or action spaces

DRL

- Capable of handling high-dimensional
continuous states and action spaces
- Effective learning of fine-grained
control policies

The first category focuses on model-based DR management. In [3–7], a deterministic
energy cost minimization problem is formulated and solved to determine the optimal day-
ahead schedule of the different loads of the end-users. However, model-based management
approaches require full knowledge of appliances’ operational models and parameters. Fur-
thermore, such an optimization requires accurate forecasts of exogenous parameters, such
as the utility price patterns and weather-related PV generation. As a result, the inevitable
inaccuracy of the adopted operational model (due to the lack of expert domain knowledge)
and the exogenous forecasts deteriorate the quality (i.e., cost-effectiveness) of the obtained
DR management strategy.
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While the above deterministic optimization approach neglects the intrinsic uncer-
tainties in the DR management problem, the scenario-based stochastic programming (SP)
and robust optimization (RO) approaches have been widely adopted to deal with these
uncertainties. SP generally employs statistical distributions to represent the uncertainties,
whereas RO represents them as feasible sets. In [8], Monte-Carlo simulation was employed
to generate scenarios for the uncertainty associated with the utility prices, and SP was
subsequently solved for optimal DR management. The authors of [9] took into account the
uncertainties associated with an EV’s scheduling availability and the solar photovoltaic
(PV) production in an SP model to minimize the expected energy cost for the end-user.
In [10], a chance-constrained optimization model was formulated to enforce the probabilis-
tic satisfaction of the temporally coupled constraints of flexible loads. In [11], a Lyapunov
optimization model was developed to minimize the energy and thermal discomfort costs of
a smart home equipping a smart heating, ventilation, and air conditioning (HVAC) system.
An RO approach was adopted in [12] to minimize the worst-case cost, accounting for the
uncertainties associated with the end-user’s electricity usage behavior. However, the com-
putational burden of SP increases drastically with the number of employed scenarios [13].
Though scenario reduction techniques have been commonly adopted to reduce the number
of scenarios, significant challenges associated with identifying suitable statistical distri-
butions and selecting a computationally manageable number of representative scenarios
remain [13]. Furthermore, the nature of RO in hedging against the worst-case realization of
the uncertain parameters often causes the obtained solution to be overly conservative [14].

In contrast, the second category focuses on model-free reinforcement-learning (RL)-
based approaches, which have recently arisen as an attractive alternative to their model-
based counterparts. In RL, an agent is trained to construct a near-optimal policy through
repeated interaction with a black-box environment, i.e., without full system identification
and no a priori knowledge of the environment. Furthermore, an RL agent can harness
the increasing influx of data collected from Internet of Things sensors, and thus enables
successive data processing and interpretation so as to train a representation of the DR man-
agement strategies that are generalizable and cope with the environmental uncertainties.
Finally, at deployment, a trained RL model is able to compute real-time DR management
decisions within several milliseconds, constituting a computationally efficient tool for
real-time energy management tasks.

Founded on these favorable properties, the application of different RL methods to
residential DR management problems has recently been witnessed. Among them, the con-
ventional Q-learning (QL) method constitutes the most popular approach, primarily as
a result by its simplicity. QL was employed in [15–17] for optimal appliance scheduling
and in [18–21] for the management of an integrated PV and ES system. However, as a
tabular-based method, QL is susceptible to the “curse of dimensionality”. Concretely, it
constructs a look-up table that discretizes both the state and action domains to estimate
the Q-value function for every state–action pair. As a result, the feedback signal that the
agent obtains regarding the influence of its actions on the environment is often distorted
and may be uninformative. Moreover, the structure of the entire feasible action space may
be adversely affected, which may contribute to sub-optimal policies. Furthermore, this
dimensionality challenge is aggravated in the setting of the DR management problem,
as both the state of the environment (e.g., the state of charge of the ES) and the agent’s
actions (e.g., charging/discharging power of the ES) are continuous and multi-dimensional.
In light of these limitations, the fitted Q-iteration (FQI) method was applied to schedule
thermostatically controlled loads [22,23], an electric water heater [24], and EVs and ES [25].
FQI employs a regression model (based on handcrafted features) to approximate the Q-
value function. However, FQI involves training of the regression model on hundreds of
iterations, and is thus inefficient for use in synergy with a complex regressor, such as a
deep neural network [26].

More recently, there has been a growing interest in combining RL and deep learning.
Deep RL (DRL) techniques promise effective learning of more sophisticated and fine-



Energies 2021, 14, 531 4 of 22

grained control policies than those achieved by traditional RL methods [26] founded
upon look-up tables or shallow regression models. In this regard, the deep Q network
(DQN) method constitutes the most popular approach. The DQN is applied to perform DR
management for shiftable loads [27,28], EVs [25,29], ES [30–32], and HVAC systems [33].
Rather than using a look-up table, the DQN relies on a deep neural network (DNN) to
approximate the Q-value function. As such, the DQN promises effective learning in multi-
dimensional continuous state spaces. Nevertheless, it performs incompetently in problems
with continuous action spaces because the DNN can only output the discrete Q-value
estimates rather than continuous action itself [34]. For instance, the management actions
for ES in [31] were assumed to be fully charging, fully discharging, or staying idle. This
design significantly restrains the flexibility potential of ES and hampers the application of
the DQN in addressing the investigated problem.

Going further, relevant research efforts have been expended in order to develop DRL
methods for continuous control The deep policy gradient (DPG) method was introduced
in [27,28]. The DPG employs a DNN to directly estimate the action selection probability
at a given state, rather than estimating the Q-value function of taking an action at a given
state. However, the actions considered in [27,28] are restricted to the on/off status of
different flexible-load devices, whereas their load schedules are actually optimized through
the solution of a cost minimization problem at the learned on/off status. In addition,
the DPG is often criticized for its low sampling efficiency and the high variance in its
gradient estimates, which lead to slow convergence [35]. To overcome this drawback,
Ref. [36,37] applied the deep deterministic policy gradient (DDPG) method in order to
optimize the schedules of different appliances. The DDPG is an actor–critic DRL method,
which estimates both the policy as well as its associated Q-value during training. As a
result, it substantially alleviates the variance in the gradient estimates and contributes to
better convergence performance. However, a common limitation of the DDPG is that the
learned Q-value function may overestimate the Q-value function, leading to sub-optimal
policies [38].

