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Abstract: Fabrication tolerances, as well as uncertainties of other kinds, e.g., concerning material
parameters or operating conditions, are detrimental to the performance of microwave circuits. Mit-
igating their impact requires accounting for possible parameter deviations already at the design
stage. This involves optimization of appropriately defined statistical figures of merit such as yield.
Although important, robust (or tolerance-aware) design is an intricate endeavor because manufac-
turing inaccuracies are normally described using probability distributions, and their quantification
has to be based on statistical analysis. The major bottleneck here is high computational cost: for
reliability reasons, miniaturized microwave components are evaluated using full-wave electromag-
netic (EM) models, whereas conventionally utilized analysis methods (e.g., Monte Carlo simulation)
are associated with massive circuit evaluations. A practical approach that allows for circumventing
the aforementioned obstacles offers surrogate modeling techniques, which have been a dominant
trend over the recent years. Notwithstanding, a construction of accurate metamodels may require
considerable computational investments, especially for higher-dimensional cases. This paper brings
in a novel design-centering approach, which assembles forward surrogates founded at the level of
response features and trust-region framework for direct optimization of the system yield. Formu-
lating the problem with the use of characteristic points of the system response alleviates the issues
related to response nonlinearities. At the same time, as the surrogate is a linear regression model, a
rapid yield estimation is possible through numerical integration of the input probability distributions.
As a result, expenditures related to design centering equal merely few dozens of EM analyses. The
introduced technique is demonstrated using three microstrip couplers. It is compared to recently
reported techniques, and its reliability is corroborated using EM-based Monte Carlo analysis.

Keywords: design centering; robust design; yield optimization; microwave components; response
features

1. Introduction

Microwave design workflows, including optimization procedures, are most often
concerned with nominal designs, where possible uncertainties of geometry and material
parameters are not accounted for. At the same time, fabrication tolerances, incomplete
knowledge of material characteristics (e.g., dielectric permittivity of the substrate) or oper-
ating conditions (temperature, geometrical distortions, input signal power), might all alter
the electrical performance parameters of the system [1,2]. Fabrication tolerances result from
from manufacturing inaccuracies (e.g., chemical etching in the case of microstrip compo-
nents), and its quantification can be performed using probability distribution, e.g., uniform
or Gaussian, with a given maximum deviation or variance, respectively. Tolerance-based
parameter deviations may hamper fulfilling the assumed performance specifications by
the system under design. Therefore, the assessment of their effects on the circuit charac-
teristics is of practical importance. The same can be said about making the design more
robust, which involves a reduction of appropriately defined statistical figures of merit [3].
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Because microwave design tasks are often formulated using minimax type of specifications
(e.g., lower or upper bounds for return loss, transmission, power split, etc., over certain
frequency ranges), the most appropriate metric is a yield [4]. The second type of the
aforementioned uncertainties (often referred to as epistemic ones [5]) is normally tackled by
making sure that the system works properly for the assumed range of operating conditions
(e.g., the temperature, input signal power) [6].

Quantification of uncertainties is associated with statistical analysis [7], which—when
carried out directly using electromagnetic (EM) simulation models—is impractically ex-
pensive. For example, estimation of the yield using Monte Carlo simulation typically
requires hundreds of circuit evaluations because the process is slowly convergent [8]. On
the other hand, utilization of EM analysis is mandatory for reliability reasons. This is par-
ticularly the case for miniaturized devices featuring strong EM cross-couplings (e.g., due
to transmission line folding [9] or incorporation of compact microstrip cells [10]). For such
circuits, equivalent network or analytical models are simply too inaccurate. Acceleration
of uncertainty quantification procedures can be accomplished in various ways, includ-
ing simplification of the problem. A representative example is worst-case analysis [11],
which is, however, of limited accuracy (i.e., leading to pessimistic estimations of the circuit
performance). Undeniably, the most widespread approaches today are surrogate-assisted
methods, where statistical analysis or yield optimization are carried out using a fast replace-
ment model (e.g., neural networks [12], response surface approximation [13], polynomial
chaos expansion, PCE [14–16]). A practical limitation is the dimensionality of the parameter
space, i.e., the number of training data samples (translating into a computational cost of its
acquisition) required for a construction of a reliable surrogate quickly increases with the
number of the circuit parameters (also called the curse of dimensionality [17]). Available
mitigation techniques include diminishing a number of directly handled dimensions [18],
the usage of advanced modeling techniques (e.g., PC kriging, in which traditional trend
functions, such as polynomials of low order, are substituted with PCE [19]), incorporation
of model order reduction [20], as well as variable-resolution methods (co-kriging [21],
space mapping [22]).

