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Abstract: The expansion of Internet of Things (IoT) services and the huge amount of data generated
by different sensors signify the importance of cloud computing services such as Storage as a Service
more than ever. IoT traffic imposes such extra constraints on the cloud storage service as sensor
data preprocessing capability and load-balancing between data centers and servers in each data
center. Furthermore, service allocation should be allegiant to the quality of service (QoS). In the
current work, an algorithm is proposed that addresses the QoS in storage service allocation. The
proposed hybrid multi-objective water cycle and grey wolf optimizer (MWG) considers different
QoS objectives (e.g., energy, processing time, transmission time, and load balancing) in both the fog
and cloud Layers, which were not addressed altogether. The MATLAB script is used to simulate and
implement our algorithms, and services of different servers, e.g., Amazon, Dropbox, Google Drive,
etc., are considered. The MWG has 7%, 13%, and 25% improvement, respectively, in comparison with
multi-objective water cycle algorithm (MOWCA), k-means based GA (KGA), and non-dominated
sorting genetic algorithm (NSGAII) in metric of spacing. Moreover, the MWG has 4%, 4.7%, and
7.3% optimization in metric of quality in comparison to MOWCA, KGA, and NSGAII, respectively.
The new hybrid algorithm, MWG, not only yielded to the consideration of three objectives in service
selection but also improved the performance compared to the works that considered one or two
objective(s). The overall optimization shows that the MWG algorithm has 7.8%, 17%, and 21.6%
better performance than MOWCA, KGA, and NSGAII in the obtained best result by considering
different objectives, respectively.

Keywords: energy consumption; load balancing; makespan; storage allocation; edge computing;
Internet of Things

1. Introduction

Cloud computing is a new Internet-based technology that stores data on servers and
makes it available to clients on demand. Two of the most important drivers in its increased
utilization are cost reductions and the streamlining of technological infrastructure [1]. In
recent years, cloud computing has gotten a lot of press in both the corporate and academic
worlds. This is a service- and application-related technology that runs on a distributed
network, employs virtual resources, and may be accessed via networking and Internet
standards [2,3]. The Internet of Things (IoT) and its potential needs have enhanced the
importance of cloud computing. The number of cloud-based servers that provide the
proper structure for IoT manifestation has expanded. Plus, there are a large number of
users and sensors that produce a high volume of data [4]. The proper usage of cloud
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services based on QoS criteria is essential. Furthermore, sensors have a limited battery and
should work for a long time without a need to recharge. Distributed clouds can be helpful
in processing IoT sensors’ data [5].

One of the issues that must be considered in modern systems is energy consumption,
which should be considered on both sides, users and servers. Furthermore, optimal energy
consumption can have a significant impact on reducing air pollution. According to data
released in 2014, the American data centers consumed 70 billion KW/h of Electrical energy.
Therefore, there is a lot of research focusing on energy consumption [6–8]. On the other
side, building energy efficiency and estimating building occupancy information effectively
in real time as well as reducing the energy consumption in non-residential buildings are
studied widely in the literature [9,10]. Large companies such as Amazon, Google, Salesforce,
Microsoft, and IBM have begun to set up a new data center to host Internet applications and
data processing centers. The current service providers give users the option of using services
based on their demands and paying according to their usage (pay as you go) [11]. The
necessity of maintaining data drives the usage of storage services [12]. To address overload
in one service, load balancing among different services was proposed in the literature [13,14].

IoT devices include many examples of sensors that have different applications in smart
homes, healthcare, transportation, building, and cities. Storing data in cloud services is cost
effective, which is practical in addressing the high demand for IoT devices. However, cloud
storage services face challenges such as energy consumption and load balancing among
services [14,15]. The existence of different service providers makes it difficult to choose
the proper service. Furthermore, the network has an arbitrary topology, and selecting an
appropriate service among the available services of different service providers becomes
another issue that should be considered. Another commonly discussed issue in cloud
computing is the processing time. The needed time to process various data is based on
data type, size, and rates [16,17]. There are several works around service allocation.

To the best of our knowledge, there is no work with capabilities of minimizing en-
ergy consumption and reducing service completion time, in addition to addressing load
balancing among services, and the short comparison is available in the table. Considering
different services from a variety of service providers is also addressed in the present work.
A hybrid modified MOWCA and GWO algorithm have been proposed in the present study.
The modified algorithm can explore better; as a result, a better solution set can be proposed.
Two layers, fog and cloud, will be managed simultaneously to have a comprehensive
solution. Finally, a structured technique for analyzing complex decisions in addition to
different methods is used to evaluate the proposed algorithm.