1.3. Contributions

This paper address the bottlenecks of previously employed model-free approaches
by proposing a novel real-time DR management system based on the twin delayed deep
deterministic policy gradient (TD3) method, which leverages the performance of the DDPG
method. To the best of the authors’ knowledge, this is the first application of the TD3 in an
optimal DR management problem. The value of the proposed DR management system is
demonstrated through case studies using real-world system data. The novel contributions
of this paper are threefold:

- A Markov decision process (MDP) is constructed to formulate the optimal DR manage-
ment problem for a residential household operating with multiple and diverse DERs,
including PV generators, ES units, and three types of FD technologies, namely an EV
with flexible charging and vehicle-to-grid (V2G)/vehicle-to-home (V2H) capabilities,
wet appliances (WAs) with deferrable cycles, and HVAC with certain comfortable
temperature margins.

- A model-free and data-driven approach based on TD3, which does not rely on any
knowledge of the DERs’ operational models and parameters, is proposed to optimize
the real-time DR management strategy. In contrast to previous works where the DR
management problem was addressed by employing discrete control RL methods,
the TD3 method allows learning of neural-network-based, fine-grained DR manage-
ment policies in a multi-dimensional action space by harnessing high-dimensional
sensory data that also encapsulate the system uncertainties.

- Case studies on a real-world scenario substantiate the superior performance of the
proposed method in being more computationally efficient, as well as in achieving a
significantly lower daily energy cost than the state-of-the-art DRL methods, while
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coping with the uncertainties stemming from both the electricity prices and the supply
and demand sides of an end-user’s DERs.

1.4. Paper Organization

The rest of the paper is structured as follows. Section 2 presents the system model and
problem formulation. Section 3 details the proposed TD3-based DR management algorithm,
and its effectiveness is verified with simulation results in Section 4. Finally, Section 5 discusses
the conclusions of this work.

2. System Model and Problem Formulation

The investigated residential household with an HEMS managing a portfolio of as-
sorted DERs is shown in Figure 1. The installation of an on-site, non-dispatchable PV
generator and an integrated ES unit can supply the household’s electricity demand in
addition to acquiring some revenue by selling surplus PV power to the grid. The appli-
ances of a household can generally be separated into two categories: non-shiftable and
shiftable. The shiftable appliances can be further sub-categorized as interruptible and
non-interruptible. The power demand of the non-shiftable appliances (e.g., lighting loads)
must be supplied by the HEMS without any delay when they are active. On the other
hand, the HEMS can delay the consumption of the shiftable appliances. WAs (e.g., washing
machine, dishwasher, tumble dryer), or deferrable appliances, constitute the most represen-
tative types of the non-interruptible appliances. Their load cycles are flexible in scheduling
within a specific time window but cannot be interrupted or altered. In contrast, EVs and
HVAC are characterized as interruptible appliances whose operation times and energy
usage can be flexibly adjusted upon satisfying some specific operating constraints, e.g., the
traveling energy requirement constraint for an EV and the comfortable indoor temperature
range constraint for HVAC.

The HEMS is assumed to operate in slotted time steps, i.e., t ∈ [1, T] with a temporal
resolution ∆t = 0.5 h, where T = 48 is the total number of time steps in an investigated day.
At each time step, the HEMS manages the charging and/or discharging power of the EV, ES,
WAs, and HAVC based on high-dimensional sensory data comprised of the non-shiftable
load, PV generation, outdoor temperature, the state of charge of the ES and EV, and the
utility buy/sell prices, aiming at minimizing the daily energy cost of the household while
maintaining a comfortable indoor temperature range. Next, we present the operating
models of the EV, ES, WAs, and HVAC, as well as the model-based daily cost minimization
problem for their management.

Utility company

Smart meter
EV

PV generator

ES 

End-user household

Home energy 
management system

HVAC  WA

Information flow Power flow

Non-shiftable 
load

Figure 1. Schematic representation of the investigated household operating multiple and diverse DERs.
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2.1. Electric Vehicle (EV) and Energy Storage (ES)

The EV is flexible in terms of the time periods in which it can acquire the amount of
energy needed for its operation, as long as this is completed within a scheduling interval
allowed by its users. In addition, the EV can inject stored energy during this interval
(i.e., it exhibits V2G/V2H capabilities). The charging/discharging power of the EV can
be continuously regulated between 0 and a maximum level, and it needs to fulfill an
energy requirement for the envisaged journeys within the scheduling interval (with grid
connection). Each EV is assumed to depart from its grid connection point only once within
the horizon of the coordination problem (at step tdep) and subsequently arrive back at
its grid connection point only once during the same horizon (at step tarr). The operating
model of the EV includes the following constraints:

Constraint (1) corresponds to the EV battery’s energy balance, taking into account
the energy needed for commuting purposes as well as the losses caused by charging and
discharging efficiencies.

Eev
t+1 = Eev

t + Pevc
t ∆tηevc − Pevd

t ∆t/ηevd − Etr
t , ∀t (1)

Constraint (2) expresses the lower and upper bounds of the battery’s energy content.

Eev,min ≤ Eev
t ≤ Eev,max, ∀t (2)

Constraints (3)–(4) represent the limits of the battery’s charging/discharging power,
which depends on its power capacity Pev,max and on if the EV is available for scheduling
(Aev

t = 1) or not (Aev
t = 0), while the binary variable Vev

t is employed to avoid simultaneous
charging and discharging.

0 ≤ Pevc
t ≤ Vev

t Aev
t Pev,max, ∀t (3)

0 ≤ Pevd
t ≤ (1−Vev

t )Aev
t Pev,max, ∀t∀t (4)

Finally, constraint (5) ensures that the EV is sufficiently charged upon departure to
satisfy the commuting requirements of its users.

Eev
tdep ≥∑

t
Etr

t (5)

The operating model of the ES [39] is similar to that of the EV apart from the fact that
the traveling energy requirement Etr

t and the scheduling availability Aev
t are irrelevant and

are thus removed.