Understanding (and being able to quantify) how uncertainties affect the electrical char-
acteristics, and the performance of circuits, is important, yet making the designs immune
to tolerances is even more crucial. Increasing the likelihood of satisfying specifications
under parameter deviations is known as robust design, yield-driven design, design cen-
tering or tolerance-aware design [23–25]. Its practical realization requires maximization
of relevant statistical performance metrics (e.g., yield). Alternatively, in design centering,
the aim is to allocate the design as much as possible in the center of the feasible region
(i.e., possibly away from the feasible region boundary). Because evaluation of the perfor-
mance metric (e.g., yield) has to be executed at all stages of the robust design process, its
computational cost is substantial. As a matter of fact, straightforward EM-driven yield opti-
mization is normally prohibitive. Utilization of surrogate modeling techniques is a practical
workaround [26–28], with neural networks [29], polynomial chaos expansion [30,31], and
space mapping [32] being the most popular approaches. Here also, the bottleneck is an
expected high cost of surrogate model construction, especially that the domain of the model
is larger due to expected design relocation across the optimization path. Sequential approx-
imate optimization (SAO) [33] can be used to mitigate this problem by creating a sequence
of surrogates rendered over smaller domains, which are moved along the optimization
path. Although the model has to be constructed repeatedly, the cost of acquiring training
data within each domain is significantly lower than in the larger one. Yet another approach
is utilization of response feature technology [34]. Here, the surrogate only models the
coordinates of apposite characteristic points of the system responses (the ones that permit
assessment of satisfying/violating, given design specs). Since characteristic points are
in nearly linear relationship with the circuit dimensions, the metamodel can be obtained
using sparse training data sets [35].
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Here, we propose a novel framework for expedited design centering of microwave
components. Our methodology employs forward surrogate models constructed at the
level of response features corresponding to the performance figures of interest (band-
width, power split ratio), as well as trust-region framework for direct maximization of the
surrogate-estimated circuit yield. Reformulating the uncertainty quantification task in the
context of response features mitigates the dimensionality and nonlinearity-related issues.
Furthermore, as the surrogate itself is a linear regression model, numerical evaluation of
the yield is straightforward and fast through numerical integration of the input probability
distributions. The presented technique has been demonstrated using three microstrip cou-
plers, two single- and a dual-band one. For all structures, the cost of design centering was
remarkably low, below forty EM analyses of the respective circuit, which is considerably
less than for the state-of-the-art surrogate-based methods employed as benchmark. The
yield estimation reliability is confirmed using direct EM-based Monte Carlo analysis.

2. Microwave Design Centering by Response Features and Trust Regions

This section formulates the introduced design centering procedure. We start by
formulating the design centering task (Section 2.1), whereas Section 2.2 discusses response
features in the context of microwave couplers, which are used here for demonstrating the
methodology. Yield maximization using feature-based forward regression surrogates and
trust regions is described in Section 2.3. Numerical verification of the framework involving
three microstrip couplers will be provided in the next section.

