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Abstract: Polymer is an insulating substance that has become increasingly popular in recent years
due to its benefits. Light density, superior dielectric and thermal properties, and water-resistant or
hydrophobic properties are only a few of the benefits. The presence of impurities or pollutants on the
insulator’s surface lowers its dielectric capacity, which can lead to current leakage. The influence of
seawater and fly ash pollutants on the distribution of the electric field and the current density of the
insulator was simulated in this study. The finite element method was used to execute the simulation
(FEM). Polymer insulators are subjected to testing in order to gather current leakage statistics. The
tested insulator is exposed to seawater pollution, which varies depending on the equivalent salt
density deposit value (ESDD). The pollutant insulator for fly ash varies depending on the value of
non-soluble deposit density (NSDD). The existence of a layer of pollutants increased the value of the
electric field and the value of the surface current density, according to the findings. Both in simulation
and testing, the ESDD value of seawater pollutants and the NSDD value of fly ash contaminants
influenced the value of the leakage current that flowed. The greater the ESDD and NSDD values are,
the bigger the leakage current will be.

Keywords: polymer insulators; seawater pollutants; fly ash pollutants; electric fields; leakage current

1. Introduction

A polymer insulator is one type of insulator that is commonly used in electric power
transmission and distribution systems [1]. Polymer insulators have hydrophobic character-
istics that make the insulator performance superior in polluted environmental conditions
compared to insulators made from different materials [2,3]. However, these properties still
do not prevent the polymer insulator from interference due to pollution such as rainwater,
dust, and other contaminants attached to the insulator surface.

The dielectric ability of the insulating material is influenced by the level of contam-
inants and the surface conditions of the insulator [4]. A heavier level of contaminants
will greatly affect the value of the electric field on the insulator itself. The value of the
electric field will also change when there is damage or there are air voids on the surface
of the insulator [5]. In insulators installed on power lines near the coast or the sea, the
main contaminant problem is seawater [6]. The seawater contains salt that can affect the
dielectric of the insulator. The contaminant layer also causes the surface of the insulator to
be conductive [7]. Moreover, insulators installed in power plant areas are very susceptible
to fly ash contaminants. Fly ash is the result of the combustion of coal that comes from
the combustion chamber in the form of a mixture of smoke in steam power plants [8]. Fly
ash pollutants can fly in the wind and then stick to the surface of the insulator around the
power plant. This initiates the appearance of a dry band on the surface of the insulator,
which can cause leakage current through the surface, resulting in a phenomenon called
dry-band arcing [9].
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A few research studies have analyzed the distribution of electric fields and current
leakage due to pollutants in insulators made from porcelain [10], glass [11], and poly-
mer [12–16]. Especially for polymer insulators, some research was carried out in simula-
tions to determine the characteristics of the electric field due to the influence of various
types of contaminants on the surface of the insulator, such as general pollution levels [10],
seawater [14], sand particles [15], and others. In addition, some research has also been
carried out by testing polymer insulators, especially by observing leakage currents due to
pollutants such as general pollutant levels, salt from the coast, and others [16]. However,
research on the comparison between simulation results using COMSOL Multiphysics soft-
ware and test results on the effect of salt and fly ash contaminants on polymer insulators
has not been carried out.

Based on these conditions, this study was conducted to explore the effect of salt
pollutants and fly ash pollutants on the surface of polymer insulators. This research
consisted of two parts, namely simulation and testing. The simulation was carried out
using finite element method (FEM)-based software. Then, the comparison of electric field
conditions, current density, and leakage current on the surface of the insulator contaminated
with sea water and fly ash with normal conditions was analyzed. The study continued by
testing the polymer insulator against seawater pollutants and fly ash pollutants to obtain
current leakage data on the insulator. The simulated insulator was given seawater pollutant
and fly ash pollutant, which was varied based on the electrical conductivity value. Next,
the simulation and the experiment results were compared to prove whether the results of
the simulation and testing have differences.