2.2. Wet Appliances (WAs)

The operation of WAs is based on the execution of user-prescribed cycles, which
comprise a sequence of sub-processes occurring in a fixed sequence with a generally
fixed duration and fixed power demand, which are immutable [40]. Their flexibility is
measured by the ability to defer these cycles up to a maximum delay limit set by their users.
Without loss of generality, each WA is assumed to be activated for one operational cycle
per day by its users only once during the temporal horizon between the cycle’s earliest
initiation time tin and latest termination time tter. The operating model of the WAs includes
the following constraints:

Constraint (6) ensures that the demand activity of the WAs can be carried out once at
most during the time window determined by tin and tter.

tter−Tdur+1

∑
t=tin

Vwa
t = 1 (6)
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Constraint (7) expresses that the power demand of the WAs at each time step is
dependent on the initiation time, Awa

t , Tdur, and Pcyc
τ , ∀τ ∈ [1, Tdur].

Pwa
t =

Tdur

∑
τ=1

Vwa
t+1−τ Awa

t Pcyc
τ , ∀t (7)

2.3. Heating, Ventilation, and Air Conditioning (HVAC)

The flexibility of the examined HVAC systems lies in that an indoor temperature range
can be specified by the users so that their thermal comfort is preserved. The representation
of the thermal comfort is a non-trivial task, as it depends on many diverse factors (e.g.,
air temperature, mean radiant temperature, relative humidity, air speed, etc.). Following
the practice of [41], a comfortable temperature range is employed as the representation of
thermal comfort:

Hmin ≤ Hin
t ≤ Hmax, ∀t (8)

Equation (9) represents the dynamic thermal behavior of the heated/cooled space,
following the first-order model presented in [41]:

Hin
t+1 = Hin

t − (Hin
t − Hout

t + ηhvacRhvacPhvac
t )∆t/(ChvacRhvac), ∀t (9)

where Chvac and Rhvac are, respectively, the thermal capacity and resistance of the heated/cooled
space. ηhvac is the energy efficiency of HVAC; this value is positive for cooling and negative
for heating.

Equation (10) expresses the electric power limits of the HVAC system:

0 ≤ Phvac
t ≤ Phvac,max, ∀t (10)

2.4. Daily Energy Cost Minimization

The net demand (positive)/generation (negative) lt of the household at step t can be
expressed as:

lt = Pd
t − Ppv

t + Pevc
t − Pevd

t + Pesc
t − Pesd

t + Pwa
t + Phvac

t (11)

Finally, the daily energy cost minimization problem for the household can be formu-
lated as:

min
T

∑
t=1

Ct (12)

where Ct = λ+
t [lt]

+ + λ−t [lt]
− (13)

s.t. (1)− (11) (14)

where operators [·]+/− = max / min{·, 0} indicate taking the maximum/minimum value
between · and 0. The first term in (12) represents the cost of purchasing electricity from the
grid, while the second term represents the revenue from selling excess PV production, ES,
and EV discharge to the grid.

Note that problems (12)–(14) are a mixed-integer linear program (MILP) that provides
a model-based DR management strategy that aims to minimize the daily energy cost,
assuming full knowledge of the operating models and parameters of all the DERs and a
perfect prediction of all the uncertain parameters. As such, the optimal cost in (12) can be
treated as a lower bound on the cost (since the uncertainties are completely neglected),
which later provides a theoretical baseline for the model-free DRL DR management strategy.
As discussed in Section 1.2, the SP approach is computationally inefficient in optimizing
the DR management strategy while dealing with the multi-source system uncertainties.
To address this, we propose an alternative approach for addressing the real-time DR
management problem.
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3. DR Management as an MDP

A finite Markov decision process (MDP) with discrete time steps is applied to for-
mulate the real-time DR management problem. The time interval between two adjacent
time steps is 30 min (the proposed approach can be readily extended to employ a finer
temporal resolution). The HEMS constitutes the agent, while the environment is composed
of many objects outside the agent (e.g., utility company, PV generator, non-shiftable loads,
ES, EV), as shown in Figure 2. In the context of RL, an agent acts in an environment by
sequentially taking actions over a sequence of time steps to maximize a cumulative reward.
In general, RL can be described as an MDP that includes: (1) a state space S ; (2) an action
space A; (3) a transition dynamics distribution with conditional transition probability
p(st+1|st, at), which models the uncertainty in the evolution of states of the environment
based on the executed actions of the agent; and (4) a reward r: S ×A → R. The detailed
MDP formulation for the DR management problem is detailed below.

PV generator

Non-shiftable load Utility grid

Indoor & outdoor
temperatures

EV

ES 

WA

HEMS Agent

𝑎𝑡𝑟𝑡 Environment

rewardstate  action 
𝑠𝑡

𝒕 + 𝟏𝒕

HVAC

Figure 2. Interactions between agent and environment in the Markov decision process (MDP).

(1) State: The state st at step t received by the HEMS agent entails the influence of
its action on the status of the environment. st is identified as an 11-dimensional vector
st = [t, λ+

t , λ−t , Hout
t , Hin

t , Pd
t , Ppv

t , Eev
t , Ees

t , Aev
t , Awa

t ] ∈ S , which comprises the following
sensory information: the time step identifier t; the utility buy price λ+

t and sell price λ−t ;
the outdoor Hout

t and indoor Hin
t temperatures; the non-shiftable demand Pd

i,t; the PV
production Ppv

t ; the energy content of the EV EeV
t and ES EeS

t ; and the EV’s Aev
t and WAs’

Awa
t scheduling availability indicators.

(2) Action: The action at at step t encompasses its employed management decisions
for the controllable DERs (including the EV, ES, WAs, and HVAC). It is defined as at =
[aev

t , aes
t , awa

t , ahvac
t ] ∈ A, where aev

t and aes
t ∈ [−1, 1] represent the size of the charging

(positive) and discharging (negative) power of the EV and ES as a percentage of Pev,max and
Pes,max, awa

t = Vwa
t ∈ {0, 1} represents whether the cycle of the WAs is initiated (awa

t = 1)
or not (awa

t = 0) at step t, and ahvac
t represents the magnitude of the input power of the

HVAC as a ratio of Phvac,max.
After the execution of action at, the environment maps at to the respective power

output/input of each DER and subsequently determines the next state st+1 and reward rt.
Based on the EV operating model presented in Section 2.1, mutually exclusive quantities
Pevc

i,t and Pevd
i,t (as EVs cannot charge and discharge at the same time step) are managed by

action aev
t , and are also limited by the EV’s parameters Aev

t , Eev
t , Eev,min, Eev,max, ηevc, and

ηevd.
Pevc

t = min
(
aev

t Aev
t Pev,max, (Eev,max − Eev

t )/(ηevc∆t)
)

(15)

Pevd
t = min

(
− aev

t Aev
t Pev,max, (Eev

t − Eev,min)ηevd/∆t
)

(16)
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Based on Pevc
t and Pevd

t , the energy context of the EV battery at the next time step Eev
i,t+1

can be written as (17).