2.1. Formulation of Design Centering Problem

For the sake of illustration, this work focuses on compact microstrip couplers, where
effects of the manufacturing tolerances are primarily visible through alterations of the
power split ratios as well as the shifts of the operating frequencies. The goal of design
centering is to increase the likelihood that the specs will be fulfilled given the tolerances.
The specifications are formulated here for a general case of multi-band coupler, where x
refers to a vector of designable parameters, fL.k and fR.k stand for the lower and upper ends
of the kth operating band, k = 1, . . . , N, whereas Dk are maximum allowed power split
errors for the kth operating frequency f 0.k = [fR.k − fL.k]/2, with Sk being the respective
target power split ratios. The circuit at the design x is said to satisfy the specifications if

max
{

f ∈ ∪N
k=1[ fL.k, fR.k] : |S11(x, f )|

}
≤ Smax (1)

max
{

f ∈ ∪N
k=1[ fL.k, fR.k] : |S41(x, f )|

}
≤ Smax (2)∣∣∣|S31(x, f0.k)|−|S21(x, f0.k)|−Sk

∣∣∣ ≤ Dk k = 1, . . . , N (3)

For simplicity of notation, whenever |Sj1(x,f )| is used, it is understood as dB-valued
entity. In particular, the left-hand sides of Equations (1)–(3) contain logarithms of the re-
spective circuit responses, whereas the entities of the right-hand sides of the said equations
(i.e., the threshold Smax, and the power split error Dk) are also expressed in dB. Here, Smax
is the acceptance threshold for the matching and isolation characteristics, e.g., Smax = −20
dB. The scattering parameters in (1)–(3) are marked as explicitly dependent on parameters
x and frequency f. If the aforementioned conditions are satisfied, the circuit features a
sufficient bandwidth (at the Smax level) and realizes a required power split (within the
assumed tolerances Dk) at all operating frequencies simultaneously.

In the following, x(0) refers to the nominal design. It is a design obtained without
accounting for manufacturing tolerances, so that the circuit matching |S11| and isolation
|S41| are improved as much as possible within the target frequency ranges, while main-
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taining the required power split ratios. This design can be found by solving the constrained
minimax task of the form

x(0) = argmin
x

{
max

{
f ∈ ∪N

k=1[ fL.k, fR.k] : max{|S11(x, f )|, |S41(x, f )|}
}}

(4)

with equality constraints

|S31(x, f0.k)|−|S21(x, f0.k)|= Sk k = 1, . . . , N (5)

In practice, the constraints can be handled using a penalty function approach because
they are expensive to evaluate [36]. The solution of (4), (5) features the best achievable
matching and isolation in the frequency bands of interest as well as target power split
ratios at the respective centre frequencies.

For the purpose of design centering, we will denote by dx the vector of parameter
deviations from nominal values, resulting from fabrication tolerances characterized by
probability distributions, specific to a given manufacturing technology, e.g., joint Gaussian
G (0,σ), or uniform of maximum deviation dmax. As mentioned before, one of the most
popular statistical performance metrics is yield Y [37], described as

Y(x(0)) =
∫

X f

p(x, x(0))dx (6)

In (6), p(x,x(0)) stands for a joint probability density function describing statistical vari-
ations of the design x w.r.t. the nominal design x(0). Further, Xf is the feasible space, i.e., the
set of designs conforming to the assumed performance requirements (e.g., in the form of
(1)–(3) for the case of a multi-band coupler). Evaluation of the yield requires numerical
integration of (6), which, in practice, can be realized using Monte Carlo simulation. Therein,
Y is estimated as

Y(x(0)) = N−1
r

Nr

∑
k=1

H(x(0) + dx(k)) (7)

where dx(k), k = 1, . . . , Nr, are random deviation vectors following the probability distribu-
tion p(.). The function H(x) in (7) is defined to assume a value of one if the condition (1)–(3) is
satisfied; otherwise, H(x) is set to zero. Having (7), the maximum-yield design is defined as

x∗ = argmin
x
{−Y(x)} (8)

Note that optimization of the yield requires evaluation of (7) throughout the process,
which is a computationally expensive task. As mentioned in Section 1, it is often accelerated
using surrogate modeling techniques, where Y is estimated using a fast replacement model
of EM-simulated system characteristics. At the same time, construction of the surrogate
may be an expensive procedure by itself, in particular, for higher-dimensional parameter
spaces. Here, we use feature-based surrogates (cf. Section 2.2), which allow for reliable
estimation of yield using only a handful of data samples.

