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Abstract: Modern indoor lighting faces the challenge of finding an appropriate balance between
energy consumption, legal requirements, visual performance, and the circadian effectiveness of a
spectrum. Multi-channel LED luminaires have the option of keeping image-forming metrics steady
while varying the melanopic radiance through metamer spectra for non-visual purposes. Here, we
propose the theoretical concept of an automated smart lighting system that is designed to satisfy
the user’s visual preference through neural networks while triggering the non-visual pathway via
metamers. To quantify the melanopic limits of metamers at a steady chromaticity point, we have
used 561 chromaticity coordinates along the Planckian locus (2700 K to 7443 K, =Duv 0 to 0.048)
as optimisation targets and generated the spectra by using a 6-channel, 8-channel, and 11-channel
LED combination at three different luminance levels. We have found that in a best-case scenario, the
melanopic radiance can be varied up to 65% while keeping the chromaticity coordinates constant
(Au’ v < 7.05%x107° ) by using metamer spectra. The highest melanopic metamer contrast can
be reached near the Planckian locus between 3292 and 4717 K within a Duv range of —0.009 to
0.006. Additionally, we publish over 1.2 million optimised spectra generated by multichannel LED
luminaires as an open-source dataset along with this work.

Keywords: smart lighting; multi-channel LED optimisation; circadian photoentrainment; non-image-
forming vision; metamer spectra

1. Introduction

The required illumination parameters for designing indoor lighting systems are visual
photometric quantities such as illuminance, approximated brightness metrics, and colour
rendering, which serve to optimise the visual performance. In 1924, the international
commission on illumination (CIE) defined the spectral luminous efficiency function V(A)
to describe the effectiveness of spectral power distributions X(A) [1,2]. By integrating a
V(A)-weighted radiation spectrum X(A), photometric quantities like the luminance L or
illuminance E can be derived. Based on European standards, office environments need, at
least, an average illuminance of 500 Ix in occupied and 300 Ix in unoccupied workplaces [3].
However, V(A) represents the visual pathway’s achromatic L + M channel, propagating
this fact to the photometric quantities [4,5]. Thus, most indoor illumination systems’ light
intensity is traditionally adapted to the achromatic luminance channel consisting of L-cones
and M-cones.

An ideal efficient static illumination meets the legal requirements and at the same
time, saves energy to reduce the operating costs of a lighting system. One of the most
straightforward strategies of having a high luminous efficacy of radiation [6] (LER) is to
adapt the spectral power distribution to V(A) through an optimised phosphor-coat mixture
of a blue-LED chip while maintaining an appropriate colour rendition. In this way, a higher
illumination level can be achieved with less energy consumption compared to non-fitted
spectra. However, in the era of smart lighting systems, an additional amount of energy can
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be saved by supplying the illumination system with occupancy or light sensor data [3]. As a
result, the illumination is dimmable or can be switched off automatically when sufficient
daylight is available, or the workplace is unoccupied [7-9]. Recent studies revealed that
through an optimised smart lighting system energy costs of 17 to 60% [7] can be saved
compared to traditional static lighting solutions [7,10,11]. Besides the aspect of saving energy,
research is focusing on the implementation of dynamic patterns of light exposure [12], which
vary the illumination or the correlated colour temperature (CCT) to support the circadian
rhythm [13] or task-related performance [12]. The discovery of intrinsically photosensitive
ganglion cells (ipRGCs) [14-18] made clear that besides the image-forming properties of
colour and brightness perception [19], the composition of a light spectrum [20] can also affect
the human alertness and cognitive performance [6,21-23]. In the outer retina, six subtypes of
ipRGCs (M1 to M6) can be distinguished, each with unique morphological, functional and
physiological properties projecting to different targets in the brain [24-31]. The M1-subtype
of the ipRGCs directly innervates specific regions of the suprachiasmatic nucleus (SCN) and
olivary pretectal nucleus (OPN) to modulate the non-image-forming mechanism involving
the circadian photoentrainment and temporal pupil light constriction [15,18,32-37]. In the
inner retina, M1-ipRGC dendrites stratify in the outermost sublamina of the inner plexiform
layer (IPL), receiving extrinsic synaptic input from rods, L + M-on and inhibitory S-cone
signals [26,28,38-46]. The ipRGCs have led to the idea that for impacting biological processes
effectively, it is not sufficient to adopt a light spectrum to the image-forming pathway using
V(A) together with colour quality metrics as a condition. To support the circadian system,
a spectral power distribution needs to have a spectral proportion in the short-wavelength
range [31,47-52]. According to a recent work of Brown [53], the melanopic illuminance [54,55]
seems to be the best predictor for describing non-visual effects [53], although the M1-ipRGCs
receive synaptic time-variant weighted inputs from L-, M-, and S-cones [39,43,56,57].