Eev
t+1 = Eev

t + Pevc
t ∆tηevc + Pevd

t ∆t/ηevd − Etr
t (17)

Quantities Pesc
t , Pesd

t , and Ees
t+1 can be obtained following the ES operating model

(Section 2.1) and the same logic of the above derivation for (15)–(17), but they neglect the
charging availability.

Based on the WA operating model presented in Section 2.2, the power demand of the
WAs Pwa

t is managed by action awa
t , and is also affected by the WA parameters Tdur, Awa

t ,
and Pcyc

τ , ∀τ ∈ [1, Tdur].

Pwa
t = ∑Tdur

τ=1 awa
t+1−τ Awa

t Pcyc
τ (18)

Finally, on the basis of the HVAC operating model in Section 2.3, the indoor tempera-
ture at the next time step Hin

t+1 based on Phvac
t can be expressed as:

Hin
t+1 = Hin

t − (Hin
t − Hout

t + ηhvacRhvacahvac
t Phvac,max)∆t/(ChvacRhvac) (19)

(3) Reward: Since the objective of the HEMS agent is to minimize the total energy
cost of the household while maintaining a comfortable indoor temperature as well as
ensuring the satisfaction of all DERs’ operating constraints, the reward function is designed
to include the following three components:

1) rcost
t , which is as the negative total energy cost of the household:

rcost
t = −Ct = −(λ+

t [l
n
t ]

+ + λ−[Pn
t ]
−) (20)

2) rcom
t , which serves as a penalty for indoor temperature deviation from a desirable

range, with κ1 denoting a positive weighting factor:

rcom
t = κ1([Hin

t − Hmax]+ + [Hmin − Hin
t ]+) (21)

3) rpen
t , which serves as a penalty for the constraint violations of the DERs, with κ2

denoting a positive weighting factor:

rpen
t =

{
−κ2[Eev

t −∑t Etr
t ]

+, if t = tdep

−κ2|∑tter−Tdur+1
t=tin awa

t − 1|, if t= tter
i −Tdur+1

(22)

Note that in (15)–(16), the charging and discharging power of the EV only respects the
minimum/maximum power and energy limits of the EV, but does not ensure that its state-
of-charge level is sufficient to cover the energy requirements for traveling, i.e., constraint (5)
may not be satisfied. Furthermore, constraint (6) should be satisfied at the last initiation
step to ensure the daily activation frequency of the WAs. To adequately account for these
inter-temporal constraints of the EV and WAs, we introduce a penalty term rpen

t in the
reward function.

The final reward function rt can be expressed as:

rt = rcost
i,t + rcom

t + rpen
t (23)

(4) Performance and value functions: The agent employs a policy π to interact with
the MDP and emit a trajectory of states, actions, and rewards: s1, a1, r1, s2, a2, r2, ... over
S × A × R. The agents’ objective is to learn a policy that maximizes the cumulative
discounted reward from the start state s1, which is termed as the performance function
J(π) = E

[
R1|π

]
= Es∼ρπ ,a ∼π [r], where ρπ denotes the discounted state distribution

and Rt = ∑T
l=t γ(l−t)rl is the discounted reward, where γ ∈ [0, 1] is the discount factor.

Furthermore, the Q-value function Qπ(s, a) = E
[
R1|s1 = s, a1 = a; π

]
forms an estimation
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of the discounted reward given an action a at state s and following the policy π from the
succeeding states onwards.

4. Proposed TD3-Based DR Management Strategy

As discussed in Section 1.2, despite the popularity of applying QL and DQN for
DR management problems in the existing literature, they both suffer, to some extent,
from the curse of dimensionality driven by their need to discretize the state and/or the
action spaces. Furthermore, the discretization may hinder the decision-making process
of the HEMS agent, leading to sub-optimal DR management policies. The DPG method
is criticized for its low sampling efficiencies and high variance in its gradient estimator.
In order to address these challenges, the proposed DR management strategy is founded on
the TD3 method [38], the overall workflow of which is presented in Figure 3. TD3 leverages
the performance of the state-of-the-art DRL method for continuous control, i.e., DDPG.
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Figure 3. Overall workflow of the proposed TD3-based DR management method.

TD3 features an actor–critic architecture, which employs (a) a parameterized critic
network Qθ that inputs a state st and action at and outputs an estimate of the Q-value
function Qθ(st, at) and (b) a parameterized actor network µφ that inputs a state st and
implements a policy improvement task that updates the policy with respect to the es-
timated Q-value function and outputs a continuous action µφ(st). QL and DQN both
feature a greedy maximization of the Q-value function concerning policy improvement,
i.e., µ(st+1) = arg maxat+1 Q(st+1, at+1). However, such a greedy strategy exhibits signifi-
cant intractability in the high-dimensional continuous action domain, since the Q-value
function needs to be globally maximized at every step. Instead, TD3 utilizes the actor µ to
produce an action µφ(st+1) for the next state. The critic is responsible for policy evaluation,
or criticizing the policy obtained by the actor by generating a Q-value estimate with tem-
poral difference (TD) learning. This is achieved by minimizing the following regression
loss function:

Lθ = E
[(

rt + γQθ

(
st+1, µφ(st+1)

)
−Qθ(st, at)

)2
]

(24)

where rt + γQθ

(
st+1, µ(st+1)

)
denotes the target Q-value at step t. Instead of globally

maximizing Qθ(st, at), the critic evaluates the gradients ∇aQθ(st, at), which indicate the
directions for the change of action to purse higher estimated Q-values. As a result, the
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weights of the actor are updated in the direction of the performance gradient ∇φ J(µφ),
which is derived according to the deterministic policy gradient theorem [42]:

∇φ J(µφ) = Es∼ρµ [∇aQθ(s, a)|a=µφ(s)∇φµφ(s)]. (25)

Exploration vs. exploitation: Maintaining an effective trade-off between exploration
and exploitation plays a vital role in effective RL learning. To aid the agent in exploring
the environment thoroughly, an exploration/behavior policy µ̂(st) is constructed, which
imposes a random Gaussian noise Nt(0, σ2

t I) on the actor’s output µφ(st):

µ̂(st) = µφ(st) +Nt(0, σ2
t I). (26)

It is well recognized that RL’s learning process tends to exhibit instability or even
divergence when a DNN is employed as a nonlinear regressor for the Q-value function.
To tackle such instability, previous works have put forward two tailored mechanisms.