2.2. Design Specifications Verification Using Response Features

In this work, design centering is realized as an iterative process. The underlying
algorithm is gradient search [38], in which estimation of the yield is realized using for-
ward surrogate models established at the level of appositely appointed response features.
Figure 1 shows responses of an exemplary microwave circuit with the response features
defined to account for the design specifications formulated in (1)–(3).
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Figure 1. Scattering parameters of an exemplary microwave coupler along with the response features corresponding to
–20 dB level of matching (|S11|) and isolation (|S41|) characteristics (o) and transmission (|S21|, |S31|) at the target
operating frequency of 1.5 GHz (�). The feature points allow for determining satisfaction of the performance requirements
(here, the matching/isolation bandwidth of 1.45 GHz to 1.55 GHz, and maximum power split error of 0.5 dB at 1.5 GHz):
(a) design satisfying specifications, (b) design violating both bandwidth and power split requirements.

It can be observed that for certain points, specifically those corresponding to −20 dB
levels of matching and isolation response, we are only interested in the frequency coordi-
nates, whereas for others (here, those corresponding to transmission responses) we only
need the level coordinates. The aggregated feature vector can be therefore written as

P(x) = [p1(x) p2(x) . . . p6(x)]
T = [ f1(x) f2(x) f3(x) f4(x) l1(x) l2(x)]

T (9)

where f 1 and f 2 are the frequencies corresponding to –20 dB level of |S11|, f 3 and f 4 are the
frequencies corresponding to −20 dB level of |S41|, and l1 and l2 are the levels of |S21|
and |S31|, respectively, at the target operating frequency of the coupler. For a multi-band
coupler, we will have

P(x) = [p1(x) p2(x) . . . p6N(x)]
T =

[ f1.1(x) f2.1(x) f3.1(x) f4.1(x) l1.1(x) l2.1(x) . . . f1.N(x) f2.N(x) f3.N(x) f4.N(x) l1.N(x) l2.N(x)]
T (10)

where the second subscript indicates the operating band (from 1 to N). Clearly, a
particular definition of the vector P depends on the design specifications. The feature
points themselves are readily derived from EM-simulated circuit characteristics.

Using the feature vector P, the design specification conditions (1)–(3) can be reformu-
lated as

f1.k(x) ≤ fL.k, f3.k(x) ≤ fL.k, k = 1, . . . , N (11)

f2.k(x) ≥ fR.k, f4.k(x) ≥ fR.k, k = 1, . . . , N (12)

|l1.k(x)− l2.k(x)|≤ Dk, k = 1, . . . , N (13)

The primary advantage of working at the level of response features rather than the
entire circuit responses is weakly-nonlinear dependence of the feature points on geometry
parameters of the system, which allows for constructing accurate surrogates using smaller
training data sets. In the case of design centering, this would translate into improved
reliability of the optimization process as well as its computational efficiency.
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2.3. Design Centering by Means of Feature-Based Surrogates and Trust Regions

The proposed design centering procedure solves the yield maximization problem (8)
using a trust-region (TR)-based algorithm that renders approximations x(i), i = 0, 1, . . . , to
x* [38]. In each iteration, the new approximation x(i+1) is obtained by solving

x(i+1) = arg min
||x−x(i) ||≤d(i)

{−YP(x)} (14)

where the predicted yield YP is obtained from the conditions (11)–(13) evaluated using the
auxiliary linear regression model L(i) of the feature vector P(x)

L(i)(x) = P(x(i)) + JP(x
(i)) · (x− x(i)) (15)

in which the Jacobian matrix JP is defined as

JP(x
(i)) =


∂p1(x(i))

∂x1
· · · ∂p1(x(i))

∂xn
...

. . .
...

