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Abstract: In this paper, we study how uncertainties weighing on the climate system impact the
optimal technological pathways the world energy system should take to comply with stringent
mitigation objectives. We use the TIAM-World model that relies on the TIMES modelling approach.
Its climate module is inspired by the DICE model. Using robust optimization techniques, we assess
the impact of the climate system parameter uncertainty on energy transition pathways under various
climate constraints. Unlike other studies we consider all the climate system parameters which is
of primary importance since: (i) parameters and outcomes of climate models are all inherently
uncertain (parametric uncertainty); and (ii) the simplified models at stake summarize phenomena
that are by nature complex and non-linear in a few, sometimes linear, equations so that structural
uncertainty is also a major issue. The use of robust optimization allows us to identify economic energy
transition pathways under climate constraints for which the outcome scenarios remain relevant for
any realization of the climate parameters. In this sense, transition pathways are made robust. We
find that the abatement strategies are quite different between the two temperature targets. The most
stringent one is reached by investing massively in carbon removal technologies such as bioenergy
with carbon capture and storage (BECCS) which have yields much lower than traditional fossil
fuelled technologies.

Keywords: robust optimization; climate change; climate modelling; uncertainty; decision-making
under uncertainty

1. Introduction

According to the current status of scientific knowledge, one can assume, with a high
level of confidence, that (i) global warming of the Earth is happening, (ii) anthropogenic
greenhouse gas (GHG) emissions are to a large extent responsible of this warming [1]
and, therefore, (iii) GHG emissions from human activities must be mitigated to prevent
important damages on ecosystems [2], to the extent possible to the level of 1.5 ◦C [3].

To support the design of climate mitigation targets and policies, and especially to
analyze energy transition pathways ensuring a strong abatement of GHG emissions, one
may rely on an integrated assessment (IA) approach. The latter typically combines the
socio-economic elements that drive GHG emissions with the geophysical and environ-
mental elements that determine climate changes and their impacts. Integrated assessment
models (IAMs) are computational tools to perform IA. Examples of such models include:
BaHaMa [4–6], DICE [7], FUND [8], MERGE [9], PAGE [10] and TIAM-World [11]. IAMs
operate under different paradigms (e.g., bottom-up or top-down, optimization, or simula-
tion). Furthermore, they specifically vary with respect to the level of modelling details for
the mitigation options. At both ends of the spectrum, the top-down model DICE aggregates
all mitigation options into a single cost function, whereas the bottom-up TIAM-World
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model (following the TIMES paradigm of the International Energy Agency [12]) offers a
technology-rich representation of the energy sector with thousands of energy technologies.
This large variety of IAMs used, along with our current imperfect knowledge of all the
climate change mechanisms, yield to very different GHG emissions abatement pathways
(Figure 1). As a consequence, climate policy recommendations may widely vary across
studies. For instance, Stern (2007, [13]) has advocated using PAGE for immediate actions
to abate GHG emissions. Conversely, Nordhaus (2008, [14]), with his DICE model, has
reached the conclusion that immediate and massive actions are not necessary.

Figure 1. GHG emissions distribution over time for SSP scenarios. Sources: [15,16]. 2 °C/1.5 °C
scenarios are defined as having a more than 66%/50% chance of having a temperature change of
2 °C/1.5 °C, according to MAGICC6.

This large variance in outputs across models led some economists to consider the use
of current IAMs with caution [17–19]. Indeed, the long-term energy–economy–climate
outlook provided by current IAMs is clouded with a great degree of uncertainty that may
deeply affect the relevance of the policy analyses performed and the validity of the policy
recommendations formulated. This is mostly due to the multiple sources of uncertainty
(see for instance [20,21]), ranging from cross-models structural uncertainty (the modelling
paradigms and their underlying simplifications) to within-models parametric uncertainty
(because models are calibrated with imperfectly known data—measures uncertainty, and
because of numerical assumptions about the future—radical uncertainty).

Therefore, dealing with risk and uncertainty in IAMs is a crucial question, both for
scientists and policy makers [22]. This general question has a long history and has led
to a substantial body of literature. Several approaches have been followed so far, with
applications to different sectors of IAMs. Deterministic multi-scenario analysis, sensitivity
analysis and Monte-Carlo simulations, stochastic programming, and stochastic control
have been applied e.g., to uncertainty surrounding technology pathways [23] or economic
growth [24]. In the specific case of climate modelling within IAMs, Refs. [25,26] identifythe
following main streams to handle uncertainty: discrete scenario-based modelling [27], real
options analysis [28] and stochastic dynamic programming/control [29,30]. As a subset of
this last category, authors have also developed dedicated closed-form IAMs to integrate
uncertainty [31]. To these techniques, we can add multi-ensemble uncertainty analysis
where a large number of deterministic model outcomes are treated statistically [32].

These approaches prove useful, but all have drawbacks, and their implementation
largely depends on the structure and size of the model at stake. Sensitivity analysis
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and Monte-Carlo simulations make way for the investigation of the impact of particular
parameters, but do not provide unambiguous hedging strategies. Crost and Traeger [33]
demonstrate that for this reason, there is no equivalence between the two approaches.
Deterministic multi-scenario analysis results are also difficult to interpret as models are run
in a deterministic way with little possibility to apply any probability distribution to the set
of scenarios. One of stochastic programming drawbacks is that probability distributions
have to be defined over the whole tree and that conclusions might be (extremely) sensitive
to the choice of scenario and branching scheme. Moreover, stochastic programming may
considerably increase the size of the problem to be solved, leading quickly to excessive
computational times. Computational burden also typically limits the use of stochastic
control approaches in IAMs.

The topic of uncertainty in integrated assessment is still on the scientific agenda, since
it questions the relevance of the outcomes [34]. In this paper, we aim at contributing
to the literature stream of analyzing climate uncertainty in IAMs by introducing robust
optimization (RO) in a large scale, surplus maximization IAM.

Early developments of RO date back to Soyster [35], who initiated an approach
to obtain relevant (feasible) solutions of linear optimization problems although matrix
coefficients are inexact. They initiated this work because of one observation: even small
variations in data can impact feasibility or optimality properties of a solution [36]. This
idea has then been largely explored with different formalisms [37,38] or by generalizing the
Soyster approach [39]. RO allows to solve decision-making problems under uncertainty
even when the underlying probabilities are not known—only assumptions of the bounds of
the support are required. It consists in immunizing a solution against adverse realizations
of uncertain parameters within given uncertainty sets. The basic requirement for a robust
solution is that constraints of the problem are not violated regardless of the realization
of the parameters in the set. The issue then consists in identifying computable robust
counterparts for the initial optimization program. Ben-Tal et al. [40] or Bertsimas et al. [41]
review techniques for building such robust counterparts in general cases.

Up until now, RO has rarely been used in energy models [42], and even less in IAMs,
with the exceptions of Babonneau et al. [43] and Andrey et al. [44]. On the other hand, the
uncertainty of some climate parameters has already been studied, see, for instance, [45] for
an application based on stochastic programming to analyze climate sensitivity, or [46] for a
research focusing on atmospheric CO2 concentration and using a maximin regret criterion
in a linear model. Therefore, to the best of our knowledge, we propose the first application
of robust optimization to a systematic analysis of uncertainty in climate model parameters
of a large scale IAM. Although both the TIAM-World model and the robust optimization
approach are well established, the novelty of this work lies with the application of RO to
analyze the impact of climate uncertainty on IAMs results. Our hope is that, in the future,
such techniques become part of the modelling toolbox accessible to decision-makers, in order
to incorporate uncertainty in investment or policy decisions in a more systematic way.

A first contribution of our paper is to propose a general robust approach to consider
uncertainty in simple climate models (SCMs) typically used by IAMs to represent climate
evolution. Our approach relies on Bertsimas and Sim [39]. It consists in defining an
uncertainty budget to control the degree of pessimism; in short, to limit the number
of climate parameters allowed to deviate from their nominal values. We then obtain
robust strategies by using a decomposition scheme that involve solving a series of sightly
modified versions of the deterministic IAM. In comparison, Babonneau et al. [43] use robust
optimization in order to protect the total future energy supply from possible perturbations
of technological efficiencies. Their methodology exploits independence and first moment
information about some underlying efficiency factors that have linear effects on the total
available capacity for each period. Their proposed solution scheme relies on second order
cone programming which might limit the size of the problems that can be efficiently
addressed. More recently, Andrey et al. [44] also choose to robustify total future energy
supply but make use of the budgeted uncertainty set of Bertsimas and Sim [39]. In contrast
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with these two approaches, our research focuses on how to robustify the world’s capacity to
meet its targets regarding future temperature levels given the current available knowledge
of the climate parameters. Moreover, our analysis will account for plausible perturbations of
these parameters which have strong non-linear (instead of linear) effects on the temperature
that will be reached. Finally, the solution scheme we propose has a similar advantage as
the method of Andrey et al. [44]—to preserve the linear structure of the IAM model that
needs to be solved—through a constraint generation algorithm.