Modern indoor lighting faces the challenge of finding an appropriate balance between
legal requirements, energy-saving, visual performance and non-visual impact [6,58-61]. In
this context, multi-channel LED luminaires are of interest because such systems can vary
spectra over time to address different visual or non-visual processes precisely [7,62,63]. Multi-
channel LED systems are already established as a tool in vision research for triggering different
retinal photoreceptor types to detect light-induced physiological or cognitive responses [44,64].
Additionally, the higher degree of freedom in optimising spectra makes metamer stimuli
possible, meaning different spectral power distributions at steady luminance and chromaticity
coordinates [65]. For instance, metamer spectra can keep image-forming metrics steady while
varying the melanopic excitation for non-visual purposes, offering the possibility to optimise
stimuli with a minimum and maximum melanopsin signal. The circadian system can be
influenced actively with such stimuli, depending on the melanopic radiance contrast between
two metamer spectra [23,66,67].

Regardless of the technical implementation of an illumination system, there are two
possible approaches to implement the neurophysiological findings in automated interior
lighting systems. First, study results from visual and non-visual investigations can be used to
provide users with a periodic illumination pattern with a recommended spectral distribution
throughout the day [12]. Such fully automated lighting systems can either adapt to daylight
in terms of CCT or run a pre-set of an ideal illumination pattern with respective melanopic
excitation. One drawback is that users could not participate in the automation, which can
lead to unsatisfaction or reduced usage of such a system [68-72]. Furthermore, the humans’
non-image-forming sensitivity or the visual preference of a correlated colour temperature and
illuminance varies between individuals and cannot be managed by an averaged population
function alone [73-75]. The approach of a personalised [76] data-driven lighting control
through reinforcement learning or neural networks could consider such individual user
needs, which adapts to the user’s preferences while offering the possibility of correcting
model recommendations via a feedback system [68,77-79]. However, previous works did not
propose a concept of how non-visual metrics could be handled in a data-driven intelligent
lighting system because most users are probably more interested in adjusting visual metrics



Energies 2021, 14, 527

30f16

like CCT or luminance. In such a data-driven non-parametric approach, this could mean
that the melanopic radiance is only indirectly modelled via the CCT without employing the
value of metamer spectra. From a practical point of view, a user may prefer a high CCT, but
physiologically a low melanopic effect may be recommended at a given time, which could
be managed by metamer spectra [23].

Here we have investigated which maximum melanopic radiance contrasts are reach-
able with metamer spectra using multi-channel LED luminaires. We report the degree
of freedom in varying the melanopic radiance at steady chromaticity coordinates and
luminance. For this purpose, we have calculated over 1.2 million using 561 chromaticity
coordinates as optimisation targets [80], which were located along the Planckian locus
(2700 K to 7443 K) for +=Duv 0 to 0.048. We used 6-channel, 8-channel, and 11-channel
LED combination at the luminance levels 140 cd/m?, 180 cd/m? and 220 cd/m? for op-
timisation. Our results reveal the impact of the number of channels and the luminance
on the amount of reachable melanopic contrast using metamer spectra. We provide rec-
ommendations at which CCTs, chromaticity coordinates and Duv to the Planckian locus
a higher metamer contrast can be expected, using multi-channel LED luminaires. The
knowledge of the melanopic metamer dynamic is essential for future smart lighting sys-
tems that utilise multi-channel LED luminaires because metamers could be an effective
way to vary non-image-forming parameters. In the first part of this work, we discuss
recent studies on intelligent office lighting and propose a theoretical smart lighting con-
cept in which metamer spectra can automatically trigger the non-image-forming pathway
without the user’s intervention. The second section deals with the performed spectral
metamer optimisation results, revealing the limits of the melanopic contrasts along the
Planckian locus.

2. The Role of Metamer Spectra in Personalized Smart Lighting Systems

Historically, smart lighting deals with the connection of environmental data to il-
lumination modules for an improved lighting control system, aiming to save energy in
office buildings [6,72]. Automated lighting with occupancy and light sensors has proven to
be beneficial for energy savings as the illumination is dimmable when there is sufficient
daylight or the workplace is unoccupied [72,81-83]. Considering additional information
sources for an illumination system requires more effort to design the lighting modules,
depending on their degree of integration. For instance, when using a combination of
daylight harvesting and artificial light sources to illuminate an office environment, the
occupants” workplace lighting needs to be controlled by adjusting the luminaire’s dim-
ming level depending on the incoming natural light intensity. In general, a distinction
must be made between open-loop and closed-loop control when harvesting daylight for
office lighting [84]. In the open-loop approach, only the daylight contribution is measured
without capturing the artificial light’s illumination proportion. The necessary dimming
level of the artificial indoor lighting is either estimated or the light is completely switched
off when a threshold is reached at the outdoors’s daylight sensor. Closed-loop control
systems measure the daylight contribution and the artificial lighting’s illuminance to reach
a time-dependent dimming control, aiming for a constant and uniform illumination level
at the workplace. For this, an outdoor daylight sensor and additional photodetectors
placed near the luminaire and the occupants” working area are needed. In most closed-loop
systems, occupancy sensors are integrated to dim the lights or switch them off when the
workplace is unoccupied. Such an interaction between sensor information and artificial
interior lighting is designed to ensure energy saving at the cost of an increased effort in
developing the lighting control.