The remainder of this paper is organized as follows: In Section 2, a brief discussion
about recent articles in this area is presented. Architecture, algorithms, and mathematical
models are presented in Section 3. In Section 4, the proposed method is evaluated and
compared to other works. In Section 5, the paper is concluded.

2. Related Work

Cloud computing and IoT are used in a variety of fields, including medical engineering
and social media [18]. A variety of architectures and algorithms are proposed in this area
to fulfill users’ demands efficiently.

2.1. Architectures in Service Allocation

Some cloud-based architecture is centralized, and the centralized architecture creates
a latency in the processing and storing of data. The latency is because of the great distance
between IoT devices and cloud providers. Therefore, the fog architecture can reduce
latency. Managing energy consumption is presented in edge computing for IoT (ECIoT)
architecture and leads to an optimal solution [19]. Fog computing was introduced in
2012 by researchers of the Cisco company with a new view to the set of all networks
(including 3 G/4 G/LTE/5 G) and everything (all smart objects, Internet of Everything)
with a hierarchical structure. Using the architecture expressed in fog–cloud, the energy
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optimization of both cloud and fog layers can be managed simultaneously to contribute to
the IoT development goal [20]. Fog computing architecture involves three main layers: IoT
devices as the first layer, the fog layer as the second layer, and finally, the cloud layer [8,15].

Cloudlet is a project presented by a group of researchers from Mellon University [21].
The goal of using cloudlets is to have available resources near the IoT devices. Data
compromise risk is reduced by having edge computing. Cloudlets have more capacity for
processing and battery power in comparison to other fog nodes.

2.2. Algorithms in Service Allocation

Researchers have indicated that service allocation is an NP-hard problem. There are no
polynomial-time algorithms for NP-hard problems. Some research focused on designing
a deep neural network, the hybrid usage of deep neural networks, and metaheuristic
algorithms, which all can be considered as alternative solutions. In the current study, there
are different services available to be selected; however, considering the proper service is
challenging. Moreover, there are different objectives considered in this work that boost the
probability of trapping at a local minimum. To escape from the local minimum, bio-inspired
algorithms are considered as they have shown a good capability for handling this issue [22].
A bunch of studies is concentrated on load balancing. Researchers are using definitive and
innovative methods in a fair distribution of loads among services. The primary objective
of load balancing is preventing overload in services. In [23], a random algorithm is used
for outsourcing data to different services in which the physical distance is a criterion for
selecting a service. In some cases, service failure occurs due to a lack of attention to the load
balancing between services [24]. In [25], using the honeybee algorithm and introducing
a new algorithm named honey bee behavior–inspired load balancing (HBB-LB) address
equitable load distribution between virtual machines and maximizes processing speed.
Round robin is also used for equitable load distribution. Broberg et al. [26] chose low-
cost cloud storage services with the meta content delivery network (CDN) method. They
found and optimized service selection based on its cost; the process did not encompass an
equitable load distribution between storage services [27,28]. In [29,30], a kind of NSGAII is
used to address load balancing as the main criteria.

Some studies are performed to reduce completion time. Services have different pro-
cessing speeds [31]. In [32], a model for load balancing on the Internet is presented, aiming
to reduce the overall processing time for different tasks. In the other work, both the firefly
algorithm and particle swarm optimization are made to balance the load of the entire system
and reduce the makespan as well [33]. In [34], the MOGWO method, which is one of the
multi-objective algorithms, is used to distribute data equitably among virtual machines and
to reduce the working time. In [35], by using the GWO algorithm, the time of the makespan
is diminished, and other determinants of QoS are not considered. In another research,
the combined GWO and cuckoo search algorithm is used to minimize the makespan and
to reduce the needed services [36]; however, other aspects of service allocation are not
considered. In [37], the integer programming method is used to reduce the cost of storing
data and data retrieval time in a multi-cloud provider environment. In [38], particle swarm
optimization (PSO) is used to minimize the cost of the sending and processing of different
tasks. The game theory is used for task scheduling in [39] for designing the mathematical
model. The algorithm is proposed to deal with big data and to consider energy consumption.
However, the available bandwidth as one of the factors in transmitting data and energy
consumption is not considered. In [40], an adaptive mode for assigning different services
for tasks by considering the time is used. In [41], the proposed algorithm is used to achieve
the minimum energy and running time in which load balancing is not considered. In [42],
in addition to minimizing energy consumption, the GWO and BAT algorithms are used
to distribute the work equitably among services. In another research, energy and cost are
optimized in service allocation [43]. In [44], the NSGAII algorithm is used to achieve the
minimum energy and makespan for service allocation in which load balancing is not con-
sidered. The Pareto’s results as one of the important factors in multi-objective problems are
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improved. Both energy consumption and load balancing between solutions are considered
while satisfying the spacing metric [45]. Table 1 summarizes and compares the proposed
model in this study with those introduced in the literature.