The second contribution of this work is on the quantitative side. Our approach is
implemented in the TIAM-World [47] integrated assessment model, which also relies on
a SCM. We first define plausible uncertainty ranges for the climate parameters of the
TIAM-World model and then calibrate these ranges using existing literature [48] against
climate simulations from the MAGICC model [49]. Then, using a robust counterpart of
TIAM-World, we enrich the climate debate by defining robust energy transition pathways
for different global warming targets. In other words, we identify economic transition
pathways under climate constraints for which the outcome scenarios remain relevant for
any realization of the climate parameters. Moreover, we can assess which climate parameter
or which combination of climate parameters are the most sensitive in our model and we
can quantify the uncertainty cost. The originality of our results is that (i) unlike other
studies e.g., [50,51], we consider uncertainty on all the climate system parameters of our
IAM and (ii) we assess the cost of different protection levels and their impact on energy
transition pathways.

The remainder of this paper is organized as follows: in Section 2, we first present the
approach in the general case (for all IAMs). We then describe briefly, in Section 3, how
we implement our RO approach in the TIAM-World model and, finally, in Section 4, we
present numerical results of selected scenarios and review the different insights brought by
the RO approach and how it can inform policy makers.

2. General Approach for Robustifying Optimization-Based IAMs
2.1. Integrated Assessment Modelling—A Stylised Description in the Optimization Framework

Integrated assessment models (IAMs) present different levels of integration [52]. On
one end of the spectrum, there are models, such as the MIT IGSM [53], composed of
loosely interconnected but more detailed (economic and climate, in particular) modules.
At the other end, there are more integrated models such as, among others, TIAM-World,
IMACLIM [54], MESSAGE [55], WITCH [56].

In this presentation, we focus on IAMs that can be cast, in compact form, as a single
mathematical programming model, where a social planner would be assumed to maximize
total surplus (the sum of producers and consumers surpluses, f ), under constraints which
could be economic, technical, or social (g), as well as climatic (h):

maxx f (x) (total surplus)
s.t.
g(x) ≤ 0 (economic, technical or social constraints)
h(x) ≤ 0 (climatic constraints)
x ∈ Rn

(1)

The set h(x) ≤ 0 of climatic constraints minimally (i) describes the Earth’s carbon cycle
to determine the atmospheric CO2 concentration; (ii) computes, using this concentration as
well as other GHGs concentration (often exogenous), the Earth’s radiative forcing balance;
and (iii) determines the evolution of the Earth’s mean surface temperature. This constitutes
the typical climate module of well-known IAMs, such as DICE, FUND, and MERGE. We
shall refer to such a module as a simple climate model (SCM). By contrast, there are more
complex climate models called Earth System Models of Intermediate Complexity (EMICs),
such as C-GOLDSTEIN [57], which could take hours to run, or even full-fledged climate
models called Atmosphere-Ocean Global Circulation Models (AOGCMs, see, e.g., [58]),
which could take weeks to run on a supercomputer.
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In SCMs, the carbon cycle can be modelled in two main ways. It can be represented
by different ‘carbon boxes’ (e.g., the atmosphere, the upper ocean and the lower ocean)
with exchange rates, as in DICE (see Figure 2). Or it can be represented by an impulse-
response function as in FUND and MERGE. In the sequel of this article, we focus on the
first one. Most SCMs do not have retro-actions of the CO2 concentration on the carbon
cycle parameters, although the phenomenon is known to be of importance [59,60]. This is
an obvious simplification as the CO2 removal rate from the atmosphere is not constant due
the finite uptake capacity of the ocean.

Figure 2. Typical stylized carbon cycle in an SCM. Source: Tim Meko on Flickr: https://www.flickr.
com/photos/timmeko/6106058409/in/album-72157621811047263/, accessed on 15 December 2021.

In the Dice-like SCMs, the concentration of gas g in period t in the n different com-
partments of the biosphere, Mg(t), may be expressed as a recursive equation:

Mg(t) = Trg Mg(t− 1), Mg(t) ∈ Rn
+ (2)

where Trg is a square matrix containing the transfer coefficients across compartments.
The modelling of radiative forcing (F) is rather similar across SCMs. It is defined by

the radiative forcing of each GHG considered (FGHG):

F(t) = ∑
GHG

FGHG(t) (3)

Radiative forcing due to CO2 is often defined by a logarithmic function of the actual
atmospheric CO2 concentration (M):

FCO2(t) = γlog2

(
M(t)
M0

)
(4)

https://www.flickr.com/photos/timmeko/6106058409/in/album-72157621811047263/
https://www.flickr.com/photos/timmeko/6106058409/in/album-72157621811047263/
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This logarithmic function is sometimes linearized, as in TIAM-World. The main
differences among SCMs are parameter values (e.g., γ and M0) and the treatment of
non-carbon dioxide GHGs (exogenously or not).

Change in radiative forcing translates in changes for the mean surface temperature
(Tat) and the mean (deep) ocean temperature (Toc) depending in particular on the assumed
climate sensitivity. In SCMs, this is generally estimated using two linear equations:

Tat(t) = µ
(

F(t), Tat(t− 1), Toc(t− 1)
)

(5)

Toc(t) = ψ
(
Tat(t− 1), Toc(t− 1)

)
(6)

The main differences among SCMs are, again, parameter values and the functional
form of µ and ψ.

2.2. The Robust IAM for Climate Parameters

Let us consider again our basic IAM formulation:

(P) :


maxx f (x)
s.t. g(x) ≤ 0
h(x, a) ≤ 0

(7)

where x ∈ Rn is a vector of decision variables, and a ∈ Rm is a vector of uncertain
parameters in h(x, a). In what follows, h will be a temperature constraint. We assume that
any realization ai might take one of three values {a−i , āi, a+i }, each representing the lowest
value, nominal value, and highest value, respectively. This uncertainty typically gives rise
to the following space of possible candidates for a:

U =
{

a ∈ <m | ∃ z+ ∈ {0, 1}m, z− ∈ {0, 1}m, z+ + z− ≤ 1, ai = āi + (a+i − āi)z+ + (a−i − āi)z−
}

Following Bertsimas and Sim [39], it is possible to control the degree of pessimism of
the solution by allowing only a subset of parameters to deviate from their nominal values.
The concept of the uncertainty budget is based on the fact that it is highly unlikely that all
the parameters take one of their two extreme values at the same time. This motivates the
use of the following robust counterpart of the initial problem:

(RC) :


max f (x)
s.t. g(x) ≤ 0
h(x, a) ≤ 0, ∀a ∈ U(Γ)

(8)

with

U(Γ) =
{

a ∈ <m
∣∣∣∣ ∃ z+ ∈ {0, 1}m, z− ∈ {0, 1}m,

z+ + z− ≤ 1, ∑i z+i + z−i ≤ Γ
ai = āi + (a+i − āi)z+i + (a−i − āi)z−i

}
where Γ ∈ {0, 1, 2, . . . , n} is the maximum number of parameters taking one of their
extreme values. The idea behind the robustification of h is that the solution of the energy–
economy problem should be feasible for any ‘nature-controlled’ realization of the uncertain
parameters in, e.g., the temperature constraint. Thus, we want to identify the worst-case
combination of parameters in h constrained by the uncertainty budget Γ. For example,
assuming we want to determine optimal economic mitigation choices to limit global
warming below 2 ◦C, we need to identify trajectories that meet the temperature target even
though some of the climate parameters were wrongly estimated. We assume that decisions
shall be taken before the actual values of the parameters are known, to reflect the current
status of political discussions and scientific progress in climate science.



Energies 2021, 14, 8595 7 of 31

Under linearity conditions of h(x, a) with respect to a, the uncertainty set U(Γ) can be
equivalently replaced with its convex hull (refer to example 14.3.2.B in [61] for a proof of
this representation):

U′(Γ) =
{

a ∈ <m
∣∣∣∣ ∃ z+ ∈ [0, 1]m, z− ∈ [0, 1]m,

z+ + z− ≤ 1, ∑i z+i + z−i ≤ Γ
ai = āi + (a+i − āi)z+ + (a−i − āi)z−

}
and the robust constraint can be reformulated using strong duality as:{

h(x, ā) + ∑i max
(
(a−i − āi)h′i(x)− v; 0; (a+i − āi)h′i(x)− v

)
+ Γv ≤ 0

v ≥ 0
(9)

where v ∈ < is an additional decision variable that need to be optimized jointly with x,
and where h′i(x) is the derivative of h(x, a) with respect to ai.

The robust problem can then be reformulated by incorporating this new set of con-
straints in the original problem (see [39] for the original discussion about such a reformula-
tion). Unfortunately, such reformulations are not always possible. Beyond the strictly linear
case, Ben-Tal et al. [40] proposes a methodology to reformulate robust programs in the
more general case of non-linear but still convex constraints when using convex uncertainty
sets such as U′(Γ). Yet, these conditions typically involve that both h(x, a) be concave
in a and that the uncertainty set be a convex set. The mere fact that h(x, a) be a concave
function prevents one from replacing U(Γ) with its convex hull. This implies that such
reformulations are unlikely to be obtainable for robust non-linear climate constraints when
an uncertainty set as U is used.

As an illustration, let us consider that temperature follows some linear dynamics, i.e.,
Equation (5) can be written as:

Tat(t) = a1F(t) + a2Tat(t− 1) + a3Toc(t− 1) ,

where (a1, a2, a3) are three parameters that might be considered uncertain. When unfolding
this expression in order to assess the long term effect of the parameters on the temperature
level, we obtain expressions of the form:

Tat(t) =
t

∑
τ=1

at−τ
2 a1F(τ) + at

2Tat(0) +
t

∑
τ=1

at−τ
2 a3Toc(τ) ,

which is a polynomial function of (a1, a2, a3) and does not in general satisfy structural
assumptions, such as monotonicity, convexity, or concavity. This makes the hope of
obtaining a compact reformulation as in (9) somewhat unrealistic.