∂p2N(x(i))
∂x1

· · · ∂p2N(x(i))
∂xn


T

(16)

The partial derivatives in (16) can be computed based on the sensitivities of the
circuit S-parameters which, in turn, are obtained using finite differentiation at the cost
of n additional EM simulations of the circuit under optimization (n being the number
of independent parameters). The vector x(i+1) is accepted if the gain ratio, computed as
r = [YP#(x(i+1)) − YP(x(i))]/[YP(x(i+1)) −YP(x(i))], is positive. Here, YP# is computed using
a linear model similar to (15) but with P(x(i)) replaced by P(x(i+1)) extracted from EM-
simulated circuit response at x(i+1). It should be noted that the employment of YP# is a
computationally efficient way of validating the candidate design (at the cost of only one
EM analysis of the circuit at hand), and it assumes that the feature point sensitivities do
not alter considerably while relocating the design from x(i) to x(i+1). This assumption is
reasonable as the expected relocations are small in the norm sense (i.e., ||x(i+1) − x(i)||),
more specifically, comparable to dmax. The trust region size is updated after each iteration
using standard rules [38], i.e., the TR region size is increased if the gain ratio is sufficiently
large (e.g., r > 0.75), and decreased if it is too small (e.g., r < 0.25). Additionally, as previously
mentioned, the candidate design is only accepted if the gain ratio r > 0. If this is not the
case, the iteration is repeated with a reduced trust region.

Estimation of the yield using the feature-based regression model L(i) is carried out
through Monte Carlo integration [39] of (6). It is arranged using a large number of random
samples (in our numerical experiments, 100,000) generated according to the joint proba-
bility distribution p(). For each sample xr, the regression model response L(i)(xr) is tested
against the conditions (11)–(13). The process is vectorized to ensure rapid evaluation of (6)
(a typical evaluation time is 40 ms in Matlab, which is negligible compared to EM simula-
tion time of the circuit). At the same time, using a large random set leads to a very small
variance of yield estimation (less than 0.1%).

2.4. Complete Algorithm

Figure 2 shows the flow diagram of the proposed design centering procedure. The
input parameter is the nominal design x(0). In the first two steps, the EM analysis of
the circuit is performed along with estimation of its response sensitivities, followed by
extraction of the feature vectors and construction of the feature-based regression model.
The latter is then applied to render a candidate design x(i+1), which is accepted if it leads to
a positive gain ratio. At the same time, the trust region size is adjusted as well. Termination
condition is based on convergence in argument ||x(i+1) − x(i)|| < ε or shrinking the trust
region size beyond the termination threshold d(i+1) < ε. In the numerical experiments of
Section 3, we use ε = 10−3.
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3. Numerical Verification

This section provides numerical verification of the proposed design centering proce-
dure using three examples of microstrip couplers, including two single-band structures,
and a dual-band one. The computational efficiency of our technique is compared to sev-
eral surrogate-based yield optimization methods. Furthermore, direct EM-based Monte
Carlo analysis is employed to validate reliability of yield estimation using feature-based
regression model at both the nominal and optimized designs.

3.1. Case Studies

The proposed design centering procedure is validated using three microstrip circuits,
a compact rat-race coupler, RRC (Circuit I) [40] shown in Figure 3a, a miniaturized branch-
line coupler, BLC (Circuit II) [41] shown in Figure 3b, and a dual-band branch-line coupler
(Circuit III) [42], shown in Figure 3c. The relevant information concerning the three
structures, including the substrate parameters, geometry parameters, nominal design,
and performance requirements, can be found in Table 1. The EM-simulation models
are implemented in CST Microwave Studio and evaluated using the time-domain solver.
Design centering is carried out assuming that geometry parameter deviations follow
independent Gaussian probability distribution with variance 0.017 mm with maximum
deviations limited to 0.05 mm (about triple variance).
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(εr = 3.5, h = 0.51 mm) 

Design  
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Table 1. Validation circuits.