2. Research Description
2.1. Equivalent Salt Density Deposit (ESDD)

The level of sea water pollutants on the surface of the insulator can affect the dielectric
ability of the insulator. According to the IEC 815 standard, the pollution weight of the
insulator is set into four, namely light, medium, heavy, and very heavy. Common methods
used to determine pollution levels are the ESDD (equivalent salt density deposit) method,
and the field review method [10]. In this study, the ESDD method was used to determine
the level of pollution. The determination of the level of insulator pollution in the ESDD
method based on the IEC 815 standard is shown in Table 1.

Table 1. Pollution levels based on IEC 815.

Pollution Level ESDD (mg/cm2) NSDD (mg/cm2)

Light <0.06 0.03–0.06
Currently 0.06–0.12 0.10–0.20

Heavy 0.12–0.24 0.30–0.60
Very heavy >0.24 >0.80

2.2. Nonsoluble Deposit Density (NSDD)

The surface of the insulator can be contaminated with various types of pollutants,
which can then affect the resistance of the insulator. These pollutants are divided into two
types, namely conductive pollutants and inert pollutants. Based on the IEC standard 815
paragraph 2, the method of determining the level of pollution weight on the insulator is
divided into three, namely based on a qualitative analysis of environmental conditions,
evaluation of field experience regarding the behavior of the insulator that has been installed,
and measurement of insulator contaminants that have been in operation [1]. The IEC 815
standard also regulates the thickness of the pollutant layer attached to the surface of the
insulator classified in four levels as shown in Table 1 [1].

2.3. Leakage Current

The leakage current in the insulator is influenced by the presence of a conductive part on
the surface of the insulator [17]. This conductive layer is caused by pollutant contamination
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attached to the surface of the insulator. Pollutants adhering to the surface of the insulator
can be both conductive and non-conductive. Conductive pollutants act as a path for leakage
currents, but non-conductive (inert) pollutants are able to initiate leakage currents.

The leakage current caused by the layer of pollutants on the surface of the insulator
causes heating of the insulator [18]. In polymer insulators, this heating initiates the appear-
ance of a corona and the appearance of a dry band phenomenon. The appearance of the
corona and the dry band initiates the appearance of electrical failure [19].

3. Experimental Setup
3.1. Modeling and Determination of Simulation Parameters

Insulator modeling was done with AutoCAD software in two-dimensional form, as
shown in Figure 1. In addition to the shape of the insulator, the air around the insulator and
the live conductor at the top of the support were also modeled. The insulator model was
then imported into finite element method (FEM)-based software. The software that was
used was COMSOL Multiphysics. The insulator model analyzed by simulation consisted
of three types, namely clean insulators without pollutants, insulators with a 0.5 mm thick
salt pollutant layer, and an insulator with a 0.5 mm thick fly ash pollutant layer.
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Figure 1. Polymer insulator design (a) without pollutant and (b) with pollutant.

Insulator simulation using FEM-based software requires several parameters from
the insulator constituent materials, live conductors, and air around the insulator to be
simulated. The parameters required are relative permittivity and electrical conductivity
(S/m). These parameters are shown in Table 2.
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Table 2. Simulation material parameters.

Material Relative Permittivity r Electrical Conductivity (S/m)

Polymer 4.3 1 × 10−13

Air 1 1 × 10−14

Steel 1 5.9 × 107

Aluminum 2.2 3.69 × 107

Salt contaminants 80 Varies
Fly ash 104 Varies

3.2. Finite Element Method (FEM)

The finite element method (FEM) is a method to analyze the value of the field distri-
bution. This method has a basic principle, namely a discretization process in which an
analyzed area is divided into a collection of interconnected elements and then modeled
into one, two, or three-dimensional forms [20].

Completion of the calculation of the electric field distribution with FEM is done by di-
viding the insulator into the form of triangular elements. The value of the field distribution
on the insulator is known by the approximate electric potential of each triangular element.
Then each element of the triangle whose electric potential value is known is connected to
each other with other triangles with different shapes and dimensions, so that the value of
the electric potential at each point on the insulator can be obtained [14].