Target Networks: Observe in (24) that the online network Qθ is utilized for both the
current Q-value estimation Qθ(st, at) and the target Q-value rt + γQθ(st+1, µφ(st+1)). As a
consequence, the Q-value update is prone to oscillations. To remedy this instability, a target
network [26] can be introduced for the actor and critic, denoted as µφ′(st) and Qθ′(st, at),
respectively. They are only used for evaluating the target values. Furthermore, the weights
of these target networks can be updated by having them gradually track the weights of
the online networks as θ′ ← υθ + (1− υ)θ′ with υ� 1. Similarly to the idea of temporally
freezing the Q-target value during training (in DQN), but modified for the actor–critic RL
method, the rationale behind the soft update is to restrict the target values (for both actor
and critic) to change slowly for an enhanced learning stability.

Experience Replay: Since the experiences are sequentially generated through the
agent’s interaction with the environment, there exists temporal correlation in these experi-
ences, which can degrade machine learning models substantially. The employment of an
experience replay buffer B [26] resolves this challenge. It is a cache that pools the past expe-
riences and uniformly samples a minibatch for training the actor and critic. Mixing recent
with previous experiences alleviates the temporal correlations of the sampled experiences.
Furthermore, it enables samples to be reused, which enhances the sampling efficiency.

Despite the remarkable success that DDPG has received in various power system and
smart grid applications, it is often criticized for the overestimation bias of the Q-value
functions, which can result in sub-optimal policies [38]. TD3 is tailored to address this
challenge by concurrently learning two Q-value functions instead of one.

Double Critic Networks: In RL methods focusing on learning the Q-value, such as QL
and DQN, function approximation errors may arise, which can result in an overestimated
Q-value and, consequently, sub-optimal policies [43,44]. Concretely, the target Q-values
used by QL and DQN can be written as:

yQL = rt + γQ
(
st+1, arg max

at+1
Q(st+1, at+1)

)
(27)

yDQN = rt + γQθ′
(
st+1, arg max

at+1
Qθ′(st+1, at+1)

)
(28)

It can be observed that QL uses the same Q-table both to select (in the arg max operator)
and to evaluate (calculate the target Q-value, which is subsequently used in the Q-value
update) an action. Analogously, DQN uses the same set of neural network weights θ′

to both select and evaluate an action. This renders it more likely to select overestimated
Q-values, leading to overoptimistic value estimates. Furthermore, such an overestimation
bias can be propagated in time through the Bellman equation and can be developed into a
more significant bias after many updates if left unnoticed. In the case of DDPG, since the
policy µφ is optimized with respect to the critic Qθ , using the same estimate in the target
update of Qθ can create a similar overestimation of Qθ . This may adversely affect the policy
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quality, since sub-optimal actions may be highly rated by a sub-optimal critic, reinforcing
the selection of these actions in the subsequent policy updates.

To address the drawback of using a single Q-value estimator, we propose a variant
of the Double QL method [43] and adopt it in the actor–critic setting in order to mitigate
the risk of having an overestimated Q-value. To achieve this, we introduce two indepen-
dently trained online critic networks (Qθ1 , Qθ2) and their corresponding target networks(

Qθ′1
, Qθ′2

)
. It is assumed that Qθ1 /Qθ2 are the potentially biased/less biased Q-value

estimates, respectively. Since a Q-value estimate that suffers from overestimation bias can
be used as an approximated upper bound for the true value estimate, we use Qθ1 as the
upper bound of Qθ2 . Equivalently, this is results in taking the minimum between these two
estimates to get the target Q-value:

y = rτ + γ min
j=1,2

Qθ′j

(
sτ+1, µclip(sτ+1)

)
(29)

Another potential failure in DDPG is that if the Q-function approximator develops an
incorrect sharp peak for some actions, the policy will quickly overfit to such narrow peaks,
leading to incorrect behavior. This can be averted by smoothing out the Q-function over
similar actions, which target policy smoothing is designed to do. In this effect, actions used
to form the critic target are based on the target policy µφ′ , but with clipped noise added on
each action dimension. After adding the clipped noise, the target action is clipped again to
lie in the valid action range [aLow, aHigh]. The target actions can be expressed as:

µclip (sτ+1) = clip
(

µφ′(sτ+1) + clip(ε,−b, b), aLow, aHigh

)
, ε ∼ N

(
0, σ2

)
(30)

As discussed previously, target networks can be used to reduce the error over multiple
updates, while policy updates on states corresponding to high TD error may lead to
divergent learning behavior. As a result, TD3 updates the policy network at a lower
frequency than the critic network in order to sufficiently minimize error before introducing
a policy update. In this effect, a modification is introduced only to update the policy and
target networks after Z updates to the critic.

By incorporating the target network, experience replay, and the above-mentioned
modifications, the critic loss in (24) can be stated as the weighted mean-squared TD error
calculated based on the training data, i.e., a minibatch of prioritized sampled K experiences.

Lθj = K−1
K

∑
k=1

δ2
k,j (31)

where the TD error for each critic can be expressed as:

δk,j = rk,j + γ min
j=1,2

Qθ′j

(
sk+1,jµclip

(
sk+1,j

))
−Qθj

(
sk,jak,j

)
(32)

The policy gradient for the actor update in (25) can be restated in a similar fashion:

∇φ J
(
µφ

)
= K−1

K

∑
k=1
∇aQθ1(sk,1, a)

∣∣∣∣∣
a=µφ(sk,1)

∇φµφ(sk,1) (33)

Finally, the following updates are applied to the weights of the online critic networks:

θj ← θj − αθ∇θj Lθj (34)

and after Z learning steps, the online actor and the target networks are updated according to:

φ← φ− αφ∇φ J
(
µφ

)
(35)
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θ′j ← υθj + (1− υ)θ′j and φ′ ← υφ + (1− υ)φ′ (36)

where αθ and αφ are the learning rates of the gradient descent algorithm and υ is the soft
update rate.

Algorithm 1 details the training of the DNNs employed by TD3, and the proposed
TD3-based DR management strategy is outlined in Algorithm 2. After the training phase,
we firstly load the weight of the online actor network that is trained by Algorithm 1. For a
specific test day, at each time step t, the agent observes the current environment state
st and determines its DR management action according to the policy learned by TD3.
The requested DR actions are then mapped to the input/output of different DERs of the
household (Section 3).