Note that it is possible to avoid the need of a compact reformulation by including ad-
ditional constraints that exhaustively enumerate all possible combination of deviations that
need to be verified for a given choice of Γ. Unfortunately, the number of such combinations
increases exponentially with respect to m, the number of uncertain parameters. To avoid
the exponential growth in the problem size, we suggest employing a constraint generation
method that will attempt to identify a small subset of such extreme value combinations
that are sufficient to obtain the optimal robust solution of the problem. This approach is
fairly generic as it relies entirely on two modest (as we will see) assumptions: (i) the ability
to identify a worst-case combination of extreme value for a fixed decision x; and (ii) the
ability to solve the RC problem where the robust constraint is replaced by:

h(x, a) ≤ 0 , ∀ a ∈ {â1, â2, . . . , âK} (10)

Let us now detail our proposed constraint generation algorithm (Algorithm 1):
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Algorithm 1: Constraint generation algorithm.
Result: Robust energy system and emissions pathway for a given uncertainty

budget, Γ
Set Û0 = {ā} and k = 0;
Set an arbitrary positive value for h∗k ;
while While h∗k > 0 and k ≤ Γ do

Solve the master problem (MP(Û)) which consists in maximizing the social
surplus under a robust temperature constraint that accounts only for
instances of the parameters a contained in Û:

(MP(Û)) :



max
x

f (x)

s.t.
g(x) ≤ 0

h(x, a) ≤ 0 , ∀ a ∈ Û
x ∈ Rn

Capture the optimal trajectories in this problem with x∗k ;
Identify the worst-case scenario in U for the parameters of the temperature
constraint function by solving the SP(x∗k ) worst-case analysis problem:

(SP(x∗k )) :
{

max
a∈U(Γ)

h(x∗k , a)

Capture the worst-case value of this problem as h∗k and one of the assignments
that achieve the worst-case value as a∗k ;

Add a∗k in the set Û and increase k by one;
end
Return x∗k as the optimal robust trajectories of problem (P)

2.3. Obtaining Uncertainty Ranges for Climate Parameters

The robust problem described above will require the estimation of deviation bounds
for the climate parameters. Differences among SCMs especially come from their choices of
these key assumptions. It is thus important to define ‘appropriate’ uncertainty ranges for
those. This will help assess how robust SCMs are and understand which parameters or
combinations of parameters are the most sensitive. Evaluating such ranges reveals several
difficulties see for example [62–64]. First, as already mentioned, SCMs are designed to
evaluate climate responses with limited computational burdens. They thus rely on some
structural simplifications. For instance, most SCMs ignore carbon and climate feedbacks
in their description of the carbon dynamics. Such simplifications induce bias. As an
illustration, van Vuuren et al. [48] show how differently carbon cycle can behave within a
standard impulse-response experiment, depending on whether it includes or not feedbacks.
Second, there is a parametric uncertainty due to the intrinsic volatility of the natural
phenomena at stake, as well as the imperfection of measures and statistical estimations. As
an illustration, Knutti and Hegerl [65] exhibits different distributions and ranges for the
climate sensitivity based on different lines of evidence. Additionally, third, there is a form
of ‘selection bias’ due to heterogeneous degrees of information on parameters estimation
and calibration. Overall, IAM-SCMs modellers may have a tendency to pay more attention
to some parameters, based on available information.

Based on the previous stylized description of SCMs, one may distinguish three sets of
parameters whose uncertainty has to be estimated. First, one group contains the parameters
for the carbon cycle. The terrestrial carbon cycle itself is a rather large field of study in
geophysics (see, e.g., [59,60] for a multi-model approach). One can also find sensitivity
analysis on the carbon cycle in IAM-based research [62,64], or at least clues on how uncertain
these parameters are [14]. One way of assessing the behavior of carbon cycle models is to
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perform the so-called ‘doubling experiment’, where the evolution of an atmospheric CO2
doubling-concentration pulse in year 0 is followed across the various carbon sinks for the
next 100–400 years. Existing multi-models experiments [48,60] point out large response
spectra; Ref. [48] additionally show that simple carbon models (few boxes, simple linear
recursive dynamics) such as DICE have, compared to the rest, relatively optimistic carbon
cycles. Such an experiment seems to be a good starting point to calibrate a carbon cycle.
However, the uncertainty it translates covers both parametric and structural uncertainty. For
example, Ref. [48] argues that the PAGE model behaves very differently from the rest of the
test population because it includes feedbacks on the carbon cycle. This limitation—carbon
cycle models have different structures, hence different parameters—makes it difficult to
adopt such a calibration procedure. Therefore, in the following application, we adopt a
calibration procedure similar to that of [66], but for the four IPCC-RCP emissions scenarios
ran under the multi-ensemble simulation mode of MAGICC6 [49].

A second set of parameters includes the forcing and climate sensitivities, which are
likely to be the most well-documented parameters in the climate literature. They describe
the global equilibrium surface forcing and warming after a doubling of atmospheric CO2
concentration; any climate models includes these parameters. The importance of the
equilibrium radiative forcing is widely acknowledged [67]; multi-models comparisons and
simulations are also frequent [68]. If issues such as climate feedbacks arise in the estimation
of forcing [69], available comparisons indicate plausible range for the forcing parameters
(using doubling or quadrupling experiments), with the last IPCC report (AR5-WG1, [70])
providing a central value of 3.7 with a +/−0.8 99% confidence interval. This estimation is
consistent with [71], and is retained for this study. Ref. [65] synthesizes plausible sensitivity
ranges for the climate sensitivity for different lines of evidence, and demonstrate how
critical it is if the policy objective is to prevent damages caused by certain levels of warming.
The IPCC most likely value and upper bound are 3 ◦C and 4.5 ◦C, respectively, which
is consistent with other papers, such as [50]. Ref. [64] makes a different choice, and end
up with a range (upper bound of 8 ◦C) closer to what [65] refer to as ‘expert elicitation’.
Combining different lines of evidence, these authors obtain a range close to the one of IPCC,
which we will retain as a basis. Compared to existing literature on IAM-SCM sensitivity
analysis in [64], these ranges are high for forcing and low for the climate sensitivity.

Finally, parameters entering the temperature dynamics, are part of a third group appar-
ently less studied. By default, we proceed as [64], and apply a 10% variation to the annual
heat transfer coefficients. The range of temperature responses of TIAM-World are compared
against MAGICC6 for the 4 RCPs scenarios, accounting for the uncertainty of all parameters.

3. Application to TIAM-World
3.1. Model Overview

The TIMES Integrated Assessment Model (TIAM-World) is a detailed, global, multi-
region technology-rich model of the energy/emission system of the world. It is based on
the The Integrated MARKAL-EFOM System (TIMES) economic paradigm, which computes
an inter-temporal dynamic partial equilibrium on energy and emission markets based
on the maximization of total surplus. A complete description of the TIMES equations
appears in www.etsap.org/documentation. TIAM-World is described in [11,47]. It is used
in many international and European projects (for recent applications, see [43,72]). See also
Appendix A for a detailed overview of the model.

The nominal formulation of the TIAM problem is a cost minimization and can be
written as follows (with some simplifications):

min ∑t cT
t xt

s.t.
Ltxt ≥ bt, xt ∈ Rn, Lt ∈ Rm∗n , (technological constraints)
Dtxt ≥ dt, xt ∈ Rn, Dt ∈ Rd∗n , (demand constraints)
yt ≤ wt, with yt = Ayt−1 + Fxt , (recursive climate constraints)
xt ∈ Rn, yt ∈ Rw, A ∈ Rw∗w, F ∈ Rw∗n

www.etsap.org/documentation
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The objective function is the total cost of the system. It includes, among others:
investment costs, operating costs of the various sectors, taxes, transportation costs between
geographical zones. Technological constraints cover capacity limits, supply limits, yields,
the allowed growth rates of the processes in the various sectors. Demand constraints
include each zone’s energy service demands and climate constraints embrace limits on
GHG emissions or stocks in the atmosphere or on temperature increase. These latter
constraints belong to an endogenous climate module. Note that the CO2, CH4, and N2O
emissions related to the energy sector are explicitly represented by the energy technologies
included in the model. The non-energy-related CO2, CH4 and N2O emissions (landfills,
manure, rice paddies, enteric fermentation, waste water, and land use) are also included in
order to correctly represent the radiative forcing induced by them, but they are exogenously
defined. Emissions from some Kyoto gases (CFCs, HFCs, and SF6) are not explicitly
modelled, but a special radiative forcing term is added in the climate module.

3.2. The Climate Module and the Uncertainty Sets of Climate Parameters

The climate module used in TIAM-World for this work is an adapted version of
the model developed by Nordhaus and Boyer [73]. Greenhouse gas concentration and
temperature changes are calculated from linear recursive equations. We briefly present its
characteristics here (and in more detail in Appendix B, a detailed description can be found
in Loulou et al. [74].