In accordance with the working principle of FEM, the clean insulator model without
pollutants or pollutant insulators was divided into many triangular elements, as shown in
Figure 2. The triangular elements were then processed by COMSOL Multiphysics software
and produced analyses such as the distribution of electric potential and electric field
distribution of the polymer insulator that was simulated. The mesh applied to the insulator
design was a physics-controlled mesh. This option is the default option in COMSOL
Multiphysics software. Moreover, the element size used in the polymer insulator design
was normal size. The results of the normal size elemental mesh can be seen in Figure 2.
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Figure 2. The insulator triangle element (a) without pollutant and (b) with pollutant.

3.3. Calculation of Insulator Surface Area

ESDD and NSDD calculation requires the value of the surface area of the insulator.
Therefore, it was necessary to calculate the surface area of the insulator core body, which
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was simulated using three-dimensional modeling of the insulator core body using Au-
toCAD software. As shown in Figure 3, by utilizing the object surface area function in
AutoCAD software, the area displayed in AutoCAD still had mm2 units, so it had to be
converted to cm2; the area became 1924.1 cm2.
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3.4. ESDD Insulator Pollution Level Calculation

The level of seawater pollution in the insulator was determined by the value of
equivalent salt density deposit (ESDD). The ESDD value of seawater contaminants is
obtained through Equation (1), namely

ESDD =
Sa × V

A
(1)

where
ESDD = equivalent salt deposit density (mg/cm2);
Sa = salt salinity (g/L);
V = volume of water (mL);
A = area insulator surface (cm2).
The area of the insulator was measured using AutoCAD software through an existing

two-dimensional design by removing the top and bottom fittings so that the resulting area
was 1924.1 cm2. The volume of water used was 50 mL with varying levels of salination.
The seawater contaminants, ESDD, used in this study were four values, with each value
representing a different classification of pollution levels, as shown in Table 3.
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Table 3. Determination of salination, ESDD, and salt conductivity.

Salination (g/L) ESDD (mg/cm2) Electrical Conductivity (S/m) Information

2 0.0520 2.64 × 10−4 Light
4 0.1039 2.87 × 10−4 Currently
9 0.2339 3.12 × 10−4 Heavy
20 0.51997 3.46 × 10−4 Very heavy

3.5. NSDD Pollution Level Calculation

The level of fly ash pollution on the surface of the insulator was determined by the
value of the non-soluble deposit density (NSDD). The NSDD used in this study was divided
into four values, in accordance with the IEC standard 60815, which regulates the pollution
level according to the NSDD value, namely light, medium, heavy, and very heavy. The
NSDD calculation is done without using filter paper, because the mass of the pollutant in
this study is a controllable variable. Therefore, NSDD can be calculated using Equation (2)
as follows:

NSDD =
M
A

(2)

where
M = net weight of fly ash pollutant (mg);
A = Area insulator surface (cm2).

3.6. Natural Aging Insulator

Before the experiment was carried out, polymer insulators were placed in an open
place, so they could be exposed to direct sunlight or rain. The purpose of the insulator
being placed in the open was to condition the insulator to experience natural aging by
exposing the insulator to heat from sunlight and water from rainwater [21]. The polymer
insulator was placed in the open for 13 weeks. The development of the condition of the
insulator is shown in Figure 4. In the last week it was shown that mold was seen growing
on the surface of the insulator. The constituent material of the insulator, namely silicone
rubber, can be a medium for fungi to grow and develop [22]. The possibility of mold
growth on the surface of the polymer insulator is greater if the insulator is placed outdoors
in the tropics [23]. Therefore, polymer insulators placed in the tropics have the potential to
become a medium for fungi to grow on the surface of the core body [24].
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3.7. Insulator Testing Scheme

The insulator test by measuring the leakage current aimed to test the dielectric strength
of the insulator. The illustration of the test circuit is shown in Figures 5 and 6. The tested
insulator was tied to a conductor connected to an alternating voltage (AC) generator circuit.
The bottom (grounding) of the isolator, which was also connected to the support pole,
was buried. A 1000 ohm resistor was connected in series across the grounding line of the
insulator. The voltmeter was connected in parallel to a 1000 ohm resistor.
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Figure 6. Insulator test circuit.

