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Abstract: Gas and oil pipelines are widely used to supply customers. They are often laid in parallel
with high voltage power lines, sharing right of way. When the pipeline is located near overhead
high-voltage power, corrosion caused by induced voltages from AC power lines can occur in utility
pipelines. Therefore, the calculation of induced voltage is always required for both interference and
maintenance workers as well as pipeline facility safety. For parallel distribution lines, the calculation
method for the induced voltage is not suitable due to the excessive error caused by using the screening
factors of the neutral current. For a more practical analysis of the induced voltage, a new analysis is
needed using the actual neutral current and which also considers the overhead ground conductor and
the neutral conductor. This paper analyzed the induced voltage from a parallel distribution system
using Carson’s formula and vector analysis. Simulation analysis results are verified by separate
Electromagnetic Transient Program (EMTP) simulation.

Keywords: distribution system; EMTP; induced voltage; pipeline; vector analysis

1. Introduction

There are important issues to consider by both electrical utilities and pipeline operators
when an underground pipeline is located proximal to the ground level in overhead high-
voltage power lines [1–6], namely safety and corrosion. Due to the corrosion of gas and oil
pipelines caused by induced voltages from AC power lines [2–5], a pipeline AC mitigation
system is needed to avoid costly repairs and maintenance. The primary focus of mitigation
is to reduce the induced voltages at normal and fault conditions according to the NACE
standard [6] for the safety of maintenance operators and damage in pipeline facilities. This
corrosion can also lead to an equipment malfunction [7,8].

The interferences through which the AC power lines generate induced voltage and
current on nearby pipes are inductive coupling and conductive coupling. The inductive
coupling is related to the electromotive force (EMF) induced in the pipe–earth circuit, while
the conductive coupling is caused by the injection of current into the soil by a transmission
line during phase-to-ground fault conditions or subjected to currents [9].

The interference issue of induced voltage on pipelines parallel to power lines has
been treated a lot in the literature [10–12]. Recent literature related to this issue was
published by A. Popoli [13], who analyzed interference caused by the vicinity of a metallic
pipeline buried in the soil to a transmission line using parameters calculated with the finite
difference method (FEM). G. Lucca [9] analyzed the induced voltage and current from a
transmission line in fault condition on a nearby buried pipeline with the EMF. However,
these works focus on the interference of transmission lines and pipelines.
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There are many reports on the electromagnetic interference (EM) of the induced volt-
age using the Electromagnetic Transient Program (EMTP) [14–17]. A practical calculation
method using EMTP is presented in [14], which assumes multi-conductor power lines with
a variety of tower types (complex approximation layouts), and multilayered soil models
are parallel to a nearby pipeline. Heo et al. [15] analyzed the induced voltage generated by
overhead transmission lines under normal cases using the line and cable constant (LCC)
module. Isogai and Ametani [16] analyzed the effect of induced voltages to the pipeline
on power lines. The results show the three-phase horizontal lines tend to induce higher
voltages than vertical lines when the same system parameters for the transmission line and
ground are used.

In order to reduce the electromagnetic interference between power lines and pipelines,
the most practical solution consists in worsening the electromagnetic coupling. Then, “the
use of screening conductors buried in the soil above the metallic pipelines appears as a
feasible solution to attenuate the voltage generated on the pipeline” by power lines [18].
Especially for designing an optimized mitigation system, a proper calculation is required
to accurately predict the induced voltage on metallic pipelines.

Previous research on induced voltage is mainly focused on overhead transmission
lines [8–16]. The induced voltage on the pipeline is critical because the unbalanced current
flow in the distribution system can increase the induced voltage on the pipeline. Recently, it
has been relatively common to find double-circuit lines (DCL) where distribution lines are
physically parallel due to their significant environmental and economic advantages over
single-circuit lines (SCL). Thus, it is necessary to analyze induced voltage from DCL [19–21].

The calculation method in [22] is not suitable for parallel distribution lines due to the
excessive error caused by using a constant screening factor of the neutral current. The
constant value of the screening factors that are currently used in the calculation of the
induced voltage in distribution lines is the main cause of error [23,24], as it cannot consider
unbalanced loading conditions in the distribution line. Thus, a new practical method is
needed for analyzing the induced voltage using the actual neutral current without using
the screening factors from the overhead ground conductor and the neutral conductor.