The technological challenge is to control individual lighting modules in different areas
to adjust the illumination level dependent on the state of occupancy sensors, blinds and
photodetectors placed at several positions [72,84-86]. For this, gradient-based or heuristic
optimisation methods are proposed to adapt the dimming level of the luminaire’s depen-
dent on environmental sensors via an objective function that integrates at least the energy
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cost and legal requirements [83,84,87]. A disadvantage of using optimisation frameworks
in a lighting controller, which evaluates additional sensor input data, is the processing
time and the scalability for larger office lighting systems [84,88]. Recent works developed
new approaches based on neural networks to replace classical optimisation frameworks
in closed-loop lighting control units, appealing with scalability and reduced computation
time [78,79,84,89]. Incorporating environmental sensors into a fully automated lighting
system can minimise energy consumption at the expense of user acceptance, as individ-
ual lighting preferences are not considered. Recent studies showed that when users are
equipped with the option of overriding an automated lighting system, the illumination is
frequently changed according to the user’s satisfaction [69,72,90]. The results indicate that
energy optimised illumination could be contrary to the preferred lighting condition [72].
Additionally, automated lighting controls which included a feedback system contribute to
the user’s acceptance [72]. Therefore, past works have considered individual preferences
using non-parametric approaches by including sensor data and the user’s illumination
adjustment behaviour to develop a personalised lighting control through a feedback sys-
tem that simultaneously incorporates energy consumption [3,68,77,78]. However, recent
works used single-channel luminaires and mainly modelled illumination level preferences
without considering colourimetric quantities or the feature of metamer spectra. In Figure 1,
we have designed the basic structure of a possible intelligent lighting system that could
take into account both user preferences and the circadian photoentrainment via metamer
spectra. To integrate individual preferences in a self-learning, non-parametric model ap-
proach, a user interface [68] must be available to catch the user’s light metric adjustments
My (t) over time t (Figure 1, block 1).

-
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Figure 1. Concept of a self-learning neuro-adaptive smart lighting systems which include metamer spectra for supporting

the circadian system. The

proposed concept could include three units: An individual user model, a daylight model

and neuro-visual models. The user model can be modelled using non-parametric approaches such as neural networks

or reinforcement learning to adapt the interior lighting to the user’s light adjustment pattern. For training the model,

data from a graphical user

interface can be used to set lighting metrics. With an appropriate database, the model could

provide automated lighting recommendations that can be corrected by the user to improve the preference model within

a self-learning cycle. Such a user model only manages the image-forming lighting preferences without considering the

energy-saving or circadian effectiveness. Therefore, a daylight model can be used to weight the user model in terms of

energy saving for open-loop lighting. Neuro-visual models can be used to increase the melanopic effectiveness of a spectrum

by using metamer spectra without impacting the user’s image-forming lighting preferences.
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Next, each LED-channel values Xcp need to be calculated using a spectral optimi-
sation method, such that the condition of the user’s light metrics My (t() is met [58,91]
(Figure 1, block 2, 3). During the spectral optimisation, a light sensor or spectrometer can
be integrated for online measurements, which checks whether the optimisation tolerances
are met [7] (Figure 1, block 4, 5). Subsequently, the optimised light metrics can feed into
a user model as feedback data set. In this way, an existing non-parametric user model
can be adapted to the user’s preferences to make individual recommendations for a light
setting Mp(t,+1) possible (Figure 1, block 6). If office lighting is automated solely based
on individual user preferences, it is expected that energy consumption will not be fully
taken into account. Energy can be saved effectively if the illumination level is coupled
to the user’s occupancy and the proportion of daylight that is integrated into the light-
ing concept through photodetectors at the window. In this way; artificial lighting can be
dimmed when the proportion of daylight is high enough to satisfy the user’s preference
and legal requirements. The integration of such an energy component can be achieved
by weighting the individual user model with a daylight model or a light sensor, which
offers the possibility of adapting the CCT from the artificial lighting closer to daylight.
The advantage is that the transition between daylight usage and dimming the indoor
illumination is not disturbing for observers (Figure 1, block 7). For this, the predicted light
setting Mp(t, CCT, CRI, L, ...) from the individual user model can be merged with a
daylight model or data. CRI denotes the colour rendering Index R, and L the luminance.
Kandasamy et al. [78] proposed such a closed-loop lighting approach, which balances out
the individual user preference with the amount of daylight that illuminates the workplace.
However, a weighted individual user model mainly considers the image-forming metric
without actively adjusting the ipRGC stimulation. We assume that metamer spectra will
gain attention in personalised lighting solutions, as circadian metrics can be adjusted with-
out affecting the user’s image-forming metrics (Figure 1, block 8). For this, metamer spectra
can be set automatically based on research recommendations and run in parallel with the
individual user model. However, the idea of using metamer spectra in a multi-channel
smart lighting system, requires knowledge about the range in which the melanopic signal
can be adjusted at constant image-forming metrics.