Case Study 1

Circuit I Circuit II Circuit III

Substrate RO4003
(εr = 3.38, h = 0.76 mm)

AD300
(εr = 2.97, h = 0.76 mm)

RO4003
(εr = 3.5, h = 0.51 mm)

Design parameters x = [l1 l2 l3 d w w1]T x = [g l1r la lb w1 w2r w3r w4r wa wb]T x = [Ls Ws l3r w1 w2 w3 w4 w5 wv]T

Other parameters d1 = d + |w − w1|, d = 1.0,
w0 = 1.7, and l0 = 15

L = 2dL + Ls, Ls = 4w1 + 4g + s + la + lb,
W = 2dL + Ws, Ws = 4w1 + 4g + s + 2wa,
l1 = lbl1r, w2 = waw2r, w3 = w3rwa, and

w4 = w4rwa

dL = dW = 10 mm, L = 2dL + Ls,
W = 2dW + 2w1 + (Ws − 2wf),

l1 = Ws/2, l2 = l321/2, l3 = l3r((Ls −
w3)/2 − w4/21/2), lv1 = l3/3, lv3 =

Ls/2 − w3/2 − l3 + lv1; wf = 1.15 mm

Operating bands 0.89 GHz–1.11 GHz 1.45 GHz–1.55 GHz 2.36 GHz–2.44 GHz
5.16 GHz–5.24 GHz

Maximum power split
error 0.4 dB at 1 GHz 0.5 dB at 1.5 GHz 0.5 dB at 2.4 GHz

0.5 dB at 5.2 GHz

Nominal design x(0) = [4.50 11.08 21.81 0.65 0.94
0.86]T

x(0) = [0.63 5.90 9.34 12.45 1.29 2.02
0.99 0.32 2.81 0.22]T

x(0) = [25.05 0.85 0.76 1.90 1.23 0.36 0.71
0.30 0.30]T

1 Parameters with subscript r are relative, and their deviations are recalculated accordingly, in order to have the corresponding absolute
parameters following the assumed probability distribution (here, Gaussian with variance of 0.017 mm).

3.2. Reference Algorithms

For the sake of benchmarking, the yield optimization results obtained using the
proposed procedure are compared to those produced by several surrogate-based methods.
The reference techniques are briefly characterized in the remaining part of this section.

Reference algorithm 1: This is a surrogate-assisted approach incorporating a meta-
model established in a relatively large vicinity of the nominal design to enable sufficient
relocation of the design during yield optimization. The problem (8) is solved using local op-
timization algorithm. Here, the metamodel is constructed using kriging interpolation [43],
whereas the domain is defined as an interval [x(0) − d, x(0) + d]. The entries of the size
vector d = [d1 . . . dn]T are set to dk = 10dmax, k = 1, . . . , n (recall that dmax is the maximum
parameter deviation, which, in our experiments is 0.05 mm). This size of domain normally
creates a sufficient room for design relocation in the yield maximization process. The ad-
vantage of this procedure is implementation simplicity. The drawback is a potentially high
cost of training data acquisition, which is especially troublesome to structures described by
larger numbers of geometry parameters.
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Reference algorithm 2: This procedure adopts the sequential approximate optimization
(SAO) approach [33], in which the original problem (8) is solved iteratively as

x(i+1) = argmin
x

{
−Y(i)

s (x)
}

(17)

where x(i), i = 0, 1, . . . , are approximations to the optimum design x*. The yield estimated
in the ith iteration, Ys

(i), is computed based on the surrogate model established in the
current domain being the interval [x(i) — dl, x(i) — dl], with x(i) = [x1

(i) . . . xn
(i)]T, i.e., the

domain is always centred at the current iteration point. Because the surrogate models are
constructed along the optimization path, their domains can be considerably smaller than
for the first reference algorithm (here, dl = [dl.1 . . . dl.n]T is set to dl.k = 3dmax, k = 1, . . . , n).

The problem (17) is constrained to satisfy xk
(i) − dl.k + dmax ≤ xk ≤ xk

(i) + dl.k − dmax,
k = 1, . . . , n, which ensures that the solution is located in the domain interior and at the
distance at least dmax from its boundary. The latter allows researchers to carry out Monte
Carlo simulation within the region of validity of the metamodel. The advantage of this
procedure is a lower cost of setting up the surrogate as compared to the previous method.
However, several iterations are normally required to approach the optimum solution.