The insulator test was carried out by the step voltage method, which took data on the
leakage current at every 5 kV increase in voltage up to the nominal voltage of the insulator,
which was 20 kV. Before being assembled in the test series, the insulator was conditioned
by giving seawater pollutants and fly ash pollutants both in dry and wet conditions, as
shown in Figures 7 and 8. Conditioning insulators in wet conditions was done by spraying
water on the surface of the insulators.
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4. Result and Data Analysis

This section discusses the analysis based on the results of simulations and tests that
were carried out. Simulation analysis consisted of the effect of salt and fly ash contaminants
on voltage distribution, electric field distribution, current density, and leakage current,
while the analysis consisted of a comparison of the leakage current insulator without aging
and aging, the effect of voltage changes on the leakage current insulator and the effect
of ESDD on the leakage current insulator, and the effect of NSDD on the leakage current
insulator. The analysis in the test was divided into two parts, namely dry conditions and
wet conditions. Furthermore, a comparison was made between the simulation results and
the leakage current.

4.1. Polymer Insulator Simulation Results

Insulator material parameters must be filled in first. The simulation of electric field
distribution and voltage distribution uses the Electrostatics physics module, while the
current density simulation uses the Electric Current physics module. The module is already
installed on COMSOL Multiphysics.

4.1.1. Voltage Distribution in Polymer Insulators

The voltage applied in this simulation was 20 kV according to the voltage of the
polymer insulator system used. A terminal voltage of 20 kV was applied to the conductor
cable, as shown in Figure 9, and ground was applied to the bottom fitting of the insulator,
as shown in Figure 10. Figure 11 is the result of the simulation of the voltage distribution
on the insulator model.
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As seen in Figure 11, the maximum voltage from the simulation results was 20 kV
according to the voltage applied to the conductor wire terminals. In the part close to the
conductor wire, the visible voltage was still quite high according to the legend, where the
color is red. As the ground is approached, the more blue the voltage, which means the
lower the voltage value. This is because the core of the insulator is made of a dielectric
material that has high resistance, so that it can withstand the voltage from flowing into the
bottom fitting of the insulator.

To compare the voltage distribution on the insulator without contaminants and with
contaminants, a line graph analysis was performed on the surface of the insulator, as shown
in Figure 12. The comparison results can be seen in Figure 13.

In Figure 13, it can be seen that the voltage distribution in each insulator model with
and without contaminant layers had different values. The voltage on the insulator without
contaminants had a higher value than the insulator with contaminants. This can happen
because the contaminant layer will decrease the dielectric strength of the insulator so that
the measured voltage will also decrease.
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4.1.2. Effect of Contaminants on Electric Field

To determine the effect of salt contaminants on the distribution of the electric field,
simulations were carried out on an insulator model without a contaminant layer and
with a contaminant layer. In insulators contaminated with salt, the electrical conductivity
value applied to the contaminant layer was 2.64 × 10−4 (S/m). While the insulator was
contaminated with fly ash, the electrical conductivity value applied was 1.91 × 10−4 (S/m).
The simulation results can be seen in Figure 14.

In Figure 14 it can be seen that the maximum electric field values were different in
the insulator without contaminants and with contaminants. When the insulator was not
coated with contaminants, the highest field value was 5.98 × 105 V/m. The insulator with
salt contaminants with a thickness of 0.5 mm had the highest field value of 6.56 × 105 V/m.
Moreover, for fly ash contaminants with a thickness of 0.5 mm, the highest field value was
6.69 × 105 V/m. Thus, it can be concluded that the presence of contaminants will increase
the maximum electric field value.
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4.1.3. Effect of Contaminants on Current Density

To determine the effect of seawater and fly ash contaminants on the electric current
density, simulations were carried out with variations in the electrical conductivity value of
salt and fly ash contaminants. The simulation results of the current density can be seen in
Figure 15. The figure shows that the current flowed through the contaminant layer because
it had a high conductivity.