3. The Melanopic Limits of Metamer Spectra

With multi-channel LED luminaires, it is possible to create N metamer spectra
{Xi(A) }fi 1 with the same luminance L and chromaticity coordinate in the CIExy-2° colour
space. Intuitively, one assumes that the luminaire’s channel count correlates positively with
the possible number N of metamer spectra, due to the higher degree of freedom in mixing
individual LED spectra. In this work, we are interested in how much the circadian response
of metamer spectra varies when the luminance and CIExy-2° chromaticity coordinates
are steady. For this purpose, we optimised metamer spectra X;(A) and calculated the
corresponding melanopsin excitation Ly, ; = 32800 Xi(A)XSper(A) dA , with s, (A) as
the melanopic action spectrum [54,55]. For this, chromaticity coordinates must be selected
for which the metamer spectra can be optimised. It can be assumed that the adjusted
user spectra could converge to the preferred chromaticity coordinates in a personalised
smart lighting system. Studies about indoor colour perception revealed that observers
tend to prefer spectra with higher chroma [92]. Whereby the reported preferred correlated
colour temperatures are between 4000 and 6500 K [93,94]. Previous studies showed that
the preferred chromaticity coordinates lie mostly below the Planckian locus. However,
the preferred chromaticity points move closer to Planck with increasing CCT. Wang and
Wei [95] found that at 3000 K, the preferred chromaticity coordinates have a distance to
Planck of Duv —0.02 and —0.03. Whereas with a higher CCT such as 6500 K, the preferred
chromaticity points are closer to Planck with a Duv between 0 and —0.01 [95]. This is
justified by the fact that chromaticity coordinates below Planck achieve with a higher
probability a greater chroma while maintaining the colour fidelity [96]. Thus, chromaticity
coordinates directly on Planck, above and below it are of interest for our work. The CCTs
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between 2700 and 7000 K are of particular interest, as most studies on indoor lighting have
selected chromaticity coordinates in this range [94,95,97]. Therefore, we used 561 chro-
maticity coordinates along the Planckian locus between 2700 and 7443 K =Duv 0 to 0.048
as optimisation targets, reused from a recent publication by Truong et al. [80] (Figure 2a).
Truong et al. provides the chromaticity targets in the CCT range of our interest with a
sufficiently high span above and below the Planckian locus. An advantage of the higher
Duv range in the Truong et al. dataset is that the optimised spectra can be studied in
relation to the systematic behaviour between the melanopic effectiveness and the distance
to Planck. Our initial hypothesis is that chromaticity coordinates below the Planckian
locus reach a higher melanopic radiance, but a colour fidelity optimisation criterion could
influence this. Furthermore, it is unknown how this could behave with metamer spectra,
i.e., whether spectra located below the Planck would achieve a higher melanopic metamer
contrast at a steady chromaticity coordinate. We optimised metamer spectra for each of the
available chromaticity coordinate (Figure 2a) at the luminance’s 140 cd/m?, 180 cd /m?,
and 220 cd/m?. The optimisation procedures were performed using a 6-channel, 8-channel,
and 11-channel luminaire. We did not change the luminaire itself, but the available LED
channels were specified in the optimisation procedure (Figure 2b).

(@) CIExy-2° (b) 6-channel LED luminaire 8-channel LED luminaire 11-channel LED luminaire
0.6 Chromatic - channel 1 to 4 Chromatic - channel 1 to 6 Chromatic - channel 1 to 8
: Optimisation targets - 1 1 1
. LA A MR A AR
0.5 s 0 0 0
v =) 380 580 780 380 580 780 380 580 780
[
9
0.4 g 6-channel LED luminaire 8-channel LED luminaire 11-channel LED luminaire
) Channel 5 to 6 Channel 7 to 8 Channel 9 to 11
-4 1 A 1 I 1 7
0.3 / /
0 L 0 L 0
380 580 780 380 580 780 380 580 780
0.2 0.3 0.4 0.5 0.6
X Wavelength in nm
Apeak = 419 nm Apeak = 475 nm APeak = 521 nm Apeak = 638 nm  __ CCT 4655 K
Legend
APeak = 450 nm Apeak = 504 nm APeak = 597 nm Apeak = 662 nm CCT 2740 K

Figure 2. Optimisation targets in the CIExy-2° colour space and the base spectra of the used multichannel LED luminaire to
mix the metamers (a). As optimisation target, we used chromaticity coordinates along the Planckian locus between 2700
to 7443 K distributed across £Duv 0 to 0.048 from a recent publication by Truong et al. (b) We mixed the spectra with a
6-channel, 8-channel, and 11-channel luminaire, in which the number of available LEDs was simulated by providing only a
certain number of channels as a dependent parameter in the spectral optimisation procedure. The spectra were measured
using a Konica Minolta CS-2000 spectroradiometer.