Algorithm 1 Training procedure of TD3

1: Initialize critic networks Qθ1 and Qθ2 and actor network µφ with random weights θ1,
θ2, and φ.

2: Initialize target networks with weights θ′1 ← θ1, θ′2 ← θ2, and φ′ ← φ.
3: for episode (i.e., day) e = 1 : Etrain do
4: Obtain the initial state s1 from the training set.
5: Initialize a random Gaussian exploration noise Nt.
6: for time step (i.e., 30 min) t = 1 : T do
7: The HEMS agent selects action at using (26).
8: Execute at in the environment, observe rt using (23), and transit to the new state

st+1
9: Store (st, at, rt, st+1) in the experience replay buffer.

10: Sample a minibatch K of experiences from reply buffer.
11: Compute target actions µclip (sτ+1) using (30).
12: Update the online critics using (34).
13: if τ mod Z then then
14: Update the online actor using (35).
15: Update the target networks using (36).
16: end if
17: end for
18: end for

Algorithm 2 TD3-based DR management strategy

1: Load the DNN parameter φ∗ of the online actor network µφ∗ trained by Algorithm 1.
2: for test day = 1 : Etest do
3: Obtain the initial state s1 of the test day.
4: for time step = 1 : T do
5: Set the DR management action as at = µφ∗(st).
6: Execute action at in the environment, calculate reward rt, and transit to the new

state st+1.
7: end for
8: end for

5. Results and Discussion
5.1. Simulation Setup and Implementation

The proposed TD3-based DR management strategy was trained and tested on a real-
world scenario using household solar PV and non-shiftable load data published by Ausgrid,
Australia. The employed data were collected from 1 June 2012 to 31 May 2013 (53 weeks)
with a half-hourly resolution. The data for household outdoor temperature were collected
from open Australian government database [45].

The assumed operating parameters of the EV, ES, WAs, and HVAC were derived
from [41,46] and are provided in Table 2. Concretely, it was assumed that an EV user makes
two trips per day; each is defined by a departure time, an arrival time, and an energy
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requirement. The grid connection period of the EV was assumed to be between the end
of the second and the start of its first trip. In order to capture the inherent uncertainty
residing in the DERs’ operating models, the following parameters were modeled as random
variables: the EV departure and arrival times, the energy requirements, the initial energy
level in the EV and ES batteries, the earliest initiation and latest termination times of the
WAs, and the initial indoor temperature of the HVAC. To this end, we employed truncated
normal distribution T N for parameters related to temperature and energy and discrete
uniform distribution for parameters related to time, as detailed in Table 3.

In the simulations, we uniformly picked one day from each of the 53 weeks to form the
test set and used the rest of days as the training set. The utility buy price data follow the
time-of-use structure provided in [45], partitioned into summer and winter periods, while the
utility sell price is fixed at 0.04 AUD/kWh [47] throughout the year.

Table 2. Operating parameters for the electric vehicle (EV), energy storage (ES), wet appliances
(WAs), and heating, ventilation, and air conditioning (HVAC).

EV ES WA HVAC

Parameter Value Parameter Value Parameter Value Parameter Value

Tdur (h) 2 Hmin, Hmax (◦C) * 19, 24 Ees.max (kWh) 10 Eev.max (kWh) 15

Pcyc
1 (kW) 0.56 Chvac (kWh/◦F) 0.33 Ees,min (kWh) 2 Eev,min (kWh) 3

Pcyc
2 (kW) 0.56 Rhvac (◦F/kW) 13.5 Ees,max (kWh) 10 Eev,max (kWh) 15

Pcyc
3 (kW) 0.63 ηhvac 2.2 ηesc/ηesd 0.95 ηevc/ηevd 0.93

Pcyc
4 (kW) 0.63 Phvac,max (kW) 1.75 Pes,max (kW) 4 Pev,max (kW) 6

* ◦F = ◦C * 1.8 + 32.

Table 3. Distributions of the operating parameters of the EV, ES, WAs, and HVAC.

Parameter Distribution

Eev
0 (kWh) T N (9, 12, 6, 12)

Ees
0 (kWh) T N (6, 12, 4, 8)

Etr (kWh) T N (7.12, 0.7122, 5.696, 8.544)
tdep T N (8, 12, 6, 10)
tarr T N (18, 12, 16, 20)
tin T N (21, 12, 19, 23)
tter T N (7, 12, 5, 9)

Tin
0 (◦C) T N (21, 12, 19, 24)

The TD3 algorithm employed two DNNs (i.e., online and target) for the actor and the
two critics. The Adam optimizer [48] was used for learning the neural network weights
with learning rates of αφ = 10−4 and αθ = 10−3 for the actor and critics, respectively. A soft
update rate of ν = 10−3 was used. A discount factor of γ = 0.99 was used for the critics.
As shown in Figure 3, the actor and the critics all had two hidden layers with 128 and 64
neurons, respectively. Both the actor and critic employed rectified non-linearity (ReLU) [49]
for all hidden layers. The output layer of the actor was a softsign layer [50] to bound the
continuous actions. The minibatch size and the replay buffer size were set as 128 and
105, respectively. All investigated coordination methods were implemented in Python.
The training process of the examined learning algorithms was carried out on a computer
with a four-core 2.80 GHz Intel(R) Core(TM) i7-7700HQ CPU and 16 GB of RAM, and the
total training time for TD3 was 949 s.

5.2. Performance Evaluation

We benchmarked the performance of TD3 with DQN and DPG (which are widely
adopted in the existing literature on DR management problems, as discussed in Section 1.2)
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in order to validate its performance superiority. Furthermore, we solved the daily cost
minimization problem (MILP) presented in Section 2.4 and calculated the average daily
energy cost over the 53 test days (as depicted by the black horizontal line in Figure 4).
In this case, C∗ = 368 cents can be regarded as the theoretical optimal solution of the
investigated DR management problem. In other words, it represents a lower bound on
the daily cost, indicating how far from the optimum the DRL-based DR management
strategy is.