In the simulation, the current density in the pollutant layer was greater than the
current density in the insulator core body. Figure 15 shows the pollutant layer in orange,
while the inside of the insulator is blue.

The contaminant layer appeared to have a lighter color, indicating that the surface had
a higher current density value. When viewed at the current density color level, this means
that the contaminant layer had a greater current density than the inside of the insulator, so
that the salt contaminant layer and fly ash contaminants were able to drain current from
the conductor.
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4.1.4. Effect of Electrical Conductivity on Leakage Current

Current density can be used to obtain the value of the surface current of the insulator
with the function of surface integration. This surface current can then be called the insulator
leakage current. Figure 16 shows the effect of the conductivity of salt contaminants and fly
ash contaminants on the leakage current on the surface of the simulated insulator.

The higher the conductivity of the pollutant, the higher the leakage current measured
on the insulator’s surface, as shown in Figure 16. The conductivity value of the salt pollutant
was directly proportional to the ESDD of the salt pollutant. Likewise, the conductivity
values of fly ash were proportional to its NSDD value. Therefore, it can also be concluded
that the higher the level of salt pollution and fly ash pollution on the surface of the insulator,
the higher the leakage current flowing on the surface of the insulator.

4.2. Polymer Insulator Experiment Results

The insulator experiment in this study measured the magnitude of the leakage current
from the polymer insulator. The leakage current measurement was carried out by adjusting
the predetermined variables, namely the applied voltage, ESDD from salt pollutants, and
NSDD from fly ash pollutants. In addition, the test also compared the performance of
insulators that were not aging and insulators that were aging, seen from the measured
leakage current value. All insulator conditions were tested under dry conditions and wet
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conditions. Insulator testing was done by the step voltage method. Therefore, a voltage of
5 kV was applied and gradually increased to 10 kV, 15 kV, and finally 20 kV according to
the nominal voltage of the insulator. Leakage current was measured at each voltage level.
Leakage current measurements were carried out three times as a form of data validation.
The three data were then taken to determine the average value of the leakage current for
each voltage level and modeled in a graph using Microsoft Excel software.

Energies 2021, 14, x FOR PEER REVIEW 13 of 22 
 

 

 
(a) 

 
(b) 

Figure 16. Effect of conductivity on leakage current on the surface of the insulator: (a) salt 
contaminants, and (b) fly ash contaminants. 

4.2. Polymer Insulator Experiment Results 
The insulator experiment in this study measured the magnitude of the leakage 

current from the polymer insulator. The leakage current measurement was carried out by 
adjusting the predetermined variables, namely the applied voltage, ESDD from salt 
pollutants, and NSDD from fly ash pollutants. In addition, the test also compared the 
performance of insulators that were not aging and insulators that were aging, seen from 
the measured leakage current value. All insulator conditions were tested under dry 
conditions and wet conditions. Insulator testing was done by the step voltage method. 
Therefore, a voltage of 5 kV was applied and gradually increased to 10 kV, 15 kV, and 
finally 20 kV according to the nominal voltage of the insulator. Leakage current was 
measured at each voltage level. Leakage current measurements were carried out three 

Figure 16. Effect of conductivity on leakage current on the surface of the insulator: (a) salt contami-
nants, and (b) fly ash contaminants.

4.2.1. Comparison of Leakage Current of Aging with Aging Insulator

Figure 17 shows the comparison of the measured leakage current of each voltage
level in the insulator without aging and the insulator with aging. Aged insulators had a
higher leakage current than non-aged insulators. The fungus that grows on the insulator’s
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surface as a result of the natural aging process causes an increase in leakage current in
aged insulators. The fungus that grows on the surface of the insulator made of polymer
can increase the surface conductivity of the insulator core body [25]. The increased surface
conductivity of the insulator makes it easier for leakage current to flow through the surface
of the insulator. So, it can be concluded that the insulator with aging has a higher leakage
current value than the insulator without aging. This is because the surface of the insulator
with aging is already affected by the weather, namely exposure to sunlight, rainwater, and
outdoor temperature.
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4.2.2. Comparison of Dry Insulator Leakage Current with Wet Insulator