We generated the spectra using a custom-developed heuristic optimisation procedure,
which can calculate numerous metamers. For each target condition, spectra were optimised
in a loop until a certain number of results were available or the maximum computation time
was exceeded, ensuring that sufficient metamers were calculated. The chromaticity targets
at low CCTs move beyond the spectrum locus, as these were generated symmetrically by
Truong et al. with fixed Duv step sizes. We did not pre-filter these outer points before
performing the optimisation, because the unreachable targets were declared as invalid
targets during the optimisation procedure. Additionally, the maximum limit of achievable
chromaticity targets cannot be estimated directly. Some targets may not be reached within
the gamut due to the number of channels and target luminance. Therefore, we decided to
consider all chromaticity targets for optimisation and flag non-achievable targets through
the optimisation procedure itself, if no spectrum was found.

The threshold condition of the chromaticity targets was defined with
Au', Av' < 5%107° and the luminance L of the optimised spectra was restricted with
AL <1 cd/m?. Thus, we define in the following metamer spectra as those that have a
maximum distance of Au’'v’ < 7.05x10~° from a target chromaticity coordinate and do
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not have a luminance deviation greater than 1 cd/m?. The implementation of the custom
metamer optimisation approach will not be described here as it is part of an upcoming pub-
lication. However, metamer spectra can also be optimised using gradient-based or classical
black-box heuristic optimisation approaches, as discussed in recent works [58,61,91,98-101].
Through the optimisation, metamer spectra for 473.2 £SD 18.83 of the 561 given chromatic-
ity targets (Figure 2a, Figure S3) were found on average for each channel configuration
and luminance levels (Table S52). We have summarised the descriptive values about the
optimisation results in the Supplementary Materials (Table S2). In total, we optimised
1.238521 million spectra across the optimisation targets (Figure S1). The optimised spectra
were filtered with a colour rendition condition of CRI R, > 80, from which 1.066843 million
remained. Figure 3 shows the melanopic radiance Ly, ; against Duv from Planckian locus
for each CCT in a scatter plot with the CRI > 80 condition. As expected, a higher CCT cor-
responds to a higher melanopic radiance Ly, ;, which increases with the luminance level.
In principle, a higher melanopic excitation can be achieved for higher colour temperatures
by being on and above the Planckian locus, which is caused by the CRI condition. If all
optimised spectra are taken into account, irrespective of the colour rendition, the highest
melanopic radiance levels can be achieved for CCTs between 6000 and 7443 K at chromatic-
ity coordinates below Planck (Table S1). The number of channels has an advantage at higher
CCTs, as one can move further away from Planck while maintaining a certain melanopic
radiance level Ly, ; and fulfilling the CRI condition (Figure 3). At lower CCTs, the highest
melanopic radiance can be achieved below the Planckian locus (Figure 3), whereby a higher
number of channels provide more choice of spectra with different melanopic radiance
levels. This effect can also be related to the CRI condition. Therefore, a higher number
of channels provides more freedom to be off-Planck and maintain the defined criteria of
colour fidelity.

6-channel LED luminaire 6-channel LED luminaire 6-channel LED luminaire CCT
7443 K
140 cd/mz; CRI > 80; 183,950 spectra 0 180 cd/mz; CRI > 80; 215,556 spectra 0 220 cd/mz; CRI > 80; 247,189 spectra
4 4 4
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s i
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140 cd/mz; CRI > 80; 7468 spectra 180 cd/mz; CRI > 80; 31,407 spectra 220 cd/mz; CRI > 80; 74,844 spectra 43292 K
0.4 0.4 0.4 l "“ . 13147k
4 G111 o
0.2 cpaigisiniittiin 0.2 l"lH””n""“"ﬁ“”iI 0.2 Q’““""" . ' ' ] ‘ 42901 K
0.1 " 0.1 0.1 12796 K
0 0 0 L2700 K

-0.05 -0.03 -0.01 0.01 0.03 0.05 -0.05-0.03 -0.01 0.01 0.03 0.05 -0.05-0.03 —0.01 0.01 0.03 0.05