Reference algorithm 3: This procedure incorporates the performance-drive modeling
concept [44]. It relies on a single metamodel. The latter is rendered in the domain spanned
by the most relevant directions within the parameter space, specifically those that affect the
likelihood of satisfying the assumed design requirements in the most significant manner.
The relevant directions are found through auxiliary local optimizations [45]. The principal
advantage of this method is the low volume of the surrogate model domain, which is
however of sufficient size wherever necessary. Consequently, the third algorithm effectively
combines the advantages of the first and the second reference methods. The conceptual
illustration of the metamodel domain definition can be found in Figure 4.
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Figure 4. Yield optimization using performance-driven surrogate modeling concept [45]: (a) S-parameters of a microwave
coupler at the nominal design x(0), design x(1) (spoiled power split), and design x(2) (improved −20 dB bandwidth); only
the selected S-parameters are shown for x(1) (|S21|, |S31|) and x(2) (|S11|, |S41|) for clarity. The designs x(1) and x(2)

determine the important directions from the point of view of yield manipulation; (b) Designs x(0), x(1), and x(2) form surface
S(t) parameterized by vector t = [t1 t2]T. The union of intervals SI(t) for −1 ≤ t1, t2 ≤ 1 becomes the domain XS of the
surrogate model.

3.3. Results and Discussion

The numerical results obtained using the proposed design centering approach as well
as the reference algorithms outlined in Section 3.2 have been gathered in Table 2 through
4 for Circuit I, II, and III, respectively. The following final (yield-optimized) designs
were obtained:

• Circuit I: x* = [4.65 11.22 21.73 0.73 0.94 0.86]T;
• Circuit II: x* = [0.64 5.50 9.27 12.49 1.27 2.06 1.05 0.32 2.85 0.24]T;
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• Circuit III: x* = [25.16 0.80 0.77 1.89 1.25 0.42 0.75 0.30 0.30]T.

Table 2. Design centering results for Circuit I (Figure 3a).

Optimization Algorithm
Initial Yield Optimized Yield

CPU Cost 1Estimated by
Surrogate Model EM-Based Estimated by

Surrogate Model EM-Based

Reference algorithm 1 50% 42% 100% 97% 400
Reference algorithm 2 45% 42% 97% 97% 200 2

Reference algorithm 3 44% 42% 98% 98% 82
This work (Section 2) 45% 42% 99% 98% 25
1 Optimization cost in number of EM simulations of the considered circuit. 2 The algorithm convergence after three iterations (surrogate
setup cost 50 training samples per iteration).

The computational cost of the design centering process was very low and corre-
sponded to only 25, 37, and 32 EM simulations of Circuit I, II, and III, respectively. It
can be observed that this cost is considerably lower than that required by the reference
algorithms. In particular, the average computational savings over the reference algorithm 1
are as high as 95 percent, 89 percent over the reference algorithm 2, and about 68 percent
over the reference algorithm 3. The improvements in terms of computational efficiency
are primarily due to the usage of response features and incorporation of a simple (here,
linear) surrogate. The accuracy of the latter is a result of constructing the metamodel at the
level of feature point coordinates, which, as previously mentioned, are in weakly-nonlinear
relationship with the geometry parameters of the circuit (as compared to that of the entire
circuit responses), which allows for constructing accurate surrogates using smaller training
data sets. At the same time, as the surrogate is a linear regression model, a rapid yield
estimation is possible through numerical integration of the input probability distributions.
As a result, expenditures related to design centering equal merely a few dozen EM anal-
yses. Observe also, that embedding the yield maximization process in the trust-region
framework ensures convergence of the entire process.

The quality of the designs obtained using the proposed approach regarding the final
yield values are similar to those produced by other methods. On the other hand, the
predictions of the feature-based surrogate are comparable or better than those of the
reference algorithms. This is corroborated through direct EM-driven Monte Carlo (MC)
simulations at the nominal and the yield-optimized designs as indicated in Figures 5–7.
Limited predictive power is particularly pertinent to the reference Algorithm 1: although
the surrogate models, therein, were constructed using a relatively large number of samples
(400 for Circuit I and 800 for Circuits II and III), the relative RMS error of the metamodels is
about 3.5% (Circuits I and II) and 6.1% (Circuit III), which is insufficient to render accurate
yield estimation.