To assess the average performance as well as the variability of the examined DRL-
based methods, 10 different random seeds were generated, and each DRL method was
trained for 20,000 epochs for each seed. Each epoch signifies a random day selected from
the training dataset consisting of 48 time steps. During training, the cost effectiveness
of the learned DR strategy was evaluated on the test dataset every 200 epochs. Figure 4
depicts the average daily cost C (over the 53 test days) for the investigated DRL methods
with 10 random seeds. The mean and the standard deviation of the average daily cost
over the 10 seeds are displayed by solid curves and shaded areas, respectively, in Figure 4.
The cumulative daily energy costs of the 53 test days under TD3 and all examined baseline
methods are presented in Figure 5.
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Figure 4. Average daily cost evaluated over the test dataset for the examined deep reinforcement
learning (DRL) methods with 10 different random seeds.
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Figure 5. Cumulative daily costs of the twin delayed deep deterministic policy gradient (TD3) and
all the baseline methods over the 53 test days.

As observed in Figure 4, TD3 improves the cost effectiveness of its DR management
policy gradually with a declining standard deviation. Ultimately, only TD3 converges to a
near-optimal solution. TD3 exhibits superior performance with regard to the two baseline
DRL methods, exhibiting the lowest average daily cost of 374 cents (only 1.85% above
the theoretical optimum C∗) and achieving the lowest standard deviation of 4 cents at
convergence. In relative terms, TD3 outperforms DQN and DPG with 12.45%/5.93% lower
average daily cost and 29.35%/44.50% lower standard deviation, respectively. In addition,
it is evident that the continuous DR management strategy (employing TD3 and DPG) is
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more cost effective than the discrete one (employing DQN), since the former enables the
agent to discover more a fine-grained DR management strategy in a multi-dimensional
continuous action space. A more comprehensive illustration of the value of the continuous
DR management strategy is presented in Section 5.3. Going further, TD3 exhibits superior
convergence performance with respect to DPG in terms of the obtained average daily cost
and learning stability. This superior performance is attributed to TD3’s higher sampling
efficiency in computing the policy gradient as well as the policy evaluation enabled by the
joint learning of the critic in addition to the policy. On the contrary, DPG features no policy
evaluation, contributing to high variance in its policy gradient estimation. Furthermore,
TD3 updates the actor and critics in an online manner (i.e., the updates are performed
on every time step), whereas a trajectory of experiences must be obtained before an up-
date of the policy network can be introduced in DPG. Finally, TD3 incorporates tailored
mechanisms to mitigate the overestimation of the Q-value functions, evading erroneous
convergence to sub-optimal policies and thereby improving the convergence performance.
As depicted in Figure 5, the cumulative costs obtained by the two benchmark approaches,
DQN (green solid curve) and DPG (blue solid curve), are 14.22% and 6.30% higher than
the theoretical optimum, respectively. In comparison, the cumulative cost under TD3 (red
solid curve) is only 1.88% higher than the theoretical optimum (black dashed curve).

To further elaborate on the generalization capability of the learned DR management
policies of TD3 with respect to the system uncertainties, we investigated the obtained DR
schedules of the household for a representative summer and winter day selected from the
53 test days (reflecting the seasonable variations in the utility price, PV generation, and
outdoor temperature), as displayed in Figures 6 and 7, respectively.

The summer day (Figure 6) features ample PV generation and high outdoor temper-
ature. At the beginning of the day, the HEMS learns not to operate the HVAC system to
conserve energy and reduce cost, since the outdoor temperature is relatively low but is well
above the minimum comfortable temperature (19 ◦C). A surge in the outdoor temperature
is observed at around 5:00. As a result, the indoor temperature also increases (with a
time lag) and the HVAC system is only scheduled to be on when the indoor temperature
reaches the maximum comfortable temperature (24 ◦C) at around 8:00. During the mid-day
periods (9:00–16:00), the operation of the HVAC system is optimized such that it can absorb
a significant portion of the plentiful PV generation during these periods while maintaining
the indoor temperature marginally below 24 ◦C in order to minimize cost. Furthermore,
the HEMS also learns to absorb the PV generation by charging the ES instead of selling it
to the grid because the utility buy price during the mid-day periods is still higher than the
unfavorable sell price. During peak periods (17:00–22:00) where the PV generation is absent,
it is observed that the peak demand is sufficiently flattened by discharging the ES and EV
(which are both scheduled to charge during the cheapest off-peak periods). As observed in
Figure 6, the learned DR management policy contributes 13 h (from 9:00–22:00) with net
zero cost in total by optimally scheduling the complementary DERs and harnessing their
flexibility potentials.

The winter day (Figure 7) is distinguished by scarce PV generation and low outdoor
temperature. At the beginning of the day, the outdoor temperature is significant lower
than the minimum comfortable temperature; the HEMS adapts to this exogenous condition
by turning on the HVAC system for heating and conservatively scheduling it to sustain
the indoor temperature marginally above 19 ◦C. After 8:00, accompanied by the increase
of the utility buy price (Figure 7a), the HEMS learns to turn off the HVAC system to save
cost. Subsequently, it is observed that the indoor temperature varies (with a time delay)
with the outdoor temperature until the end of the day without operating the HVAC system.
Similarly to the trend observed in Figure 6, the HEMS learns to charge the ES and EV
sufficiently during the off-peak periods and discharge them in the morning (8:00–10:00)
and afternoon/evening (14:00–22:00) peak demand periods, leading to a total of 14 h with
net zero cost.



Energies 2021, 14, 531 17 of 22

It can be concluded that the learned DR management policy exhibits excellent general-
ization performance with respect to the seasonal and daily variations associated with the
utility prices, PV generation, residential demand, and outdoor temperature. Furthermore,
the obtained DR management policies enable comprehensive harnessing of the flexibility
value of complementary DERs, thus promising efficient utilization of RESs and substantial
cost savings for the end-user.
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Figure 6. (a) Utility buy and sell prices, (b) aggregated schedule of flexible DERs, (c) indoor and outdoor temperature,
and (d) net demand/generation of the household with/without flexible DERs for the investigated summer day under the
TD3 method.
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Figure 7. (a) Utility buy and sell prices, (b) aggregated schedule of flexible DERs, (c) indoor and outdoor temperature,
and (d) net demand/generation of the household with/without flexible DERs for the investigated winter day under the
TD3 method.