The climate representation in TIAM-World is characterized by three steps. First, the
GHGs emitted by anthropogenic activities accumulate in the atmosphere; exchanges with
the upper and deep ocean layers occur then for CO2, while the dissipation of CH4 and
N2O is described with single atmospheric decay parameters. Nine parameters populate
the climate module: four carbon transfer coefficients controlling carbon dioxide exchanges
between the atmosphere and the upper layer of the ocean and between the upper layer
and the lower layer of the ocean (φa−u,φu−a,φl−u,φu−l), the radiative forcing sensitivity
to atmospheric CO2 doubling (γ), the climate sensitivity, i.e., the change in equilibrium
atmospheric temperature due to a doubling of GHG concentration (CS); the adjustment
speed for atmospheric temperature (σ1), the adjustment speed for oceanic temperature (σ3)
and the heat loss coefficient from the atmosphere to the deep ocean (σ2).

The concrete procedure for estimating min and max values for the climate system
parameters differs across parameters. Although most estimations are based on comparisons
with existing literature [64,70], the construction of lower and upper bounds for the three-box
carbon cycle parameters relies on a calibration against existing emission scenarios and the
subsequent concentrations from MAGICC6 [49]. More detail about the estimation procedures
can be found in Appendix C; Table 1 lists the nominal values and upper/lower bounds for
the TIAM climate model parameters. Instead of keeping an upper and a lower value for the
parameters, a rapid pre-study provided us the worst-case value of the parameters.

Table 1. Nominal values and bounds for climate parameters.

Parameter Description Nominal
Value

Lower
Bound

Upper
Bound

φa−u
Atmosphere to upper layer carbon
transfer coefficient (annual) 0.046 0.04393 0.04807

φu−a
Upper layer to atmosphere carbon
transfer coefficient (annual) 0.0453 0.04326 0.0473

φu−l
Upper to lower layer carbon transfer
coefficient (annual) 0.0146 0.0139 0.01526

φl−u
Lower to upper layer carbon transfer
coefficient (annual) 0.00053 0.00051 0.00055
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Table 1. Cont.

Parameter Description Nominal
Value

Lower
Bound

Upper
Bound

γ
Radiative forcing from doubling of
CO2

3.7 2.9 4.5

CS
Climate sensitivity from doubling of
CO2

2.9 1.3 4.5

σ1
Adjustment speed of atmospheric
temperature 0.024 0.0216 0.0264

σ2
Heat loss from atmosphere to deep
ocean 0.44 0.396 0.484

σ3 Heat gain by deep ocean 0.002 0.0018 0.0022

3.3. Robust Formulation of the Climate Problem

Based on the uncertainty that was described above, one can describe a robust counter-
part of TIAM as follows:

min
x ∑

t
cT

t xt

s.t. Ltxt ≥ bt , ∀t (technological constraints)

Dtxt ≥ dt , ∀t (demand constraints)

yt(x, A, F) ≤ wt , ∀ (A, F) ∈ U(Γ) , ∀t (robust temperature constraints)

x ∈ Rn
+

where the climate equation is written as:

yt(x, A, F) =
t

∑
τ=1

At−τ Fxτ + Aty0

and where intuitively the uncertainty set U(Γ) includes any pair of matrices (A, F) that can
be obtained by setting less than Γ of the uncertain parameters described in Table 1 to one
of their extreme values. The algorithm described in Section 2.2 can be applied here as long
as we are able to solve:

(SP(x∗k )) :
{

max
(A,F)∈U(Γ)

h(x∗k , A, F) := max
t=1,...,T

yt(x, A, F)− wt ,

and return the maximum value with a pair (A∗k , F∗k ) that achieves this worst-case value for
one of the time period in the horizon t = 1, . . . , T.

This resolution will be done by enumerating through all t’s and identifying a worst-
case (A∗t , F∗t ) pair for:

max
(A,F)∈U(Γ)

yt(x, A, F)− wt . (11)

Given that the largest worst-case difference among all t’s is achieved at t∗, the oracle
will return h∗k := yt(x, A, F) − wt with the pair (A∗t∗ , F∗t∗) to be included in MP(Û). Al-
though it might be possible to solve problem (11) by enumerating through all the possible
scenarios for A and B, we present in Appendix D the procedure that we employed. It
relies on the resolution of a mixed integer linear program which we believe should be more
efficient when the number of uncertain parameters becomes large.

4. Results and Discussion

This section presents the results obtained with our robust version of TIAM-World.
The uncertainty sets are given in Section 3.2 and the uncertainty budget takes value in
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[0− 9] (9 being the number of uncertain parameters in the climate module). We consider
two temperature limits for the whole 2000–2200 horizon: 2 ◦C and 3 ◦C. We will see that
with the uncertainty-immunized solution, temperature paths are consistent with the limits
considered by the Paris Agreement to the UNFCCC. We will first present temperature and
GHG emission profiles, and then discuss energy transition pathways.

4.1. Temperature and Emission Trajectories

Figure 3 gives the temperature trajectories obtained with the nominal values of the
climate parameters, when the trajectory with deviated parameters has to respect the 2 ◦C
or 3 ◦C limit. They can be viewed as hedging trajectories: they should be followed in order
to comply with the temperature constraint even in presence of parameter uncertainty. An
increase in the uncertainty budget corresponds to an increase in the protection level.

Figure 3. Atmospheric temperature trajectories for different values of the uncertainty budget.

Uncertainty has a significant impact on the temperature trajectories, even for the
uncertainty budget’s low values. In order to ensure that the temperature does not exceed
2 ◦C (respectively, 3 ◦C), we should aim for a temperature increase ranged between 1.3 ◦C
and 1.5 ◦C (resp., between 2 ◦C and 2.3 ◦C) with the nominal climate model in 2100.
These new targets are consistent with the levels (1.5 ◦C and 2 ◦C) proposed by the Paris
Agreement. Figure 3 reveals also that, to immunize against climate uncertainty with
a 2 ◦C temperature limit, temperature peaks between 2060 and 2070 before decreasing
rapidly. This notably impacts the energy transition pathways needed to comply with these
temperature limits; see Section 4.3. On the other hand, with a 3 ◦C temperature limit,
temperature peaks only by the end of the century and decreases more slowly afterwards.

The robust optimization approach also makes it possible to rank the parameters or
group of parameters by sensitivity. Table 2 shows the order in which climate parameters
deviate, characterizing a diminishing negative impact on the temperature constraint. Since
the robust counterpart of the nominal problem maximizes the temperature deviation for a
given emission profile, increasing the uncertainty budget consists in finding parameters
with the worst effect on the solution within the set of remaining (undeviated) parameters.
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Table 2. Deviation order of uncertain climate parameters.

Parameters CS φa−u φu−a σ2 γ σ1 φu−l φl−u σ3

Order 3 °C 1 2 3 4 5 6 7 8 9

Order 2 °C 1 2 3 4 9 7 5 6 8

The first deviating parameter is the climate sensitivity (CS). This can be explained by (i)
its wide uncertainty range compared to the ones of the other parameters and (ii) the fact that
it is a central parameter of the climate module. This is consistent with other studies analyzing
climate response sensitivity to derive 2 ◦C-compliant mitigation pathways [45,75,76]. More
interestingly, after the climate sensitivity, the most critical parameters are the ones of the carbon
cycle (φa−u and φu−a). The terrestrial carbon dynamics is indeed of primary importance to
assess the impact of anthropogenic GHG emissions, as it influences directly the atmospheric
carbon concentration, and hence the radiative forcing and the temperature. This strengthens
the importance of relying on appropriate uncertainty ranges for the climate parameters; see
Appendix C. This also pleads for the necessity to pay more attention in IAMs to the intricacies
of the carbon cycle, including feedbacks and non-linearities. Although climate sensitivity
and the carbon cycle appear as primary factors, second-order parameters are ranked very
differently. This may be (at least partially) explained by the mitigation dynamics in the two
climate scenarios: in the 2 ◦C case, mitigation pathways must be implemented earlier (see the
next figure) such that the climate dynamics does not have the same overall impact.

Figure 4 displays CO2 emission trajectories for the nominal scenarios and emission
ranges in the robust scenarios.

Figure 4. CO2 emission profiles in the nominal and robust scenarios.

In the nominal trajectories, emissions peak by the middle of the century in the 3 ◦C
case, and decreases rapidly afterwards. Whereas in the 2 ◦C case, emissions must decrease
rapidly from 2020 on. Looking at the range of robust trajectories (shaded areas), it roughly
expands over time in the 3 ◦C case to reach a maximum size by 2080; whereas in the 2 ◦C
case, it reaches its maximum size earlier (2040). These dynamics are necessary to respect
the different temperature profiles and implies contrasted energy transition pathways (both
in terms of transition timing and energy portfolios); see Section 4.3. Note also the presence
of negative emissions due to specific energy systems (see again Section 4.3).
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4.2. Robustness Cost

Let us now assess how using a robust model rather than a deterministic one impacts
the total energy system cost (TIAM-World’s objective function), which yields the robust-
ness cost. More precisely, we assess the trade-off between optimality (low system cost)
and robustness (high protection level) by plotting in Figure 5 the cost increases with the
‘insurance/protection’ level. It has been constructed through Monte-Carlo simulations,
using the emission trajectories obtained for each value of Γ with a temperature constraint
(Tlim = 2 ◦C or 3 ◦C) (see Figure A5). The climate model parameters considered are uni-
formly distributed on the previously defined uncertainty ranges. We are then able to
derive the VaR and the CVaR95 for the temperature deviation in 2100 for both constraints.
Intuitively, we expect the CVaR95 to be lower when the degree of conservatism (and the
economic cost) of the solution is increased. Therefore, the incremental cost of insurance
could be expressed as the additional system cost per unit of temperature insured:

f (x∗, Γi)− f (x∗, Γ0)

CVaR95(Γ0)− CVaR95(Γi)
(12)

On the abscissa, we report the temperature deviation against which we ‘insure’
ourselves using the optimal robust pathway: x(Tlim, 2100, Γ) = CVaR(Tlim, 2100, 0) −
CVaR(Tlim, 2100, Γ); see Appendix E for plots of the distributions obtained. The ordinate
represents the objective function (the total system cost or TSC) obtained for different value
of the protection level normalized by the deterministic case objective function.