Table 1. Comparison of the proposed algorithms in this study.

References Processing Time Transmission Time Load Balancing Energy

[25,29] 4 4

[32] 4 4

[34,35] 4 4

[40] 4

[41] 4 4

[43] 4

[44,45] 4 4

The current
study 4 4 4 4

3. Proposed Algorithm for Fog–Cloud Architecture

The system model consists of different parts, as illustrated in Figure 1. Storing data
as fast as possible by consuming less energy is critical. The first cloudlets are assumed
as the first sub-layer in the presented model. Neighbor cloudlets are considered as a
second sub-layer in the model. To accomplish the processing of data as quickly as possible,
the distribution of data among different cloudlets is adopted to avoid overload. Using
the distributed model is not only limited to failure in service allocation but also reduces
energy consumption. The reliability of the system is reduced by rejecting a request from
different users. Furthermore, rejecting requests destroys the service level agreement. The
distribution of data among various services increases the availability of services due to
more available free space. The availability of different services is one of the QoS factors.
Therefore, the distribution of data among different services satisfies the QoS. By distributing
data among services, failure in one service does not lead to loss of all data [8].
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Each cloudlet manages a batch of data to be processed in or out of that cloudlet. The
proposed algorithm runs in cloudlet to find appropriate services in and out of cloudlet in
both layers. The storage capacity and CPU are both considered in service allocation.

3.1. Mathematics and Cost Functions

In this section, the mathematical model is introduced. In Table 2, the description of
parameters is listed.

Table 2. Symbols and notations of objects’ functions.

Symbol Description

Eidle Energy consumption in an idle mode

Ebusy Energy consumption in a busy mode

D Data volume

m Number of available services in fog layer

n Number of data

f j An active indicator of cloudletj

fij Allocate indicator of ith data to cloudletj

Etot Total energy consumption in each solution

Cnj Number of CPUs

Tc Time criterion for processing in the fog layer
capTi
capCi

The used percentage of cloudlets.

capT
capC

The average usage ratio of cloudlets

LBc Load-balancing criterion among services in fog layer

Ts Consumed time criterion in transmitting to cloud layer

k Number of storage services

BWjz Bandwidth between jth cloudlet and zth cloud

LBs Load-balancing criterion among services in cloud layer

P Total number of populations in multi-objective algorithms

pi The ith solution in P

Di The ith data’s volume

Ca The ath cloudlet’s service

cpj The capacity of the jth cloudlet’s service

Sá The áth cloud storage’s service

3.1.1. Mathematical Model for Energy Consumption

Servers consume energy in both idle and busy modes. According to [46], the energy
consumption of servers can be represented by a linear relationship between energy con-
sumption and CPU utilization. Energy consumption can be calculated according to the
proportion of service usages [47]. The total energy consumption in allocating services to a
batch of data is Etot.

Etot =
m

∑
j=1

[ f j × ((Ebusy
j − Eidle

j )×
∑n

i=1( fij × Di)

cpj
+ Eidle

j )]s.t.
n

∑
i=1

fij × Di ≤ cpj j = 1, . . . , m

(1)
f j has two values: 1 when the service is utilized and 0 when the service is not used. fij has
two values and it can be either zero or one, it is 1 when data “i” is outsourced to service “j”.
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3.1.2. Mathematical Model for Processing Time

Processing time has a direct relation to the size of data and a reverse relation to the
number of CPUs in one service according to (2).

