
energies

Article

Investigation of Dynamic Loads in Wind Turbine Drive Trains
Due to Grid and Power Converter Faults

Julian Röder * , Georg Jacobs , Tobias Duda, Dennis Bosse and Fabian Herzog

����������
�������

Citation: Röder, J.; Jacobs, G.; Duda,

T.; Bosse, D.; Herzog, F. Investigation

of Dynamic Loads in Wind Turbine

Drive Trains Due to Grid and Power

Converter Faults. Energies 2021, 14,

8542. https://doi.org/10.3390/

en14248542

Academic Editors: Carsten Ebert and

Davide Astolfi

Received: 29 November 2021

Accepted: 15 December 2021

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Center for Wind Power Drives (CWD), RWTH Aachen University, 52062 Aachen, Germany;
georg.jacobs@cwd.rwth-aachen.de (G.J.); tobias.duda@cwd.rwth-aachen.de (T.D.);
dennis.bosse@cwd.rwth-aachen.de (D.B.); fabian.herzog@cwd.rwth-aachen.de (F.H.)
* Correspondence: Julian.roeder@cwd.rwth-aachen.de

Abstract: Electrical faults can lead to transient and dynamic excitations of the electromagnetic
generator torque in wind turbines. The fast changes in the generator torque lead to load oscillations
and rapid changes in the speed of rotation. The combination of dynamic load reversals and changing
rotational speeds can be detrimental to gearbox components. This paper shows, via simulation, that
the smearing risk increases due to the electrical faults for cylindrical roller bearings on the high speed
shaft of a wind turbine research nacelle. A grid fault was examined for the research nacelle with a
doubly fed induction generator concept. Furthermore, a converter fault was analyzed for the full
size converter concept. Both wind turbine grid connection concepts used the same mechanical drive
train. Thus, the mechanical component loading was comparable. During the grid fault, the risk of
smearing increased momentarily by a maximum of around 1.8 times. During the converter fault, the
risk of smearing increased by around 4.9 times. Subsequently, electrical faults increased the risk of
damage to the wind turbine gearbox bearings, especially on the high speed stage.

Keywords: wind turbine; drive train; dynamic loads; grid fault; converter fault

1. Motivation

Wind energy is taking an increasing share in the energy supply of the future, while
costs for wind turbines (WTs) steadily decline due to technology improvements. The
operational costs of WTs can be reduced by increasing its reliability [1]. Reliability improve-
ments can be achieved by explicitly considering special load scenarios that are currently
not considered sufficiently in the WT development. Dependent on the WT concept, grid
faults can lead to dynamic electromagnetic torque excitations with amplitudes significantly
higher than the rated torque [2]. Faults in the power electronics [3], e.g., the converter, can
also induce significant torque excitations [4,5].

However, gearbox damages are the main contributor to WT downtime. Gearbox
damages occur mainly on bearings and gears of the high speed stage (HSS). Around 48 per
cent of the gearbox damages are attributed to the HSS bearings [6,7].

Therefore, an investigation of electrical faults and their influence on an increase in the
risk of damages to the WT gearbox components is conducted at the CWD in the project
DynaGET. As generator torque excitations have the highest influence on the loading of the
HSS gearbox components [5], the HSS bearings are the main focus in this research.

2. Approach

In order to quantify the loads due to grid faults, fault ride through (FRT) experiments
can be carried out in the field or on test benches (see Figure 1). Furthermore, validated
multi-body simulation (MBS) models can be used to simulate grid faults and, e.g., short-
circuit converter faults that cannot economically be tested on test benches.
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Figure 1. Drive train on CWD’s test bench. 

For a simulative quantification of the risk of damage to the drive train components 
during electrical faults, the drive train loads and kinematics have to be calculated and 
evaluated via damage criteria. For the load calculation, a model of a WT research nacelle, 
described in Section 3, is used. Two different grid connection concepts were investigated, 
while the mechanics of the drive train were not changed. Therefore, the influence of the 
electrical faults on the mechanical loading can be compared for the different concepts. 

In the doubly fed induction generator (DFIG) concept (see Figure 2), the WT is only 
partially decoupled from the grid via the partial scale converter (PSC). Due to the direct 
connection of the generator´s stator, grid faults affect the electromagnetic field in the stator 
significantly, which leads to a transient torque excitation [2]. A fault ride through scenario, 
corresponding to the current European grid codes, is investigated. The resulting torque 
and drive train loads are discussed in Section 4. 

 
Figure 2. Schematic of the DFIG concept research nacelle model. 

In the full-scale power converter (FSC) concept, the WT is completely decoupled 
from the grid via the converter and countermeasures, e.g., brake choppers (see Figure 3). 
Therefore, in general, grid faults do not induce significant excitations for the FSC concept. 
Hence, a converter fault is analyzed (see Figure 3). The fault, its influence on the generator 
currents, as well as the resulting drive train torque load, is discussed in a previous publi-
cation [8]. 

In order to quantify the risk of damage to the gearbox bearings a smearing criterion 
[9] is evaluated using the MBS results as an input. 

Figure 1. Drive train on CWD’s test bench.