Figure 5. Costs of insurance (TSC: Total System Cost).

Figure 5 depicts how the world energy system and its emissions adapt to increasing
protection levels with respect to a reference temperature target. It reads as the cost increase
to support in order to ‘buy’ a certain amount of protection level given the uncertain
response of the climate system: insuring against the risk that the 5%-CVaR of the average
temperature increase will not be higher than xx (or reducing it by xx compared to the
nominal case).

This function aggregates two elements, namely: (i) the evolution of the total energy
system cost with an increasing uncertainty budget (increasing protection level); and (ii)
the CVaR-computed protection level associated to the change in global GHG emissions
trajectory. Both are by construction concave functions of the uncertainty budget Γ. Indeed,
the robust hedging strategies are driven by a worst-case logic, which implies that the
incremental cost of increasing the uncertainty budget is necessarily diminishing. The same
principle applies to GHG emissions. Interestingly, the process of composing these two
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functions yields a convex-shaped function. This implies that although both the temperature-
expressed protection level and the incremental cost are concave shaped, the incremental
cost still grows faster than the temperature hedge acquired.

Overall, this plot is comparable to a ‘standard’ temperature-based marginal abatement
cost curve, except that it embeds a consistent risk perspective which combines robust opti-
mization and a simple CVaR metrics for the output GHG emissions pathways. Comparing
the two series for different climate constraints, it appears naturally that costs of protection
are higher for the 2 ◦C series, and also more convex, yielding higher marginal costs.

4.3. Robust Energy Transition Pathways

Increasing the required protection level for a given nominal temperature target implies
an adaptation of the energy system towards lower GHG emission levels. This section
describes salient elements of these robust energy transition pathways.

4.3.1. Robust Decarbonization Challenges: A Mesoscopic View

Figure 6 plots the world primary energy intensity of GDP, in 2050 and 2100, for the
3 ◦C and 2 ◦C targets (2050: plain lines, 2100: dashed lines; 3 ◦C: blue dot markers, 2 ◦C:
red square markers) as a function of the protection level and 2008 normalized (PEIratio =
Primary_Energy(Yr)

GDP(Yr) × GDP(2008)
Primary_Energy(2008) ). Primary energy consumptions are computed as the

sum of coal, crude oil, natural gas, enriched uranium, biomass, solar, and wind energy
consumed in the whole energy system. With the same convention, Figure 7 plots the
evolution of the carbon intensity of primary energy with the protection level (CIratio =

CO2(Yr)
Primary_Energy(Yr) ×

Primary_Energy(2008)
CO2(2008) ).

Figure 6. Primary energy intensity of GDP against protection level.

The evolution of these two intensities reflects very different strategies for the 3 ◦C
and 2 ◦C constraints. Hedging against climate uncertainty at the 3 ◦C level shows a
balanced use of energy efficiency and decarbonization of primary energy in 2050; the two
indicators show comparable reduction levels (more or less 50%) compared to the 2008
reference. In 2100, the 3 ◦C scenario hedges with a stronger reduction of carbon intensity,
at the expense of primary energy intensity: carbon intensity drops with hedging (−50%
to −60%) while energy intensity remains quite flat (−45% to −47%). This is especially
true for higher protection levels for which CCS massively penetrates the decarbonization
mix (see below). This yields negative carbon intensities, indicating negative net emissions.



Energies 2021, 14, 8595 16 of 31

CCS-ready technologies being less efficient than their non-CCS equivalents, the primary
energy requirements increase (moderately) with hedging.

Figure 7. Carbon intensity of primary energy against protection level.

At the 2 ◦C level, the trade-off between energy intensity and carbon intensity is
anticipated as early as 2050. With increased protection levels, the fall of primary energy
intensity of GDP is smaller (from −40% to −30% compared to 2008), while the carbon
intensity of GDP is reduced by an additional 10% going to negative values and hence
negative net emissions. In 2050, a slight instability is visible for the highest protection
levels. It is due to the fact that the parameter that deviates when the instability occurs
is the adjustment speed for atmospheric temperature, impacting slightly the dynamic of
temperature evolution and leading to larger emission reductions in the short term. By
2100, protection strategies have reached a status-quo situation with the amount of climatic
uncertainty. Both the primary energy intensity and the carbon intensity have become
insensitive to the protection level. The maximum abatement potential is thus reached
(reflecting the model limits).

Overall, between the two climate scenarios, comparable strategies are chosen (trade-
off between energy intensity and carbon intensity, with the necessity to spend more energy
to store carbon) but with a large difference in timing. This result is consistent with the
temperature observation and CO2 emissions paths, which show that protection at the
3 ◦C level is an endpoint issue (mitigation occurs in the second half of the century), while
protection at the 2 °C level is a midpoint question (mitigation is extremely strong by 2050,
but final states—2100—show less variability). This raises the question of the economy’s
decarbonization speed, and how to reach, e.g., COP21 compliant objectives.

4.3.2. Robust Energy Portfolios

Although the previous results show an aggregate picture of reduction and mitiga-
tion strategies in an uncertain climate context, further desegregating the primary energy
consumption level (see Figure 8) offers additional insights.

Both the 3 ◦C and the 2 ◦C scenario groups show similarities. Naturally, increasing
protection and/or imposing a more stringent climate objective tend to reduce the use of the
most carbonized energy sources (coal, gas) in favour of renewable energy sources (solar,
wind, biomass) (see also Table 3).
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Figure 8. Primary energy consumption by type against protection level.

Table 3. Primary energy consumption by type.

EJ/yr

3 °C Target

Natural
Gas

Crude
Oil Coal Uranium Biomass Solar Wind Non

Renewable Renewable Total

2050

Deterministic 189 62 237 54 97 16 26 542 139 681
Lowest Protection level
(0.68 °C) 163 63 185 91 116 17 27 502 160 663

Highest Protection
level (1.13 °C) 151 63 153 91 139 18 26 458 184 642

2100

Deterministic 135 55 100 191 304 97 52 482 453 935
Lowest Protection level
(0.68 °C) 93 84 47 177 444 110 55 401 608 1009

Highest Protection
level (1.13 °C) 34 89 36 164 580 98 58 322 735 1057

2 °C Target

2050

Deterministic 49 140 90 176 154 20 26 455 200 655
Lowest Protection level
(0.58 °C) 12 91 24 164 376 25 30 292 431 723

Highest Protection
level (0.88 °C) 3 95 22 165 521 27 32 286 580 866

2100

Deterministic 34 131 58 133 409 105 60 356 574 930
Lowest Protection level
(0.58 °C) 3 97 25 134 647 168 79 259 894 1153

Highest Protection
level (0.88 °C) 3 96 21 134 649 179 77 254 905 1159

As primary energy sources with high carbon contents, gas and coal uses are highly
elastic to the protection level. Gas use decreases between 13% and 20% in 2050 and between
32% and 75% in 2100 in the 3 ◦C scenarios (always compared to the deterministic case in
the same target scenario group). At the same time, coal use is diminished by 22% to 36% in
2050 and 53% to 65% in 2100. The scenarios for the 2 ◦C target show a comparable albeit
amplified tendency: both energy source uses diminish by 75% to 90% in 2050 and 2100. At
the same time, the use of renewable energy raises in any case, up to 200% in 2050 for the
2 ◦C scenarios. Although for the 3 ◦C scenarios, renewable use is tripled between 2050 and
2100. In the renewable group, biomass plays a prominent role since its use coupled with
CCS is critical for decarbonization (as it generates negative emissions).
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Nuclear is an option for decarbonizing the economy, and more precisely a power
intensive economy which relies more on carbon-neutral sources. The use of uranium
gradually increases by 2100 in the 3 ◦C scenarios, and much faster in the 2 ◦C scenarios
(up to 2050) before stabilizing. Lastly, oil plays a particular role: while the use of other
fossil energy decreases, the amount of crude oil consumed in the primary energy mix is
rather stable across scenarios and protection levels. This tendency to maintain the use of oil
products is to be related to the difficulty of reducing transport emissions (high abatement
costs) combined with the large availability of low-carbon alternatives in other sectors
(nuclear, CCS).

4.3.3. A Sectoral View: The ‘Backstop’ Negative Emissions Pathways against Low-Elastic
Transport

Figure 9 presents the role of the various sectors in the decarbonization process.

Figure 9. Sectoral emissions and stored carbon (from biomass and fossil fuels).

Regardless of the scenario, transport remains the main CO2 emitter worldwide. In the
3 ◦C case, all emissions peak around 2040 before falling—with the exception of the transport
sector—alternative technologies penetrate the mix. Electricity and industry are the main
contributors to abatement, essentially between 2050 and 2100. In 2100, transport emissions
represent between 60% and 90% of the end-use emissions; they are rather stable in absolute
terms, so that technology improvements (efficiency, low-carbon fuels) compensate for
the demand growth. Although CCS is deployed by 2050 as a hedge for about 10 Gt/yr,
transport emissions in the second half of the century are compensated by credits from CCS
captured from biomass (negative emissions).