Two types of overhead distribution lines, SCL and DCL, are considered in this paper.
These two types of distribution line circuits are only available from the Korea Electric
Power Corporation (KEPCO) in Korea. The modeling and calculation methods of induced
voltages using the actual neutral current from SCL and DCL distribution line models are
presented in Section 2. The simulation results, vector analysis based on the simulation
results, and comparison of case studies are demonstrated in Section 3. The conclusions are
presented in Section 4.

2. Voltage Calculation between Pipeline and Distribution System
2.1. Induced Voltage Calculation in SCL

Figure 1 depicts an SCL overhead distribution laid parallel to the pipeline line. The
ground wire, G indicates the overhead ground conductor. Subscripts A, B, C, N, and P
indicate the conductor phase A, B, C, neutral, and pipeline, respectively.

An induced voltage on the pipeline line can be calculated using Carson’s formula [9,23].
The relationship between voltage and current from Figure 1 is defined:

VG
VA
VB
VC
VN
VP

 =



ZGG ZGA ZGB ZGC ZGN ZGP
ZAG ZAA ZAB ZAC ZAN ZAP
ZBG ZBA ZBB ZBC ZBN ZBP
ZCG ZCA ZCB ZCC ZCN ZCP
ZNG ZNA ZNB ZNC ZNN ZNP
ZPG ZPA ZPB ZPC ZPN ZPP





IG
IA
IB
IC
IN
IP

 (1)

where the calculation of neutral current assumes that the neutral grounding point of the
3-phase lines is common [19].
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Figure 1. Induced voltage calculation of SCL.

The self and mutual impedance are obtained by Carson’s formula. The mutual
impedance of the system can be calculated as a lump sum of impedances between each
conductor and the pipeline [23,25].

Zii = R + 1.588e−3f + 2.022e−3f
(

ln 1
GMR + 7.6786 + 1

2 ln ρ
f

)
Zij = 1.588e−3f + 2.022e−3f

(
ln 1

Dij
+ 7.6786 + 1

2 ln ρ
f

) (2)

where

R = resistance of the conductor;
GMR = geometric mean radius of the conductor;
P = earth resistivity;
f = system frequency;
Dij = distance from conductor i to conductor j;
Zii = self-impedance of the conductor I;
Zij = mutual impedance between conductors i and j.

The voltage of the overhead ground conductor (VG) is expressed:

VG = ZGGIG + ZGAIA + ZGBIB + ZGCIC + ZGNIN = ZGGIG + ZGABCIABC + ZGNIN (3)

where
ZGABCIABC = ZGAIA + ZGBIB + ZGAIC
IN = IA + IB + IC

Overhead ground conductors are on top of the distribution lines to avoid lightning
strikes. VG can be assumed to be zero [15] because it is grounded. Accordingly, the current
of the overhead ground conductor, IG can be obtained on the

IG = −ZGABCIABC + ZGNIN
ZGG

(4)

Then, the induced voltage, VP on the pipeline, can be calculated:

VP = ZPGIG + ZPAIA + ZPBIB + ZPCIC + ZPNIN
= ZPGIG + ZPABCIABC + ZPNIN
= VG + VABC + VN

(5)
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where
ZPABCIABC = ZPAIA + ZPBIB + ZPCIc

2.2. Induced Voltage Calculation in DCL

Figure 1 depicts the SCL overhead distribution laid parallel to the pipeline line. The
ground wire, G, indicates the overhead ground.

Figure 2 depicts the DCL overhead distribution system laid parallel to the pipeline
line. A matrix extension [23] is applied to calculate the induced voltage in the DCL. The
subscripts U and L indicate the upper and lower 3-phase lines, respectively.
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Then, the pipeline laid parallel to the overhead distribution line with the DCL can
be expressed:
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ZXY (6)

Mutual impedance matrices (ZXY) in Equation (6) represent the parallel overhead
distribution lines and the pipeline. These matrices are applied to calculate the induced
voltage of the pipeline and take into account the coupling with adjacent parallel distribution
lines. Thus, for example:

VG= ZGGIG + ZGUAIUA + ZGUBIUB + ZGUCIUC + ZGLAILB + ZGLBILB + ZGLCILC + ZGNIN

= ZGGIG + ZGUIU + ZGLIL + ZGNIN
(7)

where
ZGUIU = ZGUAIUA + ZGUBIUB + ZGUCIUC
ZGLIL = ZGLAILB + ZGLBILB + ZGLCILC
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VG can be assumed to be zero in the DCL configuration [21], so the current of the
overhead ground conductor can be determined:

IG = −ZGUIU + ZGLIL + ZGNIN
ZGG

(8)

For DCLs, we assume the upper and lower side use the common ground of the neutral
line, which is equal to the total current of the upper and lower sides using the superposition
method [19]. Then, the neutral current can be calculated:

IN = IUA + IUB + IUC + ILA + ILB + ILC (9)

Then, the pipeline-induced voltage (VP) in the DCL can be calculated using this result:

VP= ZPGIG + ZPUIU + ZPLIL + ZPNIN

= VG + VU + VL + VN
(10)

where
ZPUIU = ZPUAIUA + ZPUBIUB + ZPUCIUC

ZPLIL = ZPLAILA + ZPLBILB + ZPLCILC

2.3. System Modeling

Figure 3 illustrates the two types of overhead distribution line (ODL) configurations
with the pipeline. In this paper, to analyze the induced voltage on a pipeline located close to
overhead distribution lines, the ODL is implemented in both SCL and DCL configurations,
as shown in Figure 3.
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Both SCL and DCL types are classified by existing distribution line types of the Korea
Electric Power Corporation (KEPCO) [19]. The data obtained from the pipelines and
conductors are applied in this study. The key details are listed in Table 1 and shown in
Figure 4 [26].
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Table 1. Conductor type and data.

Line Type Cable Type
(mm2)

Radius
(cm)

Resistance
(Ω/km)

Overhead ground conductor ACSR 32 0.39 0.898
Distribution lines ACSR 160 0.91 0.182
Neutral conductor ACSR 95 0.675 0.301

Energies 2021, 14, x FOR PEER REVIEW 6 of 14 
 

 

G

1.475m

1.2m

13.475m

12m

N 10.8m

1.14m 0.49m 0.65m

BA C

X

Y

P
-2[m]

10[m]

G

1.475m

1m

14.475m

13m

N 10.8m

1.14m0.49m0.65m

1.14m 0.49m 0.65m

1.2m

12m

UAUA UB

LA LB LC

Y

X

P
-2[m]

10[m]

pipeline pipeline

 
(a) (b) 

Figure 3. Configurations of distribution lines and pipelines. (a) SCL. (b) DCL. 

Both SCL and DCL types are classified by existing distribution line types of the Ko-

rea Electric Power Corporation (KEPCO) [19]. The data obtained from the pipelines and 

conductors are applied in this study. The key details are listed in Table 1 and shown in 

Figure 4 [26]. 

Table 1. Conductor type and data. 

Line Type 
Cable Type 

(mm2) 

Radius 

(cm) 

Resistance 

(Ω/km) 

Overhead ground conductor ACSR 32 0.39 0.898 

Distribution lines ACSR 160 0.91 0.182 

Neutral conductor ACSR 95 0.675 0.301 

 

 

Figure 4. Configuration of the pipelines; rg1 = 191.3 (mm), rg2 = 203.2 (mm), rg3 = 206.4 (mm); ρg = 

1.59 × 10−7 (Ω m), μg = 280, εg = 2.30. 

All case studies are analyzed based on a 1 km distance of the parallel distribution 

lines. The system frequency, soil resistivity, and power factors are 60 (Hz), 100 (Ω m), and 

0.9 (pu), respectively. 

Figure 4. Configuration of the pipelines; rg1 = 191.3 (mm), rg2 = 203.2 (mm), rg3 = 206.4 (mm); ρg =
1.59 × 10−7 (Ω m), µg = 280, εg = 2.30.

All case studies are analyzed based on a 1 km distance of the parallel distribution
lines. The system frequency, soil resistivity, and power factors are 60 (Hz), 100 (Ω m), and
0.9 (pu), respectively.

3. Simulation and Results

The induced voltage on the pipeline is analyzed using EMTP based on various con-
ditions: unbalanced loading conditions, different pole types, and the separation distance
between the ODL and the pipeline. In the case studies, VP is a calculation value from
(5), (10), VEMTP is the EMTP simulation result, and the difference will be calculated based
on VEMTP. The unbalanced loading ratio between phases is kept to be less than 30% in
the distribution.