Duv from Planckian locus

Figure 3. Scatter plot of all optimised spectra’s melanopic radiance against Duv with a jitter of 0.0005 and a colour rendition

condition of CRI R, > 80. A negative Duv denotes the chromaticity coordinates below the Planckian locus. As expected, a

higher correlated colour temperature can be associated with a stronger circadian response due to the increased proportion

in the short wavelength range. However, with increasing Duv a higher melanopic radiances can be achieved with CCTs

in a range between 2700 to 3456 K. At higher CCTs, a slight decrease in the melanopic radiance can be observed with

the 6-channel configuration, mainly caused by the CRI condition. By adding additional LED-channels, one can be more

off-Planck while maintaining the melanopic effectiveness. At low CCTs, spectra with chromaticity coordinates below Planck

can achieve a higher melanopic level.
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In Figure 3, all spectra were considered together, meaning that no distinction was made
between metamer spectra { X;(A) }ZI\L | that have the same (Au'v" < 7.05x10~°) chromaticity
coordinates. For instance, at a luminance of 140 cd/m?2, we found on average for each chro-
maticity target 445.73 £SD 430.38 metamers with 6-channels, 169.99 £5SD 112.07 metamers
with 8-channels, and 30.29 £5D 22.19 metamers with 11-channel LEDs. Due to the loop
optimisation, there is the possibility of duplicate spectra in the data sets. However, as we
were mainly interested in the maximum melanopic metamer contrast, it did not propagate
any issues. The number of found metamers differs for each chromaticity target and lumi-
nance level between the channel configurations (Table S1). If all found metamer spectra
My = [X1(A), X2(A), ..., Xn(A)] for a single chromaticity target at a constant luminance
are considered, the spectra with a minimum metamer melanopic radiance Ly, 1, and
maximum metamer radiance Ly, i, can be calculated. The melanopic radiance difference
between Lyser max and Lter, max With ALper max = Latel, max — LMel, min for My indicates
to what extent the ipRGCs can be modulated at a constant chromaticity coordinate and
luminance. In the following, we state the maximum melanopic metamer contrast in per
cent with ALyjer max = (100X Livter, max/ Lvet, min) — 100 to check whether the luminance
level could impact the relative melanopic contrast.

In Figure 4a we determined for each chromaticity target the spectrum with the
melanopic radiance Lo, gy and Lger, min to calculate the maximum melanopic contrast
AL Mel, max Detween 2700 and 7443 K separately for every Duv from the Planckian locus.
The calculation of the total contrast between 2700 and 7443 K has shown that the maximum
melanopic radiance contrast can be achieved near the Planckian locus (Figure 4a). For
instance, the mean value of the maximum relative melanopic contrast for all luminance’s
using a 6-channel luminaire is 224.80% £SD 3.59% at a Duv between 0 to 0.003 (Figure 4a).
In both the 6 and 8 channel configurations, the maximum melanopic contrast between
2700 and 7443 K is less affected by luminance (Figure 4a). For the 11-channel luminaire,
the relative melanopsin contrast between 2700 and 7443 K is influenced by the luminance,
probably because fewer optimisation results were found at low luminance. Such an effect
could be caused by the fact that at low luminance, not all channels can be involved in
reaching a certain optimisation target, leading to a reduced number of metamer spectra for
each chromaticity target (Figure 3). This could be why more metamers were found with
the 11-channel luminaire at 220 cd/m? than with the lower luminance levels 140 cd /m?
and 180 cd/m?.

In Figure 4b we have calculated the maximum melanopic metamer contrast AL Mel, max
for My, representing the percentage by which the ipRGCs can dynamically be triggered
at a constant chromaticity coordinate and luminance. The peak melanopic metamer con-
trast AL Mel, max Was 65.9% and achieved with the 8-channel luminaire configuration at
220 cd/m? (Duw 0.003), using a CCT of 3855 K (Figure 4b, Table 52). The contrast of the
8-channel and 11-channel luminaire configurations is dependent on the luminance because
a higher number of channels, more metamers can be found at higher radiance. For instance,
the peak AL Mel, max across all Duv’s and luminance levels range from 55.22 to 58.28% when
using the 6-channel configuration, indicating that all LED-channels were used efficiently
at 140 cd/m?, 180 cd/m?, and 220 cd/m? for calculating metamers at the optimisation
targets (Figure 4b, Table S2). In comparison, the maximum peak of AL Mel, max across the
luminance levels for the 11-channel luminaire showed a higher dynamic range of 49.16%
(140 cd/m?) to 62.66% (220 cd/m?). The most significant relative contrast was found at
220 cd/m?, with which the most metamers were generated by the 11-channel luminaire
(Figure 3). With additional LED-channels, it is possible to achieve a higher melanopic
metamer contrast with chromaticity targets above the Planckian locus. The CRI condition
can be maintained longer with increasing Duv, allowing a higher degree of freedom in
selecting target chromaticity coordinates. The scatter plot with the absolute melanopic
radiance values for the metamer spectra can be found in the Supplementary Materials
(Figure S2). Regardless of the luminaire’s channel count, it can be observed that the peak
melanopic metamer contrast of AL Mel, max Tanges from 49.16 to 65.85% (Figure 4b) and can
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be achieved with CCTs between 3292 K and 4717 K, close to the Planckian locus within
a Duv range of -0.009 to 0.006 (Table S2). Compared to the maximum relative contrast
between 2700 K and 7443 K with 234.4% (11-channel, Duv 0.006, 220 cd/m?) (Figure 4a),
the melanopic metamer contrast seems to be a powerful tool for triggering the ipRGCs
without changing image-forming metrics.
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Figure 4. Results for the calculated relative melanopic contrast from the optimised spectra. (a) Maximum relative melanopic
contrast was calculated between 2700 and 7443 K at constant Duv values to the Planckian locus. (b) Maximum possible
melanopic metamer contrast AL Mel, max for Mg at a constant chromaticity coordinate within Auw'v’ < 7.05x 1072. The