The 2 ◦C case differs in three ways. First, the need to reduce emissions further to
remain compliant with a 2 ◦C target with uncertainty forces to reduce emissions from the
power and industry sectors much faster (by 2050). Second, even transport emissions go
down sharply to obtain to a 1.5 ◦C average elevation level. At this timescale, only transport
and industry have some residual emissions. Third, the additional use of CCS from biomass
fuelled power plants is not only incremental but also comes as a substitute for fossil CCS
pathways. The importance of bioCCS in this picture reveals the importance of estimating
biomass potentials and assessing relevant sensitivity analysis on the subject.

The clear-cut arbitrage strategy between biomass-CCS and transport emissions can be
explained at the technology level, see Figure 10.

The analysis of the energy mix for transport shows a strong reliance on fossil-based
fuels, which represent a large part of the mix except in the longer term for the 2 ◦C target.
In that case, transport fuels have become almost carbon free with a strong reliance on
hydrogen. Since transport is a sector with high abatement costs [77], it is only when the
protection level is high that the oil trajectory is impacted. The vehicle fleet is progressively
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electrified, with diesel and gasoline losing market share with time and uncertainty. Electric
vehicles appear as a relevant way to mitigate the risk induced by climate uncertainty. In
addition, in energy terms, the moderate penetration of electricity as a transportation fuel
minimizes a wider reality: while electricity can represent up to 30% of the energy used in
transport, the relative efficiency of electric vehicles compared to conventional ones (2 to 2.5
more efficient) implies that, in 2050, more than 50% of the total world mobility is actually
electromobility. Yet, the commercial transportation fleet sticks with diesel trucks, leading
to a stable diesel consumption.

Figure 10. Energy mix for transport and electricity generation

In the power sector, the protection level increase leads to an early use of CCS, as
early as 2030 in most cases (see also Figure 9). The nuclear and the CCS trajectories
under uncertainty have large consequences in terms of policy decision. For example,
given the current state of R&D on CCS (with various projects shut down this last decade),
this result suggests that we may want to reconsider the current R&D budget allocation.
The importance of nuclear in the energy mix is also at odds with some nation’s policies,
such as Germany. Indeed, they decided some years ago to close all the nuclear plants
in a near future (unlike Japan, where nuclear plants are planned to restart in the near
future). Negative emission possibility is also something quite abstract and subject to much
uncertainty, as the first commercial-scale biomass-fuelled power plant with CCS has yet to
be built.

5. Conclusions

Climate modelling is hampered by a considerable amount of uncertainty because of
the lack of knowledge of the climate system. As it significantly impacts climate policy
making, the need for tools to evaluate robust transition pathways is more and more urgent.
In this paper, we present a robust approach to handling climate uncertainty in Integrated
Assessment Models (IAMs).

We find that the climate module’s most sensitive parameter is the climate sensitivity.
This is consistent with the existing literature on the subject. Climate sensitivity is the most
studied parameters and that its value estimations are numerous. Hence, the determination of
the climate sensitivity uncertainty range is quite straightforward. Another important point is
that this range relies on a large information set unlike the other parameters, for which data
are scarce. Indeed, information on the carbon cycle parameters is scarce (few studies in the
IAMs climate module literature) and yet the global climate system behaviour is very sensitive
to them. Moreover, climate parameters impact diversely the timing of the adaptation: the
radiative forcing sensitivity multiplies directly the CO2 concentration, hence even a small
variation of this parameter leads to a strong impact on the CO2 abatement timing. We then
believe that a stronger focus should be put on the other climate model parameters.
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To ensure that we comply with a 3 ◦C constraint, the temperature trajectories we
should aim at with the nominal parameters should not exceed 2.4 ◦C, leading to zero net
carbon emissions at the end of the century. With a 2 ◦C constraint, we should aim at 1.6 ◦C
with negative carbon emissions as soon as 2050. If the insurance cost is quite reasonable for
the higher constraint (from 1.5% to 4% of the system total discounted cost), it is less the
case with a 2 ◦C objective. In the latter situation, the total discounted system cost increases
by 7% when the protection level is low and up to 14% when it is high. This is because
to comply with a stringent target, sectors with high abatement costs have to participate
in the global reduction effort. For example, transport is little impacted by the 3 ◦C target
(but as the protection level increases, the vehicle fleet is slightly modified), whereas the
introduction of uncertainty leads to major fuel consumption changes for the 2 ◦C constraint.

Abatement strategies are quite different between the two temperature targets. For the
3 ◦C target, both the carbon intensity and the primary energy intensity of the economy
decrease with the protection level whereas for the 2 ◦C target, the energy intensity increases
and the carbon intensity decreases. This more stringent goal is reached by investing
massively in carbon removal technologies such as bioenergy with carbon capture and
storage (BECCS) which have yields much lower than traditional fossil fuelled technologies.
Another interesting fact of the 2 ◦C hedging trajectories is the drastic increase in the nuclear
electricity production. The massive use of nuclear or carbon removal technology is highly
uncertain as BECCS is a very expensive technology that is not competitive in the absence
of a high CO2 price, while the development of the nuclear industry could be hampered by
social acceptance issues. The 1.5 ◦C objective mentioned during the COP21 is obviously
very ambitious and reaching it would necessitate strong political and societal ambitions
and actions (much stronger than the ones decided during the COP21).

By taking a robust approach to study ways of complying with ambitious climate targets,
we were able to bring to light hedging technological trajectories without excessive computa-
tional issues. The method presented being quite generic, it could be interesting to perform
similar exercises with other IAMs. It would help strengthen the knowledge on technological
transition pathways with uncertainty and would allow a better understanding and awareness
of the costs of the risks linked to our partial knowledge of the climate system.
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IA Integrated Assessment
IAM Integrated Assessment Model
IPCC Intergovernmental Panel on Climate Change
RCP Representative Concentration Pathway
RO Robust optimization
SCM Simple Climate Model
TSC Total System Cost

Appendix A. Model Overview

The TIMES Integrated Assessment Model (TIAM-World) is a detailed, global, multi-
region technology-rich model of the energy/emission system of the world. It is based on
the The Integrated MARKAL-EFOM System (TIMES) economic paradigm, which computes
an inter-temporal dynamic partial equilibrium on energy and emission markets based on
the maximization of total surplus (A complete description of the TIMES equations appears
in www.etsap.org/documentation). TIAM-World is described in [11,47]. It is used in many
international and European projects (for recent applications see: [43,72]).

The multi-region partial equilibrium model of the energy systems of the entire World
is divided in 16 regions. Regions are linked by trade variables of the main energy forms
(coal, oil, gas) and of emission permits (see Figure A1) . TIAM’s planning horizon extends
from 2000 to 2100, divided into periods of varying lengths.

Figure A1. TIAM reference energy system.

In TIMES, an intertemporal dynamic partial equilibrium on energy markets is com-
puted, where demands for energy services are exogenously specified (only in the reference
case), and are sensitive to price changes in alternate scenarios via a set of own-price elastic-
ities at each period. Although TIMES does not encompass all macroeconomic variables
beyond the energy sector, accounting for price elasticity of demands captures a major
element of feedback effects between the energy system and the economy. Thus, the equilib-
rium is driven by the maximization (via linear programming) of the discounted present
value of total surplus, representing the sum of surplus of producers and consumers, which
acts as a proxy for welfare in each region of the model (practically, the LP minimizes the
negative of the surplus, which is then called the energy system cost).

The maximization is subject to many constraints, such as: supply bounds (in the form
of supply curves) for the primary resources, technical constraints governing the use of each
technology, balance constraints for all energy forms and emissions, timing of investment
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payments and other cash flows, and the satisfaction of a set of demands for energy services
in all sectors of the economy.

The nominal formulation of the TIAM problem is a cost minimization and can be
written as follows (with some simplifications):

min ∑t cT
t xt

s.t.
Ltxt ≥ bt, xt ∈ Rn, Lt ∈ Rm∗n , (technological constraints)
Dtxt ≥ dt, xt ∈ Rn, Dt ∈ Rd∗n , (demand constraints)
yt ≤ wt, with yt = Ayt−1 + Fxt , (recursive climate constraints)
xt ∈ Rn, yt ∈ Rw, A ∈ Rw∗w, F ∈ Rw∗n

The objective function is the total cost of the system. It includes, among others:
investment costs, operating costs of the various sectors, taxes, transportation costs between
geographical zones. Technological constraints cover capacity limits, supply limits, yields,
the allowed growth rates of the processes in the various sectors. Demand constraints
include each zone’s energy service demands and climate constraints embrace limits on
GHG emissions or stocks in the atmosphere or on temperature increase. These latter
constraints belong to an endogenous climate module. Note that the CO2, CH4 and N2O
emissions related to the energy sector are explicitly represented by the energy technologies
included in the model. The non-energy-related CO2, CH4 and N2O emissions (landfills,
manure, rice paddies, enteric fermentation, waste water, and land use) are also included in
order to correctly represent the radiative forcing induced by them, but they are exogenously
defined. Emissions from some Kyoto gases (CFCs, HFCs, and SF6) are not explicitly
modelled, but a special radiative forcing term is added in the climate module.

Appendix B. TIAM-World Climate Module

The climate module used in TIAM-World for this work is an adapted version of
the model developed by Nordhaus and Boyer [73]. Greenhouse gas concentration and
temperature changes are calculated from linear recursive equations. We briefly present its
characteristics here, a detailed description can be found in Loulou et al. [74].