Tc = max
j

{
∑n

i=1 fij × Di

Cnj

}
; j = 1, 2, . . . , m (2)

3.1.3. Mathematical Model for Load Balancing in the Fog Layer

As mentioned, load balancing will increase the availability of services. The load
balancing in the fog layer is addressed in (3) [29].

LBc =

√√√√ 1
n

n

∑
i=1

(
capTi
capCi

− capT
capC

)
2

(3)

3.1.4. Mathematical Model for Transmission Time

The data are outsourced to the appropriate storage service after being pre-processed.
The total transmission time for a batch of data is shown in (4).

Ts = max
j

{
n

∑
i=1

k

∑
z=1

xiz × Di
BWjz

}
; j = 1, 2, . . . , m (4)

xiz can be either zero or one, it is one when the storage services are selected, and it is 0
when the storage service is not selected.

3.1.5. Mathematical Model for Load Balancing in the Cloud Layer

There are different services that are suggested by a variety of service providers. The
minimum value for (5) satisfies the reliability of the system.

LBs =

√√√√ 1
n

n

∑
i=1

(
capTsi
capSi

− capTs

capS
)

2

(5)

Different equations are addressed in this work, all of which are important for service
selection to be considered all together, as a result, the multi-objective algorithms are
proposed.

3.2. Proposed Hybrid Algorithm

The block diagram of the proposed algorithm is shown in Figure 2. Monitoring
services and making the decision based on the gathered information are done in the first
cloudlet in which the data are received.

The water cycle algorithm is adopted from nature. It is a population-based algorithm
like a genetic algorithm [47]. Each member of the population is represented by 3 × n
matrix (6).

Lpi =


D1 D2 . . . Dn
Ca Cb . . . Cc
Sá Sb́ . . . Sć

 (6)

The costs of different layers are shown in (7).

CostFog_layer ∝ Etot, Tc, LBcCoststorage ∝ Etot, Ts, LBs (7)

The goal is to minimize all five objects in the problem (8). No other solution cannot
dominate a solution in the Pareto. In mathematical terms, p1 ∈ P dominates p2 ∈ P if two
conditions are satisfied [48].
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Costi(p1) ≤ Costi(p2) ∀i ∈ {Etot, Tc, LBc, Ts, LBs}
and

Costj(p1) ≺ Costj(p2) ∃j ∈ {Etot, Tc, LBc, Ts, LBs}
(8)
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The number of solutions in the first iteration of the algorithm in the resultant Pareto
is low, but gradually, the number of non-dominated solutions is increased by moving the
answers to the global minimum in the proposed algorithm. In the MOWCA, the solutions
are governed by the sea and the rivers. The answers go toward Pareto, and Pareto is going
to be updated. Finally, the answers in Pareto are categorized as a sea and rivers based on
crowding distance [49].

Hybrid Multi-Objective Water Cycle and Grey Wolf Optimizer (MWG)

Escaping from the local minimum is important and, for this reason, determining
appropriate dmax is essential. Furthermore, G as a coefficient is used in the process of
generating new solutions, and it is crucial for a better exploration of the solution space.

The GWO algorithm is one of the fastest optimization methods [50]. The MWG al-
gorithm is the modified combined algorithm, which optimizes the hyperparameter of
the multi-objective algorithm and provides better exploration in the solution space in
comparison to the naïve ones. In the beginning, a population with 10 members is randomly
generated. Each member of this population has three features based on three hyperparam-
eters of multi-objective algorithm. MWG optimizes the objects based on the initialized
values. Then, the MWG determines the crowding distance and dominant solutions. Crowd-
ing distance is calculated for all non-dominant solutions. The main objective of using
crowding distance is to increase the diversity of solutions. In the rest of the paper, the
mathematics of the algorithm is given and Table 3 includes the mathematical symbols.
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Table 3. Mathematical symbols of a proposed algorithm.