At the same time, it can be noticed that the accuracy of yield estimation using a
feature-based surrogate is not as good as for other techniques for Circuit III. This indicates
that the relationships between the geometry parameters of this circuit and response feature
coordinates are more nonlinear than for other considered structures. This does lead to
slightly inferior results in terms of the final yield (as confirmed by EM-driven Monte
Carlo simulation), and further improvements are needed, which will be addressed in the
future work. Graphical illustrations of EM-driven MC for the nominal and yield-optimized
designs can be found in Tables 2–4 for Circuit I, II, and III, respectively. The analysis
has been performed using 500 random samples. A comparison between the left- and the
right-hand-side panels indicates a noticeable increase in the number of samples satisfying
the prescribed specifications at the optimized design as compared to the nominal one.
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Figure 7. EM-driven Monte Carlo simulation of Circuit III (Figure 3c) at (a) the nominal design,
and (b) the final design obtained using the proposed algorithm. MC carried out using 500 random
samples. EM simulation data shown as gray curves. Black plots show the circuit responses at the
nominal (a) and the optimized design (b).
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Table 3. Design centering results for Circuit II (Figure 3b).

Optimization Algorithm
Initial Yield Optimized Yield

CPU Cost 1Estimated by
Surrogate Model EM-Based Estimated by

Surrogate Model EM-Based

Reference algorithm 1 82% 77% 93% 88% 800
Reference algorithm 2 76% 77% 94% 93% 320 2

Reference algorithm 3 79% 77% 92% 93% 112
This work (Section 2) 79% 77% 90% 92% 37
1 Optimization cost in number of EM simulations of the considered circuit. 2 The algorithm convergence after three iterations (surrogate
setup cost 50 training samples per iteration).

Table 4. Design centering results for Circuit III (Figure 3c).

Optimization Algorithm
Initial Yield Optimized Yield

CPU Cost 1Estimated by
Surrogate Model EM-Based Estimated by

Surrogate Model EM-Based

Reference algorithm 1 80% 71% 99% 93% 800
Reference algorithm 2 88% 71% 96% 91% 500 1

Reference algorithm 3 74% 71% 94% 92% 123
This work (Section 2) 71% 71% 93% 89% 32
1 Optimization cost in number of EM simulations of the considered circuit. 2 The algorithm convergence after three iterations (surrogate
setup cost 50 training samples per iteration).

4. Conclusions

This paper presented a novel technique for low-cost design centering of microwave
components. Our methodology involves feature-based forward regression surrogates,
which allow for accurate prediction of the fabrication yield under the assumed parameter
deviation, as well as facilitate numerical integration of the corresponding probability den-
sity functions. The yield maximization process is embedded in the trust-region framework
to ensure convergence of the process. The proposed approach has been demonstrated
using three microstrip couplers, including single-band rat-race and branch-line coupler, as
well as dual-band branch-line coupler. The accuracy and computational efficiency has been
benchmarked against three state-of-the-art surrogate-assisted algorithms. CPU savings of
up to 95 percent have been demonstrated while maintaining yield prediction reliability. In
absolute terms, the cost of design centering procedure is as low as the cost of a few dozen
EM analyses of the respective circuit (25 EM simulations for the compact rat-race coupler, 37
simulations for the single-band branch-line coupler, and 32 simulations for the dual-band
BLC). Additional advantage of the presented approach is simple implementation. The pre-
sented design centering framework may be considered an attractive alternative to existing
(especially conventional) uncertainty quantification methods, especially when rapid yield
improvement is of concern. The proposed technique may be applied for EM-driven design
centering of other microstrip high-frequency structures (such as antennas or filters). The
example structures presented in the manuscript (i.e., the couplers and power dividers) have
served merely as case studies, and were applied to demonstrate the proposed technique.
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