In Figure 18, it can be seen that the increase in ESDD with the same voltage of 20 kV
in dry and wet insulator conditions affected the value of the leakage current that flowed.
In addition, it can be seen that the condition of the insulator caused a large difference in
the value of the leakage current. From these data, it can be concluded that the insulator
leakage current in wet conditions has a higher value than insulators in dry conditions. This
can happen because water is a conductive compound or can conduct an electric current so
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that it can result in a decrease in the dielectric strength of the insulator, which results in an
increase in the leakage current flowing.
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Figure 18. Comparison of dry insulator leakage current with wet insulator (a) salt contaminants and
(b) fly ash contaminants.

In fly ash contaminants, comparison of the effect of NSDD on the leakage current in
polymer insulators in dry and wet conditions was made. It can be seen that the leakage
current continued to increase along with the increase in the NSDD value of fly ash pollutants
for both dry and wet insulators. Therefore, it can be concluded that the higher the NSDD
value of fly ash pollutants, the higher the leakage current in the polymer insulator in dry
and wet conditions. This can happen because the fly ash pollutants on the surface of
the insulator form a layer that is capable of flowing current. Water can mix with fly ash
pollutants on the surface of the insulator easily because fly ash is hydrophilic, which is a
property that causes fly ash to easily mix with water. Water, which is a good conductor,
causes the conductivity of pollutants on the surface of the insulator to increase, so that
current flows more easily on the surface of the insulator in wet conditions.

4.2.3. Comparison of the Change in Voltage to the Leakage Current in the Insulator

In this test, the insulator being tested was an insulator that had experienced aging.
The given voltage starts from 5 kV, and then went to 10 kV and 15 kV and up to 20 kV. From
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Figure 19a,b it can be seen that the increase in voltage affected the leakage current from the
insulator. The leakage current continued to increase along with the increase in the applied
voltage, both on insulators without pollutants and insulators with pollutants with various
ESDD and NSDD values. Therefore, it can be concluded that the higher the voltage applied
to the insulator, the higher the leakage current in the dry insulator. This increase in leakage
current can be explained by the equation V = I × R, where the insulator is a resistance (R),
the voltage applied to the insulator is V, and the measured leakage current is I. So when
viewed from the equation, the higher the voltage value given (V), the higher the leakage
current (I) will also be, while the value of the insulator resistance (R) is constant.
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4.2.4. Comparison of the Effect of ESDD and NSDD on Leakage Current in the Insulator

In this test, the insulator being tested was an insulator that had experienced aging.
Polymer insulators were tested based on variations in ESDD and NSDD values. These
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values represent the level of pollution on the insulator from light, medium, heavy, and
very heavy. The voltages applied to the insulator were 5 kV, 10 kV, 15 kV, and 20 kV.
Figure 20a shows the effect of ESDD on the amount of leakage current in the polymer
insulator. Moreover, Figure 20b shows the effect of NSDD on the leakage current. It can
be seen that the ESDD and NSSD values of each pollutant affected the insulator leakage
current. The leakage current continued to increase as the ESDD and NSDD values increased.
This also occurred at all voltage levels, namely 5 kV, 10 kV, 15 kV, and 20 kV. So it can be
concluded that the higher the contaminant ESDD value, the higher the leakage current
value in the insulator. Salt is an electrolyte compound, namely a compound that can
conduct electric current, so that the higher the salt content in the insulator will increase
the surface conductivity, which results in the electric current flowing. In addition, the
higher the NSDD value of fly ash pollutants, the higher the leakage current in the polymer
insulator in a wet state. This can happen because the fly ash pollutant on the surface of the
insulator forms a layer that is capable of flowing current.
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4.3. Comparison of Simulation Results with Testing

The results of the simulation and insulator experiment were compared to prove and
compare the effect of salt pollutants and fly ash pollutants attached to the insulator surface
on the insulator leakage current. The conductivity value of salt pollutants was directly
proportional to the ESDD of salt pollutants. Likewise, the conductivity value of fly ash was
directly proportional to the NSDD of fly ash pollutants.