highest relative metamer contrasts for the melanopic radiance can be achieved with chromaticity coordinates near the

Planckian locus. By increasing the number of channels, a higher melanopic radiance contrast can be achieved above Planck.

4. Discussion

Previous works already showed that metamer spectra could be used to affect physio-
logical responses [23,66]. For the practical implementation of metamer spectra, it is essential
to use stimuli with a high dynamic in their melanopic radiance at a steady chromaticity
target. By using 1.2 million optimised spectra, we have found that metamers can reach a
relative change in the melanopic radiance between 49.16 to 65.85%. The highest melanopic
metamer contrasts were found near the Planckian locus with CCTs between 3292 K and
4717 K. A 6-channel LED luminaire was already sufficient to achieve a relative melanopic
contrast of 58.28%. The advantage of using a higher number of LED-channels could be in
the degree of freedom to choose chromaticity coordinates above Planck while achieving
a higher melanopic radiance compared to a 6-channel configuration. However, we can
state that using an 8-channel or 11-channel luminaire does affect the maximum melanopic
metamer contrast, but its benefit does not outweigh the effort and costs of a higher channel
count. Basically, the limitation of melanopic radiance is caused by the CRI condition. Thus,
multi-channel luminaires have the advantage of varying visual metrics while maintaining
circadian effectiveness. In this context, the work of Saw et al. recently recommended that at
least 4 to 5 LED channels are enough to achieve an optimal balance between colour fidelity
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and circadian tunability [61]. Our results also reveal such a tendency, which is why we can
conclude that an 8-channel or 11-channel luminaire does not have a significant advantage
for non-visual lighting purposes. However, it should be noted that we used the CRI as
a colour quality condition without incorporating additional metrics. For instance, using
the TM30-15 metric could narrow down the possible metamer contrast. Furthermore, we
choose a quite conservative criterion in defining a metamer spectrum, since its chromaticity
coordinate was not allowed to deviate more than Au'v’ < 7.05x107°. In reality, such
tolerances are not possible due to temperature fluctuations of the LEDs or measurement
inaccuracies, so it can be assumed that with a larger tolerance, the melanopic metamer
contrasts should possibly increase.

From our analysis, we can deduce to what extent the relative melanopic radiance
contrast can be increased at a constant chromaticity coordinate, but whether this would be
sufficient enough for a circadian response was not worked out in our analysis. Although
the melanopic radiance or the melanopic irradiance can be utilised as a circadian indicator,
it would be useful to evaluate the effect of metamer spectra using advanced circadian
models [80,102,103]. Metamers are gaining attention, and studies about such spectra’s
practical benefits for office lighting are rare. The most important studies about the practical
aspects of metamers are from Vethe et al. [23], Allen et al. [66] and Souman et al. [104],
revealing that the melanopic contrast of metamer spectra could be high enough to affect
the circadian responses. In this context, a recent study [105] optimised six spectra and
reported that the circadian stimulus proposed by Rea et al. [103] could be varied from 0.2
to 0.4 while maintaining a similar percept white light ton.

Nevertheless, our large-scale spectral optimisation databases proposed in this work
offer the advantage that a more comprehensive analysis can be performed to explore the
limits of metamer spectra along the Planckian locus, which was unknown before. While we
report that 6-channels are already sufficient to achieve a high melanopic contrast, we did
not consider a fewer channel count in our optimisation study. Note, that we have optimised
the spectra with different channel configurations; however, the given channel number is
the upper limit of what could be used to generate the spectra in the optimisation pipeline.
For instance, the 6-channel data set may also include spectra that were generated using
3 LED channels. For an extended evaluation, it would be interesting to classify the data sets
according to the active number of channels, to make a refined statement about the efficient
number of LED channels for reaching a specific melanopic contrast using metamers.