5.3. Benefits of Continuous DR Management

This section more deeply explores the physical significance of the continuous DR
management strategy enabled by TD3 by comparing it to DQN (a commonly employed
discrete DRL method in this research topic). For DQN’s implementation, actions aev

t and
aes

t are discretized in five integer values representing charging or discharging levels of
0%, 50%, and 100% of the maximum power limits of the EV and ES. Actions ahvac

t is also
discretized in five integer values representing a power demand of 0%, 25%, 50%, 75%, and
100% of the maximum power input of the HVAC. Figure 8 illustrates the DR schedules
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of the household obtained using DQN for the same summer day as that examined in the
previous section.

Driven by the employed discretization of actions, the power input and/or output of
the HVAC, EV, and ES can only be adjusted in discrete blocks, as mentioned above. In the
case of the HVAC system, its demand profile is characterized by lumpiness, which exhibits
significant fluctuations with respect to the one observed in Figure 6b, since the HEMS can
now only adjust the power input of HVAC in five discrete blocks. This, in turn, leads to the
fluctuations in the indoor temperature. In the case of the EV, since its charging power can
no longer be continuously regulated, the HEMS charges the EV more during the off-peak
period in order to guarantee the fulfillment of its traveling energy requirement. In the
case of ES, owning to the lumpiness of the HVAC demand during the mid-day periods,
the HEMS charges the ES more during these periods in order to fully consume the PV
generation. However, since the power output of the PV generator is not controllable, this
inevitably leads to purchasing of superfluous electricity (i.e., overcharging of ES) at high
utility buy prices (Figure 8a). As a consequence of the charging activities of the EV and ES,
significant reverse power flow (from selling excessive EV and ES discharges to the gird)
is witnessed during the peak demand periods. Overall, the EV and ES are scheduled to
charge at the shoulder/peak utility buy price and are discharged at the unfavorable utility
sell price (0.04 AUD/kWh), resulting in non-economical operation. Overall, the daily
energy cost under DQN (465 cents) is approximately 24.33% higher than the one under
TD3 (374 cents). It can therefore be concluded that discrete control DRL methods hinder
the comprehensive exploitation of the flexibility potential offered by DERs as well as the
coordinated scheduling of complementary DERs.
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Figure 8. (a) Utility buy and sell prices, (b) aggregated schedule of flexible DERs, (c) indoor and outdoor temperature, and
(d) net demand/generation of the household with/without flexible DERs for the investigated summer day under the deep
Q network (DQN) method.

6. Conclusions

In this paper, we formulate a real-time demand response management problem for a
residential household as a Markov decision process. In the problem formulation, the un-
certainties stemming from the supply (photovoltaic generation), demand (non-shiftable
load, electric vehicle, wet appliances, heating, ventilation, and air conditioning), and stor-
age (electric storage and electric vehicle) sides of the end-users are taken into account.
A model-free and data-driven deep-reinforcement-learning-based demand response man-
agement strategy whose performance does not rely on accurate mathematical modeling
of the distributed energy resources’ operating models or the uncertainties was developed
to determine the real-time control strategies for the household. The proposed approach
constitutes an extension of the state-of-the-art deep deterministic policy gradient learning
algorithm by addressing its overestimation error in the Q-value function, thus avoiding
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sub-optimal policies and promising better convergence properties. In comparison to the
commonly employed Q-learning and deep Q network discrete control reinforcement learn-
ing methods, the proposed approach enables the agent to learn more fine-grained demand
response management policies from high-dimensional sensory data. Case studies em-
ploying a large-scale real-world dataset have offered numerous valuable insights around
the significance of the proposed demand response management strategy. The simulation
results demonstrated that the twin delayed deep deterministic policy gradient manages to
converge to a near-optimal solution and reduces the energy cost by approximately 12.45%
and 5.93% compared to the costs obtained by using the deep Q network and deep policy
gradient, respectively. Furthermore, the proposed method enables a representation of
real-time and cost-effective demand response management strategies to be constructed,
and these are shown to be generalizable despite the variabilities in multiple uncertain
parameters of the problem.
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Nomenclature

t Index of time steps
T, ∆t Horizon and resolution of DR management problem
λ+

t , λ−t Utility buy and sell prices at t (AUD/kWh)
Pd

t Power demand of non-shiftable loads at t (kW)
Ppv

t Power generation of PV at t (kW)

Vev
t

Binary indicator of whether EV charges (Vev
t = 1) or discharges (Vev

t = 0)
at t

Pevc
t , Pevd

t Charging and discharging power of EV at t (kW)
Pev,max Maximum charging/discharging rate of EV (kW)
Eev

t Energy level of EV at t (kWh)
Eev,max, Eev,min Maximum and minimum energy limits of EV (kWh)
Etr

t Energy requirement for traveling purposes of EV at t (kWh)
ηevc, ηevd Charging and discharging efficiencies of EV
tdep, tarr Departure and arrival times of EV

Aev
t

Binary indicator on EV scheduling availability at t (set as Aev
t = 1 for the

EV scheduling step t ∈ [0, tdep) ∪ (tarr, T] and Aev
t = 0 otherwise)

τ Index of sub-processes of the WA cycle
Pcyc

τ Power demand at sub-process τ of the WA cycle (kW)
Pwa

t Power demand of WAs at t (kW)
Tdur Duration of WA cycle
tin, tter Earliest initiation and latest termination times of WA cycle

Awa
t

Binary indicator of WA scheduling availability at t (set as Awa
t = 1 for the

WA scheduling t ∈ [tin, tter] and Awa
t = 0 otherwise)
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Vwa
t

Binary indicator on whether the WA cycle is initiated at t (Vwa
t = 1 if it is

initiated, Vwa
t = 0 otherwise)

Hin
t Indoor temperature at t (◦C )

Hout
t Outdoor temperature at t (◦C )

Hmax, Hmin Maximum and minimum indoor temperature levels (◦C )
Phvac

t Power demand of HVAC at t (kW)
Phvac,max Maximum power input of HVAC (kW)
ηhvac Coefficient of performance of HVAC
Chvac Thermal capacity of the heated/cooled space (kWh/◦F)
Rhvac Thermal resistance of the heated/cooled space (◦F/kW)

Ves
t

Binary indicator of whether ES charges (Ves
t = 1) or discharges (Ves

t = 0)
at t

Pesc
t , Pesd

t Charging and discharging power of ES at t (kW)
Pes,max Power capacity of ES (kW)
Ees

t Energy in ES at t (kWh)
Ees,max, Ees,min Maximum and minimum energy limits of ES (kWh)
ηesc, ηesd Charging and discharging efficiencies of ES
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