For a simulative quantification of the risk of damage to the drive train components
during electrical faults, the drive train loads and kinematics have to be calculated and
evaluated via damage criteria. For the load calculation, a model of a WT research nacelle,
described in Section 3, is used. Two different grid connection concepts were investigated,
while the mechanics of the drive train were not changed. Therefore, the influence of the
electrical faults on the mechanical loading can be compared for the different concepts.

In the doubly fed induction generator (DFIG) concept (see Figure 2), the WT is only
partially decoupled from the grid via the partial scale converter (PSC). Due to the direct
connection of the generator´s stator, grid faults affect the electromagnetic field in the stator
significantly, which leads to a transient torque excitation [2]. A fault ride through scenario,
corresponding to the current European grid codes, is investigated. The resulting torque
and drive train loads are discussed in Section 4.
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Figure 2. Schematic of the DFIG concept research nacelle model.

In the full-scale power converter (FSC) concept, the WT is completely decoupled from
the grid via the converter and countermeasures, e.g., brake choppers (see Figure 3). There-
fore, in general, grid faults do not induce significant excitations for the FSC concept. Hence,
a converter fault is analyzed (see Figure 3). The fault, its influence on the generator currents,
as well as the resulting drive train torque load, is discussed in a previous publication [8].

In order to quantify the risk of damage to the gearbox bearings a smearing criterion [9]
is evaluated using the MBS results as an input.
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3. Models 
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data from extensive experiments with regard to IEC 61400 and via a converter fault test in 

idling mode [4,5,10–12]. 

Figure 3. Schematic of the FSC concept research nacelle model.

3. Models

The drive train model (MBS) is connected with analytical models for the electrical
system (see Figures 2 and 3) via a co-simulation [10–12]. The drive torque of the test
bench motor is calculated using a speed control model and implemented as an excita-
tion to the MBS model (see Figures 2–4). The faults occur at a HSS rotational speed of
1100 rpm. Besides a rotor weight emulation, the non-torque loads resulting from the wind
are disregarded in this paper for an independent evaluation of the loading due to the
electrical faults.
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Figure 4. Drive train model including CWD’s test bench (MBS).

For both concepts, the same generator with slight adaptations was used. Specific
parameters of the generator (see Table 1) are provided by the manufacturer. The generator
was implemented as an analytical model based on the fundamental electromagnetic waves.
This fidelity is sufficient for calculating damage relevant loads within the drive train [10].

The model of the grid mainly emulates the inductances [10]. Both the PSC and the
FSC are modelled according to the IEC 61400 and other state-of-the-art guidelines [13].

The drive train model also includes the CWD test bench (Figure 4) [10–12]. This model
was chosen for the investigation in this paper because its validity was shown using data
from extensive experiments with regard to IEC 61400 and via a converter fault test in idling
mode [4,5,10–12].

The investigated gearbox (see Figure 5) has a gear ratio of around 63 and consists of a
planetary stage as well as two helical gear stages. The gear wheel contact is implemented
via a gear pair force element and backlash is included. The bearings are modelled as spring-
damper elements with input functions for the stiffness and damping [10–12]. A detailed
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model is implemented for the rotor side cylindrical roller bearing [14] (see Figure 5) in
order to calculate the Hertzian contact pressure and the kinematics of each roller for the
evaluation of a smearing criterion.

Table 1. Parameters of the generator.

Parameter Value

Type Asynchronous
Pole pair number 3

Power 3 MVA
Voltage (rated) 720 V
Current (rated) 2564 A
Torque (rated) 24.7 kNm

Speed of rot. HSS (rated) 1100 rpm
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The smearing criterion [9] derives the power P on Area A and consists of the friction
coefficient µ the difference in circumferential velocity of the contact partners u1(t) − u2(t)
and the maximum Hertzian contact pressure pmax(t):

(
P
A
)max = max(0.5 · µ · pmax(t) · (u1(t)− u2(t)) (1)

4. Results

The first load case discussed in this paper’s simulative investigation is the grid fault
for the DFIG concept WT (see Figure 2). The three-phase line-to-line voltages (UU-V, UV-W,
UW-U) for the grid fault are shown in Figure 6 (left). In Figure 6 (right), the resulting
electromagnetic, mechanical HSS and drive torque is shown with regard to the gearbox
ratio and normalized by the nominal torque. The grid fault starts at t = 10 s. Over a period
of 3 ms, the voltages decreased linearly to 5 per cent of the nominal value. This voltage
level was kept for 97 ms. As a result, the generator torque shortly increased to 1.8 times
the rated torque before it rapidly decreased to zero. The control detected the fault and
the sharp decrease of the generator torque. Therefore, the drive torque, applied via the
test bench motor, also started decreasing. The speed of rotation of the HSS increased (see
Figure 7, left) because of the slower decrease in drive torque than in the electromagnetic
generator torque, which was a result of the drive´s high inertia. The mechanical HSS
torque oscillated shortly after the fault was triggered. It reached 1.12 times nominal value
before it decreased to a minimum of around 68 per cent over a period of 97 ms. Then, the
fault was cleared and the voltages increased to the nominal value again linearly in 3 ms. As
a result, the electromagnetic torque increased rapidly. It shortly reached 2.5 times nominal
value before it declined to the rated value again. Therefore, the speed of rotation of the
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HSS decreased significantly and the mechanical HSS torque increased with a sharp peak.
The control also detected the restored normal grid operation and started increasing the
drive torque. Subsequently, the mechanical HSS torque steadily increased and reached its
nominal value again at t = 11.5 s.
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The dynamic torque excitations were transferred to the loading of the drive train
components. In Figure 7 (right), pmax(t) between the rollers and the inner ring of the
cylindrical roller bearing is shown exemplarily. After the grid fault occurred, pmax(t)
increased initially by a maximum of around 3 per cent for one roller (see Figure 7, right).
Afterwards, the gearbox bracing decreased. Thus, pmax(t) also sank to a minimum of
around 80 per cent over a period of 97 ms. As the fault was cleared at t = 10.1 s, pmax(t)
peaks for the rollers in contact before it steadily increased due to the increasing drive torque
and bracing of the gearbox. At t = 11.5 s, the turbine was at normal operating mode and
pmax(t) reached its nominal value again.