5. Conclusions

The circadian impact of indoor lighting is affected by the spectral composition, the
illumination level and the light intervention timing. Recent studies showed that light inter-
vention in the morning and night could significantly affect the physiological responses [106]
and subjective sleepiness ratings [107-111]. However, circadian photoentrainment studies
with humans are not consistent, and differences can be found about the extent to which
targeted lighting interventions during the day can induce physiological effects [112]. Over-
all, integrative interior lighting should consider both the imaging and non-imaging visual
pathways [113]. An essential perspective in this context is that the visual preferences in in-
door lighting and the circadian light sensitivity can differ between individuals [3,74,75,78].
Therefore, personalised interior lighting concepts that employ neural networks to adapt to
the user’s visual preferences will probably become more essential for practical implemen-
tation [78]. Multi-channel LED luminaires provide significant advantages for future smart
lighting concepts and will probably play a dominant role due to their spectral flexibility. Re-
cent works did not propose a concept of how individual visual preferences and non-visual
lighting effects can be linked in a personalised smart lighting system using a multi-channel
LED setup. We proposed that visual metrics should be adjustable by the users’ in order
to train a non-parametric self-learning lighting system for time-variant light recommen-
dations. The circadian effectiveness of a light setting should be varied via predefined
non-visual response models by using metamer spectra only. Such a self-learning lighting
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concept could cover a user’s visual preference while triggering the non-image-forming
pathway through metamer spectra automatically.

The practical implementation of a self-learning system requires a so-called base-user
model that needs to be developed using neural networks. For this purpose, connected
multi-channel LED luminaires should be placed in office facilities to record the users’ light
setting and train the non-parametric model. Due to the neural networks’ capability of
pattern recognition, light preferences can then be recommended that were not present
in the training set. Such an advantage is also the biggest hurdle in the technological
implementation of the proposed personalised illumination system, as a look-up table can
no longer be used to determine the channel values from the luminaire. Suppose a simple
scenario in which a trained neural network can recommend the user’s preferred light
metrics like the chromaticity coordinates and luminance at a given time. In such a case,
the predicted light metric setting needs to be adjusted on the luminaire by optimising the
respective channel values (Figure 1). Usually, heuristic optimisation is employed for such a
task, but they are neither capable of real-time calculations nor scalable for office buildings.
Thus, before implementing a personalised smart-lighting system, a necessary step is to
develop a scalable spectral optimisation method, capable of adjusting the luminaires’
channel values in real-time from light metric recommendations.

Tang et al. [114] developed a real-time optimisation procedure for multi-channel
LED luminaires, but the procedure cannot optimise metamer spectra. Therefore, the key
technology for implementing our proposed smart lighting system is a real-time spectral
black-box optimisation framework, featuring the calculating metamer spectra from any
visual lighting metrics. Such a metamer optimisation method for real-time applications
does currently not exist. However, the approach of Tang et al. seems to be promising as
a starting point for such a missing real-time metamer optimiser, as it evens works on a
mobile phone.

In addjition to the technological aspects, it is crucial to determine how many channels
and which LED combinations are required for reaching the maximum melanopic contrast
with metamer spectra across the entire Planckian locus. Previous works have taken the
approach of optimising metamer spectra for individual chromaticity coordinates. Assum-
ing that the user is free to vary the chromaticity coordinate in a smart lighting system,
metamer spectra must be computable across the Planckian locus. Here we have chosen
the technique of optimising metamer spectra at a large scale to comprehend the pattern of
metamer spectra against the melanopic radiance for the first time.

Compared to previous spectral optimisation studies [6,58,60-63,100,101,115-118], this
work provides at the authors’ best knowledge one of the most comprehensive multichannel
LED datasets for metamer spectra. More advanced analyses between additional colour
quality metrics are possible with the optimised spectra, which we did not fully exploit. The
significant effort in this work was the optimisation of the spectra for the 561 chromaticity
targets at three different luminance levels and three LED channel configurations. Therefore,
we publish with this work over 1.2 million spectra in an open-source repository, allowing
other research groups to carry out extended calculations. Note that there may be duplicate
spectra in the data set because the optimisation was performed in a loop for finding an
appropriate number of metamers. In analyses where repeated spectra could affect the
results, a pre-filtering must be performed.

As a next step, we are working on an upgrade of this dataset to provide a higher num-
ber of metamer spectra, generated with an additional count of LED-channel combinations.
Such a database could support the selection and combination of LEDs in multi-channel
systems, as repeated optimisations of individual combinations are currently necessary to
make recommendations in indoor lighting.

Supplementary Materials: The optimized spectra are available online at https://github.com/
BZandi/MDPI-Smart-Lighting-Spectra. Figure S1: Scatter plot of the melanopic radiance against Duv
for optimised spectra without a CRI condition, Table S1: Number of spectra which were generated
for each chromaticity target, Table S2: Values of maximum possible melanopic metamer contrast
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dependent on the used channel configuration and luminance, Figure S2: Scatter plot of maximum
possible melanopic metamer contrast in W/m?sr. Figure S3: Tllustration of the CIExy-2° chromaticity
targets for which spectra were successfully optimised.
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