The climate representation in TIAM-World is characterized by three steps. First, the
GHGs emitted by anthropogenic activities accumulate in the atmosphere; exchanges with
the upper and deep ocean layers occur then for CO2, while the dissipation of CH4 and N2O
is described with single atmospheric decay parameters.

The terrestrial carbon cycle of this climate module is depicted in Figure A2. Formally,
the one-year-lagged dynamics of the three detailed greenhouse gases are the following :MCO2,a

MCO2,u

MCO2,l


t

= ΦCO2

MCO2,a

MCO2,u

MCO2,l


t−1

+

1
0
0

ECO2
t ,

[
MCH4,a

MCH4,u

]
t
= ΦCH4

[
MCH4,a

MCH4,u

]
t−1

+

[
1
0

]
ECH4

t ,[
MN2O,a

MN2O,u

]
t
= ΦN2O

[
MN2O,a

MN2O,u

]
t−1

+

[
1
0

]
EN2O

t ,

ΦCO2 =

1− ϕa−u ϕu−a 0
ϕa−u 1− ϕu−a − ϕu−l ϕl−u

0 ϕu−l 1− ϕl−u

,

ΦCH4 =

[
ϕCH4 0

0 1

]
, ΦN2O =

[
ϕN2O 0

0 1

]
,

where Mg,r
t is the mass of gas g in reservoir r in year t, Eg

t is the emission of gas g in year t (from
the global energy model), ϕro ,ri is the transfer coefficient for CO2 from reservoir ro to reservoir
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ri, ϕCH4 and ϕN2O are the decay rates of methane and nitrous oxide in the atmosphere, g ∈
G = {CO2, CH4, N2O} and r ∈ R = {a = Atmosphere, u = UpperLayer, l = LowerLayer}.

This set of equations defining the time profiles of atmospheric GHGs is then used to
compute the radiative forcing. It is common [78] to consider that forcings are additive, so that:

∆Ft = ∑
g∈G

∆Fg
t + Ex ft,

where ∆Fg
t is the forcing of gas g in period t and Ex ft corresponds to an exogenous

assumption of forcing for all gases other than carbon dioxide, methane, and nitrous oxide.
The current knowledge on radiative forcing suggests that none of these terms is linear in
the atmospheric stock of gas; the linearization used here is proposed by [74]:

∆FCO2
t = γACO2 + γBCO2 MCO2,a

t ,

∆FCH4
t = ACH4 + BCH4 MCH4,a

t ,

∆FN2O
t = AN2O + BN2O MN2O,a

t ,

where γ is the radiative forcing sensitivity to atmospheric CO2 doubling, and A’s and B’s
are constant depending on pre-industrial concentration levels and linearization intervals.
Finally, temperature elevation profiles are computed based on the following equations:[

∆Tup

∆Tlo

]
t
= S

[
∆Tup

∆Tlo

]
t−1

+

[
σ1
0

]
∆Ft,

S =

[
1− σ1

(
γ

CS
+ σ2

)
σ1σ2

σ3 1− σ3

]
.

where ∆Tup is the variation of the atmospheric temperature, ∆Tlo the variation of the
ocean temperature, CS represents the climate sensitivity, i.e., the change in equilibrium
atmospheric temperature due to a doubling of GHG concentration; σ1 and σ3 are the
adjustment speeds for, respectively, atmospheric and oceanic temperature (lags, in year−1);
σ2 is a heat loss coefficient from the atmosphere to the deep ocean.

Figure A2. TIAM climate module.

Appendix C. Estimation of Lower/Upper Bounds for Climate Parameters

Overall, and in the course of this estimation exercise, we may classify the climate
parameters at stake in this study into three groups. First, one group contains the parameters
for the carbon cycle. The terrestrial carbon cycle itself is a rather large field of study in
geophysics (see, e.g., [59,60]; for a multi-model approach). One can also find sensitivity
analysis on the carbon cycle in IAM-based research [62,64], or are least clues on how uncer-
tain these parameters are [14]. One way of assessing the behaviour of carbon cycle models
is to perform the so-called ‘doubling experiment’, where the evolution of an atmospheric
CO2 doubling-concentration pulse in year 0 is followed across the various carbon sinks
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for the next 100–400 years. Existing multi-models experiments [48,60] point out large re-
sponse spectra; Ref. [48] additionally shows that simple carbon models (few boxes, simple
linear recursive dynamics) such as DICE end up in the low range of possible outcomes:
they have, compared to the rest, relatively optimistic carbon cycles. Such an experiment
seems to be a good starting point to calibrate a carbon cycle. However, the uncertainty
it translates covers both parametric and structural uncertainty. For example, Ref. [48] ar-
gues that the PAGE model behaves very differently from the rest of the test population
because it includes feedbacks on the carbon cycle. This limitation—carbon cycle models
have different structures, hence different parameters—makes it difficult to adopt such a
calibration procedure. Therefore, we adopt a calibration procedure similar to that of [66],
but for the four IPCC-RCP emissions scenarios ran under the multi-ensemble simulation
mode of MAGICC6 [49]. To this purpose:

• The nominal values of the parameters in the climate module in TIAM-World was left
as described in [74];

• The upper bound of the inter-boxes transfer coefficients were estimated to become
close to the 83rd percentile of the MAGICC6 inter-model simulations for the four RCP
scenarios. This is done by changing the parameters by identical relative amounts, and
computing a simple distance measure (the sum of squares of annual relative distances
between the TIAM-climate simulation and the MAGICC6-RCP benchmark).

The result of this experiment is shown in Figure A3. The blue lines and shade represent,
in each subgraph, the average, 95% and 90% confidence intervals produced by MAGICC6.
The black plain and dotted show the average and 95% confidence intervals obtained with
the TIAM-World climate module.

Figure A3. TIAM-World climate module: Uncertainty in the carbon cycle against MAGICC6 ranges
for the four RCP scenarios.

These variations allow to capture only a minor part of the carbon cycle model variations
described by [48] or [60]. Ref. [62] shows that the variations in climate change benefits from
a set of IAMs due to the carbon cycle are lower than the MAGICC6 ranges, which seems to
indeed indicate that simple carbon cycles do not capture all the ‘volatility’ of outcomes.

A second set of parameters includes the forcing and climate sensitivities, which are
likely to be the most well-documented parameters in the climate literature. They traduce
the global equilibrium surface forcing and warming after a doubling of atmospheric CO2
concentration; any climate models includes these parameters. The importance of the
equilibrium radiative forcing is widely acknowledged [67]; multi-models comparisons and
simulations are also frequent [68]. If issues such as climate feedbacks arise in the estimation
of forcing [69], available comparisons indicate plausible range for the forcing parameters
(using doubling or quadrupling experiments), with the last IPCC report (AR5-WG1, [70])
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providing a central value of 3.7 with a +/− 0.8 99% confidence interval. This estimation
is consistent with [71], and is retained for this study. As for the climate sensitivity, the
initial value of the TIAM-World calibration corresponds to the [65] synthesize plausible
sensitivity ranges for the climate sensitivity for different lines of evidence, and demonstrate
how critical it is if the policy objective is to prevent damages caused by certain levels of
warming. The IPCC most likely value and upper bound are 3 ◦C and 4.5 ◦C, respectively,
which is consistent with other papers, such as [50]. Ref. [64] makes a different choice, and
end up with a range (upper bound of 8 ◦C) closer to what [65] refer to as ‘expert elicitation’.
Combining different lines of evidence, these authors obtain a range close to the one of IPCC,
which we will retain as a basis. Compared to existing literature on IAM-SCM sensitivity
analysis in [64], these ranges are high for forcing and low for the climate sensitivity.

Finally, the rest of the parameters, traducing the temperature dynamics, are part
of a third group constituted of apparently less studied parameters. There seems to be
considerably less available work on these. By default, we proceed as [64], and apply a 10%
variation to the annual heat transfer coefficients. The range of temperature responses of
TIAM-World are compared against MAGICC6 for the 4 RCPs scenarios, accounting for the
uncertainty of all parameters. The results are presented in Figure A4 (it reads as Figure A3).

Figure A4. TIAM-World climate module: Uncertainty in the global mean temperature against
MAGICC6 ranges for the four RCP scenarios.

The final nominal values and ranges for the climate parameters are presented in
Table A1 along with the values kept in [64] for comparison purposes.

Table A1. Nominal values for climate parameters and comparison with [64].

Parameter Description Nominal Value
(This Paper)

Lower/ Upper
Bound (This

Paper)

Nominal Value
(Bulter)

Lower/ Upper
Bound (Butler)

φa−u
Atmosphere to upper layer carbon
transfer coefficient (annual) 0.046 0.04393 0.189288 0.223288

φu−a
Upper layer to atmosphere carbon transfer
coefficient (annual) 0.0453 0.0473385 0.097213 derived

φu−l
Upper to lower layer carbon transfer
coefficient (annual) 0.0146 0.013943 0.05 0.025

φl−u
Lower to upper layer carbon transfer
coefficient (annual) 0.00053 0.00055385 0.003119 derived

γ Radiative forcing from doubling of CO2 3.7 4.5 3.8 3.9

CS Climate sensitivity from doubling of CO2 2.9 4.5 3 8
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Table A1. Cont.