In Figure 8, the normalized smearing criterion is shown for roller 1, which shows the
most critical behavior during the grid fault. The smearing criterion was normalized to
its value at nominal torque load. After the fault occurred at second 10, the bracing of the
gearbox decreased. Therefore, pmax(t) decreased (see Figure 7, right). The speed of rotation
increased rapidly (see Figure 7, left). This led to an increase in the maximum difference of
circumferential velocity (see Figure 8, blue line, max. 1.72 times nominal value) due to an
increase in slip. As the fault was cleared at t = 10.1 s, the bracing of the gearbox increased
rapidly. As the roller entered the load zone again, the slip and, therefore, the difference in
circumferential velocity, was still high (1.42 times nominal value), while pmax(t) increased
to around 28 per cent of the nominal value. This momentarily led to an increase in the
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smearing criterion of around 1.8 times in comparison to the nominal value during nominal
torque load. After the gearbox was braced again, the speed of rotation stabilized and the
maximum difference in circumferential velocity declined to nominal value. Accordingly,
the smearing criterion declined to the nominal value again.
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The second load case was the converter fault in the WT with FSC concept (see Figure 3).
The resulting highly dynamic torque loading of the WT is discussed in detail in a previous
publication [8]. For reference, the speed of rotation, the drive train torque load and pmax(t)
of the rollers of the HSS cylindrical roller bearing is shown in Figure 9. The dynamic torque
excitation led to an oscillation in the HSS speed of rotation. After a short spike, the contact
pressure oscillated and decreased rapidly due to the decreasing bracing of the drive train.
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In Figure 10, the normalized smearing criterion for roller 9, which shows the most
critical behavior, is depicted. The smearing criterion was normalized to its value at nominal
torque load. As the fault was triggered at second ten, the loading and the speed of rotation
started to oscillate significantly (see Figure 9). As a result of the oscillating speed of rotation,
u1(t) − u2(t) of roller 9 (see Figure 10, blue line) increased by a maximum of around 5 times
compared to the nominal value. As the roller approached the load zone again, u1(t) − u2(t)
was still elevated (around 3.2 times nominal value) while pmax(t) already reached around
47 per cent of its nominal value. As a result, the smearing criterion increased by a maximum
of 4.93 times compared to the nominal value momentarily. Afterwards, the bracing of
the gearbox and, therefore, pmax(t) decreased. Subsequently, the smearing criterion also
approached lower levels.
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5. Conclusions

The shown electrical faults led to transient dynamic torque excitations. The simulative
investigation shows that especially the components on the HSS of the gearbox show load
oscillations in combination with rapid changes in the speed of rotation due to the torque
excitations, which can be detrimental for the gearbox components. The shown grid fault
with the DFIG concept increases the risk of smearing momentarily by around 1.8 times
for the HSS cylindrical roller bearing. The short-circuit converter fault in the FSC concept
momentarily leads to an increase in the smearing risk of around 4.93 times. Thus, both
electrical faults increase the risk of damage to the depicted HSS bearing.

6. Outlook

The project DynaGET at the CWD will further examine the risk of damage to the
components of WT drive trains during electrical faults via extensive experiments and
simulations. The measurements of the drive train at CWD´s testing facility deliver new
insights regarding the torque load as well as the loading of the bearings and gears. In
addition, tests and simulations with an emulation of the WT rotor inertia will deliver
results that are closer to the rotor dynamics of the WT in the field compared to the test
bench with speed control. Additionally, the simulation models will be further validated.
The evaluation of the risk of smearing will be done for all gearbox bearings and for several
load cases in accordance to current European grid codes. Furthermore, the risk of damage
to the gears of the WT during electrical faults are evaluated. In cooperation with the
Laboratory for Machine Tools and Production Engineering (WZL) the tooth contact analysis
FE-Stirnradkette (STIRAK), based on FE models, will be performed [15]. Knowledge of
the damage risk to the gearbox components will enable a determined decision whether
countermeasures on the electrical or the mechanical side are necessary for future WTs in
order to reduce the WT downtime.
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