Symbol Description

pj
Stream

Solution j, which is considered as a stream in the algorithm

pj
Sea

Solution j that is considered as a sea in the algorithm

pj
River

The solution that is considered as a river in the algorithm

G The coefficient for generating new solutions

di
max

The maximum acceptable distance between solutions and the sea in the
algorithm

⇀
X The position of a solution as a hunt in the algorithm
⇀
Xα The first-best solution in the algorithm
⇀
Xβ

The second-best solution in the algorithm

⇀
Xδ

The third-best solution in the algorithm
⇀
X(t + 1) The new result, which is calculated for Nsr, C, and dmax

rand A number between 0 and 1

itr The current iteration in the algorithm

r1 A random vector in the range (0,1]

r2 A random vector in the range (0,1]

npf The number of solutions in the Pareto

dp
i Shows the distance between every two answer choices in the Pareto

d
p Shows the average distance between every two answer choices in the Pareto

In the exploration phase of the algorithm, new positions for rivers and streams are
achieved based on Equations (9)–(11).

pj+1
Stream = pj

Stream + rand× G×
(

pj
Sea − pj

Stream

)
(9)

pj+1
Stream = pj

Stream + rand× G×
(

pj
River − pj

Stream

)
(10)

pj+1
River = pj

River + rand× G×
(

pj
Sea − pj

River

)
(11)

A large value for dmax prevents convergence, and a smaller value of dmax tends to
trap in the vicinity of the sea and reduces the exploration. The value of dmax controls the
position of different solutions around the sea, and it decreases gradually based on (12).

di+1
max = di

max −
di

max
itr

(12)

Finally, the position of a hunt is calculated as (13)–(16):

⇀
Dα =

∣∣∣∣⇀F⇀
Xα −

⇀
X
∣∣∣∣⇀Dβ =

∣∣∣∣⇀F⇀
Xβ −

⇀
X
∣∣∣∣⇀Dδ =

∣∣∣∣⇀F⇀
Xδ −

⇀
X
∣∣∣∣ (13)

⇀
X1 =

∣∣∣∣⇀Xα −
⇀
A
(
⇀
Dα

)∣∣∣∣⇀X2 =

∣∣∣∣⇀Xβ −
⇀
A
(
⇀
Dβ

)∣∣∣∣⇀X3 =

∣∣∣∣⇀Xδ −
⇀
A
(
⇀
Dδ

)∣∣∣∣ (14)

The vectors of A and F are calculated based on (15).

⇀
A = 2

⇀
a
⇀
r 1 −

⇀
a

⇀
F = 2

⇀
r 2 (15)
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⇀
X(t + 1) =

⇀
X1(t) +

⇀
X2(t) +

⇀
X3(t)

3
(16)

To get close to the prey, the amount of
⇀
a reduces from 2 to 0 gradually. All the values

in the obtained Pareto are normalized based on their objectives. The cost is defined as the
summation of all five objectives for each solution in the Pareto. The best answer choice is
the one with the minimum cost.

In the next iteration, for normalizing the achieved Pareto, the previously selected best
results are considered. Unlike single-objective problems, which are concluded in one cost
at the end of each iteration, there is a Pareto in multi-objective algorithm, which involves
different solutions at the end of each iteration.

4. Simulation

The number of CPUs in a service plays an important role in the processing speed.
For example, t2.nano has one CPU, and t2.large has two CPUs, all of which are assumed
in the simulation environment as a variety of available services [51]. The cloud services
have different throughputs, which lead to different transmission times. Table 4 illustrates
the different cloud service providers’ throughput, which is adapted from [52]. Different
data volume is considered according to real IoT sensors’ data for storing in three batches.
For different scenarios, different batch sizes are considered. Moreover, 80% of services
are contemplated to be needed to fulfil the demand for a batch of size 400 to validate the
reliability of service allocation. The data size has a uniform distribution between 20 and
500 for each batch of data [52,53].

Table 4. Different cloud service providers’ throughput [52]. Reproduced from [52], the name of the
publisher: Wiley Online Library.

Cloud Service Provider Throughput (Mbps)

Amazon S3a 1.349

Box 2.128

Dropbox 2.314

OneDrive 2.233

Google Drive 4.465

SugarSync 2.171

Cloud Mine 1.474

Rackspace 1.704

There is a relationship between the number of CPUs and energy consumption in each
service. According to the SPECpower benchmark, the maximum power consumption was
assumed to be 250 W for each CPU. To consider energy, 200 W in the idle mode and 300 W
in the busy mode were assumed for each CPU [54].