4.3.1. Comparison on Seawater Contaminants

In the leakage current simulation, the variable used was the electrical conductivity
of salt contaminants. Moreover, in the variable leakage current test, the salt contaminant
ESDD was used. So that the results of the simulation and test leakage currents could
be compared, the electrical conductivity test was carried out on each ESDD of salt con-
taminants. The test method was described in the previous section, and the results of the
electrical conductivity test can be seen in Table 4. From the test, it was found that the
value of electrical conductivity is a representation of the ESDD value of the contaminant.
The comparison of the leakage current from the simulation and test results can be seen in
Figure 21. In this figure, the leakage current from the simulation result is represented by
a straight line, while a dotted line represents the current from the test result. The figure
shows that the leakage current increased in the simulation and test as the ESDD of salt
contaminants increased. The difference between the simulation and the test is that in the
simulation, the leakage current tended to be higher than the leakage current from the test
results. Thus, it can be concluded that the simulation results can represent the polymer
insulator leakage current test results.

Table 4. Determination of mass, NSDD, and conductivity of fly ash.

Pollutant Mass (mg) NSDD (mg/cm2) Electrical Conductivity (S/m) Pollution Level

115 0.0598 1.75 × 10−4 Light
380 0.1975 1.91 × 10−4 Currently
1100 0.5717 2.32 × 10−4 Heavy
2500 1.2993 2.81 × 10−4 Very heavy
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4.3.2. Comparison of Fly Ash Contaminants

The results of the simulation and insulator testing were then compared. The pollutant
conductivity value was directly proportional to the fly ash pollutant NSDD. Therefore, to
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compare the simulation and test results, the pollutant conductivity value in the simulation
was converted to NSDD. Figure 22 shows a comparison of the results of the simulation and
insulator testing in this study.
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Both by simulation and testing, the increase in fly ash pollutant NSDD was accompa-
nied by an increase in insulator leakage current. The higher the fly ash pollution level on
the insulator’s surface, the higher the leakage current on the insulator, both for simulation
and testing. Although the leakage current value from the simulation results was smaller
than the leakage current measured in the test, it can be concluded that the simulation
results can represent the results of the tests carried out on polymer insulators because they
both show that the higher the level of fly ash pollution on the surface of the insulator, the
higher the leakage current.

5. Conclusions

Based on the results of simulations and tests, it can be concluded that the contaminant
layer of seawater and fly ash affects the electric field of the insulator surface. The presence
of a contaminant layer makes the surface of the insulator have a higher electric field value
than without contaminants. Aging insulators have a higher leakage current value because
the aging insulator surface is already affected by the weather and mold growth. Thus, the
resistance of polymer insulators with aging is reduced due to these factors. The value of the
electrical conductivity of the salt and fly ash contaminant layer affects the leakage current
value of the insulator surface. The leakage current will increase as the electrical conductivity
of the contaminant increases. In wet conditions, the insulator leakage current has a higher
value than insulators in dry conditions because water is a conductive compound or can
conduct electric current. It can result in a decrease in the dielectric strength of the insulator,
which increases the leakage current flowing. The higher the contaminant ESDD value, the
higher the value of the leakage current in the insulator because seawater is an electrolyte
compound, namely a compound that can conduct electric current, so the higher seawater
content in the insulator will increase the surface conductivity, which results in electric
current flowing. In addition, the higher the fly ash pollutant NSDD, the higher the fly ash
pollutant electrical conductivity. The higher the electrical conductivity of fly ash pollutants,
the higher the leakage current that fly ash pollutants can flow. The simulation results of
polymer insulators with FEM-based software can represent the insulator test results from
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measuring the leakage current. This is indicated by evidence that in the simulation and
testing, both results show that the higher the level of salt and fly ash pollution on the
surface of the polymer insulator, the higher the leakage current measured in the insulator
will also be.
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