Parameter Description Nominal Value
(This Paper)

Lower/ Upper
Bound (This

Paper)

Nominal Value
(Bulter)

Lower/ Upper
Bound (Butler)

σ1
Adjustment speed of atmospheric
temperature 0.024 0.0264 0.22 0.24

σ2 Heat loss from atmosphere to deep ocean 0.44 0.396 0.3 0.27

σ3 Heat gain by deep ocean 0.002 0.0018 0.05 0.045

Appendix D. Implementation Details for the Worst-Case Oracle in
TIAM-World Model

For simplicity of exposure, we describe the procedure for solving Problem (11) when
the respective worst-case extreme value (between minimum and maximum) for each
parameter can be identified a-priori (either analytically or using common sense). Following
the information presented in Table 1, we can describe the uncertainty as follows:

ψa−u := ψ̄a−u − ψ̂a−uz1 ψu−a := ψ̄u−a + ψ̂u−az2

ψu−l := ψ̄u−l − ψ̂u−lz3 ψl−u := ψ̄l−u + ψ̂l−uz4

γ := γ̄ + γ̂z5 (1/Cs) := (1/C̄s)− (Ĉs/(C̄2
s + C̄sĈs))z6

σ1 := σ̄1 + σ̂1z7 σ2 := σ̄2 + σ̂2z8

σ3 := σ̄3 + σ̂3z9 ,

where the bar annotated parameter refers to the nominal value and the hat annotated parame-
ter refers to the magnitude of the perturbation needed to obtain to the chosen extreme value.
We also modelled the perturbation on the term 1/Cs using an additive formulation, namely:

1/Cs :=
{

1/C̄s if z6 = 1
1/(C̄s + Ĉs) otherwise

.

Based on the definitions of A and F, one should notice that these two matrices are not
linear functions of the uncertainty z1, z2, . . . , z9. This can be remedied by replacing the
non-linearities with additional binary variables. In particular, when studying the effect of z
on each term of A, one might realize that the following expressions come into play:

γψa−u = γ̄ψ̄a−u − γ̄ψ̂a−uz1 + ψ̄a−uγ̂z5 − γ̂ψ̂a−uz1z5

γψu−a = γ̄ψ̄u−a + γ̄ψ̂u−az2 + ψ̄u−aγ̂z5 + γ̂ψ̂u−az2z5

σ1γψa−u = σ̄1γ̄ψ̄a−u − σ̄1γ̄ψ̂a−uz1 + σ̄1γ̂ψ̄a−uz5 + σ̂1γ̄ψ̄a−uz7

− σ̄1γ̂ψ̂a−uz1z5 − σ̂1γ̄ψ̂a−uz1z7 + σ̂1γ̂ψ̄a−uz5z7 + σ̂1γ̂ψ̂a−uz1z5z7

σ1γψu−a = σ̄1γ̄ψ̄u−a + σ̄1γ̄ψ̂u−az2 + σ̄1γ̂ψ̄u−az5 + σ̂1γ̄ψ̄u−az7

+ σ̄1γ̂ψ̂u−az2z5 + σ̂1γ̄ψ̂u−az2z7 + σ̂1γ̂ψ̄u−az5z7 + σ̂1γ̂ψ̂u−az2z5z7

σ1γ/Cs = σ̄1γ̄θ̄ + σ̄1γ̂θ̄z5 − σ̄1γ̄θ̂z6 + σ̂1γ̄θ̄z7

− σ̄1γ̂θ̂z5z6 + σ̂1γ̂θ̄z5z7 − σ̂1γ̂θ̄z6z7 − σ̂1γ̂θ̂z5z6z7

σ1σ2 = σ̄1σ̄1 + σ̂1σ̄1z7 + σ̄σ̂2z8 + σ̄1σ̄2z7z8 ,

where θ̄ := 1/C̄s and θ̂ := Ĉs/(C̄2
s + C̄sĈs). By making the replacement v0jk := zjzk and

vijk := zizjzk, one would instead obtain the following set of linear representations:
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γψa−u = γ̄ψ̄a−u − γ̄ψ̂a−uz1 + ψ̄a−uγ̂z5 − γ̂ψ̂a−uv015

γψu−a = γ̄ψ̄u−a + γ̄ψ̂u−az2 + ψ̄u−aγ̂z5 + γ̂ψ̂u−av025

σ1γψa−u = σ̄1γ̄ψ̄a−u − σ̄1γ̄ψ̂a−uz1 + σ̄1γ̂ψ̄a−uz5 + σ̂1γ̄ψ̄a−uz7

− σ̄1γ̂ψ̂a−uv015 − σ̂1γ̄ψ̂a−uv017 + σ̂1γ̂ψ̄a−uv057 + σ̂1γ̂ψ̂a−uv157

σ1γψu−a = σ̄1γ̄ψ̄u−a + σ̄1γ̄ψ̂u−az2 + σ̄1γ̂ψ̄u−az5 + σ̂1γ̄ψ̄u−az7

+ σ̄1γ̂ψ̂u−av025 + σ̂1γ̄ψ̂u−av027 + σ̂1γ̂ψ̄u−av057 + σ̂1γ̂ψ̂u−av257

σ1γ/Cs = σ̄1γ̄θ̄ + σ̄1γ̂θ̄z5 − σ̄1γ̄θ̂z6 + σ̂1γ̄θ̄z7

− σ̄1γ̂θ̂v056 + σ̂1γ̂θ̄v057 − σ̂1γ̂θ̄v067 − σ̂1γ̂θ̂v567

σ1σ2 = σ̄1σ̄1 + σ̂1σ̄1z7 + σ̄σ̂2z8 + σ̄1σ̄2v078 ,

Hence, it becomes possible to represent U as:

U :=


(A, F) ∈ <w×w ×<w×n

∣∣∣∣∣∣∣∣∣∣∣

∃z0 = 1 , z ∈ {0, 1}m , v ∈ {0, 1}|S|
∑m

i=1 zi ≤ Γ
A = Ā + ∑m

i=1 Âizi + ∑(i,j,k)∈S Ãijkvijk
F = F̄ + ∑m

i=1 F̂izi + ∑(i,j,k)∈S F̃ijkvijk
zi + zj + zk − 2 ≤ vijk ≤ (1/3)(zi + zj + zk) , ∀ (i, j, k) ∈ S


where

S :=
{

(0, 1, 5), (0, 1, 7), (0, 2, 5), (0, 2, 7), (0, 5, 6), (0, 5, 7), (0, 6, 7), (0, 7, 8), (1, 5, 7), (2, 5, 7),
(5, 6, 7)

}
and where Ā + ∑i Âizi + ∑(i,j,k)∈S Ãijkvijk and F̄ + ∑i F̂izi + ∑(i,j,k)∈S F̃ijkvijk are the respec-
tive linear matrix representations of A and F. Furthermore, the set of linear constraints that
take the form:

zi + zj + zk − 2 ≤ vijk ≤ (1/3)(zi + zj + zk) ,

are simply a convenient way of representing the non-linear equality constraint vijk = zizjzk.
Having this representation for U in hand, Problem (11) can be described as:

max
y,z,v

yt − wt

s.t yτ+1 = (Ā + ∑
i

Âizi + ∑
(i,j,k)∈S

Ãijkvijk)yτ

+ (F̄ + ∑
i

F̂izi + ∑
(i,j,k)∈S

F̃ijkvijk)xτ , ∀ τ = 1, . . . , t

∑
i

zi ≤ Γ

zi + zj + zk − 2 ≤ vijk ≤ (1/3)(zi + zj + zk) , ∀ (i, j, k) ∈ S

z ∈ {0, 1}m, v ∈ {0, 1}|S|

which is still a mixed integer non-linear program due to the cross-terms ziyτ and vijkyτ .
In order to facilitate the resolution, we apply a second step of linearization by em-

ploying additional variables Z ∈ <m×t and V ∈ <|S|×t, such that Zi,τ := ziyτ and
Vijk,τ := vijkyτ . This leads to the following mixed integer linear program:
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max
y,z,v,Z,V

yt

s.t. yτ+1 = Āyτ + ∑
i

ÂiZi,τ + ∑
(i,j,k)∈S

ÃijkVijk,τ + F̄xτ + ∑
i

F̂ixτzi + ∑
(i,j,k)∈S

F̃ijkxτvijk

F̄xτ + ∑
i

F̂ixτzi + ∑
(i,j,k)∈S

F̃ijkxτvijk

−M1zi ≤ Zi,τ ≤ M2zi

yτ −M2(1− zi) ≤ Zi,τ ≤ yτ + M1(1− zi)

−M1vi ≤ Vi,τ ≤ M2vi

yτ −M2(1− vi) ≤ Vi,τ ≤ yτ + M1(1− vi)

∑
i

zi ≤ Γ

zi + zj + zk − 2 ≤ vijk ≤ (1/3)(zi + zj + zk) , ∀ (i, j, k) ∈ S

z ∈ {0, 1}m, v ∈ {0, 1}|S|,

where M1 and M2 are large enough constants that are known to capture −M1 ≤ y∗τ ≤ M2.
One can easily verify that the big M constraints on Zi,τ and Vijk,τ ear equivalent to imposing
that Zi,τ := ziyτ and Vijk,τ := vijkyτ .

Appendix E. Monte-Carlo Simulations of the Temperature

Figure A5. 2100 Temperature delta (2 ◦C and 3 ◦C emission pathways with Γ = 0 and Γ = 3)—
Density functions and CVaR.
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