4.1. Simulation Setups

It is assumed that there are 32 storage services in the cloud layer and 32 processing
services in the fog layer. There are multi-objective algorithms that addressed energy and
load-balancing in service selection in recent years, such as NSGAII and the modified GA
called KGA. In the KGA, k-means is used to have an elitist set of the population [29]. The
average results of 10 separate runs for each algorithm are calculated. The Pareto’s answers
are sorted, and the mean of 10 separate Paretos is calculated for each objective. The results
are reported in the BOX diagram, which has a quartet and means. The box diagram gives a
better visual distribution of solutions for each objective in the resultant Pareto. Numerical
experiments are conducted using MATLAB on a Laptop with a Core i7 2.59–2.60 GHz
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CPU. The number of populations for the first part of the MWG algorithm is 10, and for the
second part of the MWG algorithm it is 50.

The setting parameters of other algorithms in the simulation are listed in Table 5.

Table 5. Different algorithms and the setting parameters.

Algorithms Parameters Settings

NSGAII [44] Population size (pop), crossover
probability, mutation probability 50, 0.8, 1

KGA [29]
Population size (pop), crossover

probability, mutation probability, number
of centroids

50, 0.8, 0.1, 4

MOWCA [50] Population size (pop), number of streams,
the distance of sea (dmax) 50, 4, 1

4.2. Evaluation

In Figure 3, the distribution of different solutions’ energy consumption in the Pareto of
various algorithms is shown. Based on Figure 3, the percentage of the resultant solutions,
which have a minimum energy consumption from MWG, is more in comparison to the
other algorithms’ result. Thus, it gives us more options in selecting the best solution that
satisfies other objectives (e.g., processing time, load balancing). Meanwhile, the resultant
solution from MWG has a minimum energy consumption in comparison to the other
algorithms’ result.
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In the MWG, rivers and seas lead other answers toward the optimum solution. The
number of solutions in Pareto for MWG is more than that in the other two KGA and
NSGAII algorithms based on energy consumption criteria. Figure 4 shows the distribution
of different solutions’ processing time in the Pareto for different algorithms. If time
plays a critical role, the MWG recommends some solutions that have less processing
time in comparison to other algorithms, even for a specific case, such as the maximum
demand scenario.
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Another factor that should be considered for the service allocation is the load balancing
between the VMs in the cloudlet as well as services from different cloudlets.

Figure 5 shows the distribution of different solutions’ load balancing in the Pareto
of various algorithms. Service may fail because of the overload. Thus, having a fair
distribution of data among services increases reliability as one of the critical factors in QoS.
NSGAII and KGA use the method of mutation and crossover. These methods are good
in escaping from a local minimum; they are random-based methods in which the global
minimum may be ignored as well. Based on Figure 5, the resultant solution from MWG
has a minimum energy consumption in comparison to the other algorithms’ result.
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On the other hand, many services such Dropbox, after processing data, outsource data
to cloud storage services for storing. Service providers around the world provide a variety
of services for users. The throughput of different service providers varies. Therefore, the



Energies 2021, 14, 8601 12 of 16

needed time to outsource data to cloud services varies based on available bandwidth.
Figure 6 shows the distribution of different solutions’ transmission time in the Pareto of
various algorithms. Based on Figure 6, the percentage of the resultant solutions that have a
minimum transmission time from MWG are more in comparison to the other algorithms’
result. Therefore, it gives us more options in selecting the best solution that satisfies other
objectives (e.g., processing time, load balancing). Meanwhile, the resultant solution from
MWG has a minimum transmission time in comparison to the other algorithms’ result.
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4.3. Metric of Spacing

The statistic factor for comparing two different multi-objective algorithms is the
regularity of answers in the Pareto. This factor is demonstrated with a metric of spacing.
Regularity in different algorithm’s Pareto is calculated based on (17).

SP =

√√√√ 1
np f − 1

np f

∑
i=1

(dρ
i − d

ρ
)

2
(17)

The other important factor in the multi-objective algorithms is to have a comprehensive
solution. Solutions should consider all objectives and have a better distribution. The smaller
value for SP based on (17) shows that the solutions in the Pareto are distributed better than
in the one with a larger value for SP. The average metric of spacing for MWG is improved
7%, 13%, and 25% in comparison to that for MOWCA, KGA, and NSGAII, respectively.
Detailed results are listed in Table 6.

Table 6. Metric of spacing for different algorithms.

Data
Number Iteration

KGA [24]
Max S

NSGAII
[41] Max S

MOWCA
[45] Max S

MWG
Max S

Min S Min S Min S Min S

100
100

130 134 165 189 102 112 114 139

200 237 244 257 259 232 248 210 215

400 311 325 352 389 304 314 267 269

4.4. Metric of Quality

The quality of the Pareto shows the difference between the optimum and obtained
results. Since the optimum solutions are not defined in NP-HARD problems, the new
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method is suggested in which the quality of Pareto among different algorithms can be
compared.

In Algorithm 1, all solutions are gathered from different algorithms’ Pareto. Solutions
are sorted based on the non-dominated solution. Then, solutions are sorted based on
crowding distance. Finally, an aggregated Pareto is achieved. The number of solutions
from each algorithm’s Pareto in the Aggregated Pareto shows the quality of different
algorithms in comparison to each other. By considering all workloads, the MWG algorithm
has 4%, 4.7%, and 7.3% advantages in metric of quality in comparison to MOWCA, KGA,
and NSGAII, respectively.

Algorithm 1 Pareto Quality Function (Metric of Quality)

Inputs: Different Algorithms’ solutions in their Pareto
Output: The percentage of each Algorithms’ solutions in the new optimum Pareto
1: Insert Pareto of the AlgorithmsTT
2: pop← Nondominated Sorted population
3: CD← Crowding Distance (pop)
4: Aggregated Pareto← Sort pop based on CD
5: Na ← Number of Algorithms
6: for k = 1 to Na do
7: for j = 1 to Number of Solutions in Kth Algorithm’s Pareto do
8: if Solutionsj ∈ Aggregated Pareto Set then
9: end if
10: end for
11: Metric of Quality(k) = N(k)

Nsp

12: end for

4.5. Evaluation of the Optimum Result

The answer choice with the minimum cost is considered as the best in each Pareto
based on the analytic hierarchy process (AHP) [55]. The alternatives are solutions in the
Pareto, and the criteria are the mentioned five objectives. All objectives are considered
to have the same importance. The best solution among the Pareto’s solutions of each
algorithm is determined based on AHP. Table 7 shows a comparison between different
algorithms in each objective (e.g., the MWG has a 32.15% improvement in processing time
for 200 data items).

Table 7. Comparison of algorithms’ best solution based on AHP.

Main
Algorithm Objectives

100 Data
KGA NSGAII

200 Data
KGA NSGAII

400 Data
KGA NSGAII

MOWCA MOWCA MOWCA

MWG

Energy 1.37 4.11 5.48 1.79 3.06 5.1 1.6 3.2 4

Load
balancing, fog 4.95 30.69 33.66 6.57 14.14 15.15 5.13 15.38 20.51

Load
balancing,

cloud
6.12 30.01 33.71 10.08 24.11 26.28 16.68 26.05 30.23

Processing
time 4.31 15.47 34.72 20.93 32.15 37.8 19.33 29.52 32.69

Transmission
time 5.64 11.54 17.69 6.63 8.63 13.95 6.11 9.8 14.17

The overall optimization results show that MWG algorithm has 7.8%, 17%, and 21.6%
better performance in comparison with MOWCA, KGA, and NSGAII based on the obtained
result from Pareto.
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5. Conclusions

This paper presented a new hybrid multi-objective algorithm for storage service
selection in a collaborative and heterogeneous cloud and fog environment. Five objectives
are considered altogether in the proposed work. The mathematical models for energy,
load-balancing, and time are proposed in this study. Numerical experiments are conducted
to compare the performances of the proposed MWG, MOWCA, KGA, and NSGAII. Testing
results in a case study demonstrate the better performances of MWG in metric of spacing
and metric of quality in comparison to MOWCA, KGA, and NSGAII. In comparison to
MOWCA, KGA, and NSGAII, the average metric of spacing for MWG improved by 7%,
13%, and 25%, respectively. On the other hand, the total optimization findings reveal that
the MWG algorithm outperforms MOWCA, KGA, and NSGAII by 7.8%, 17%, and 21.6%,
respectively, based on the Pareto result. The analysis of the obtained results show that the
energy consumption is reduced, fair load distribution among services is achieved, and the
time for processing and transmitting is optimized. The Pareto and the optimum result show
the superiority of the proposed hybrid MWG algorithm in comparison to other algorithms
in service selection. In future works, the influence of other parameters, such as the node
price will be added as an object to the mathematical model, which will be analyzed in more
detail. Additionally, other practical applications will be considered, such as latency and
user’s demands and constraints. Furthermore, the algorithm with better performance in
terms of quality of service can be proposed.
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