3.1. Simulation Results in SCL

The EMTP simulation result of SCL cases is shown in Table 2. For the SCL case study
shown in Table 2, Case 1 has a balanced load, Cases 2A–2C have unbalanced single-phase
loads, and Case 3 has an unbalanced three-phase load.

Table 2. Load condition results of SCL.

Case Study

Load Condition
VP
(V)

VEMTP
(V)

VDiff.
(%)A

(MVA)
B

(MVA)
C

(MVA)

Case 1 1 1 1 0.513 0.515 0.2
Case 2A 1.3 1 1 0.713 0.716 0.3
Case 2B 1 1.3 1 0.700 0.698 0.2
Case 2C 1 1 1.3 0.353 0.356 0.3
Case 3 1 1.1 1.2 0.465 0.467 0.2

Table 2 shows that the difference between the calculated value and the simulation
result is less than 0.3% error. The maximum and minimum induced voltage to the pipeline
are found in Case 2A and Case 2C, respectively. The induced voltage in Case 2C is nearly
50% of the induced voltage from Case 2A. The simulation results indicate that the induced
voltages are dependent on the load condition, as shown in Figure 3a.

By using Equation (5), the induced voltage of VG, VABC, and VN are calculated and
shown in Table 3. Due to the difference in direction between the VABC and VG + VN phase
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angles, VABC is defined as inducing side voltage caused by a three-phase current, and
VG + VN is defined as a shielding side voltage caused by the current of an overhead ground
conductor and a neutral conductor.

Table 3. SCL calculation of induced voltage using (5).

Case Study VG (V) VABC (V) VN (V)

Case 1 0.228 ∠ −21.60◦ 0.389 ∠ 48.60◦ 8.6 × 10−15 ∠ 163.42◦

Case 2A 0.199 ∠ 14.32◦ 6.236 ∠ −127.33◦ 6.783 ∠ 52.70◦

Case 2B 0.430 ∠ −21.67◦ 6.894 ∠ 109.67◦ 6.783 ∠ −67.30◦

Case 2C 0.198 ∠ −57.54◦ 6.976 ∠ −4.71◦ 6.783 ∠ 172.7◦

Case 3 0.262 ∠ −38.85◦ 4.255 ∠ 24.80◦ 3.919 ∠ −157.27◦

The SCL induced voltages in Table 3 are classified as shielding side, inducing side,
and induced voltages, as shown in Table 4.

Table 4. Inducing and shielding side analysis of SCL.

Case Study Inducing Side Shielding Side Induced Voltage

VABC (V) VG + VN (V) VP (V)

Case 1 0.389 ∠ 48.60◦ 0.228 ∠ −21.60◦ 0.513 ∠ 23.83◦

Case 2A 6.236 ∠ −127.33◦ 6.940 ∠ 51.68◦ 0.713 ∠ 42.99◦

Case 2B 6.894 ∠ 109.67◦ 7.090 ∠ −64.82◦ 0.700 ∠ 6.17◦

Case 2C 6.976 ∠ −4.7◦ 6.658 ∠ 174.01◦ 0.353 ∠ 20.23◦

Case 3 4.255 ∠ 24.80◦ 3.801 ∠ −153.79◦ 0.465 ∠ 13.21◦

For single-phase unbalanced load cases, the induced voltage of Case 2C is nearly half
of the induced voltage in Case 2A and 2B. This difference is due to the phase angle of
the neutral current, which is closely arranged to the C-phase line and the pipeline. The
shielding effect of the neutral current was verified by both calculation and vector analysis,
as shown in Figure 5, where the shielding effect is multiplied by five for illustration
purposes. The resultant vector VP, VP is much smaller than VABC and VG + VN in both
Case 2A and Case 2C.
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3.2. Simulation Results in DCL

For the case study of DCL, three-phase lines added from the existing SCL to the DCL
were divided into the upper and the lower side, as shown in Figure 3b. The load conditions
of the upper and lower sides were changed and are defined:
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• Case 4: Three-phase balanced load in the upper and lower sides.
• Case 5: Single-phase (Uc, Lc-phase) unbalanced load in the upper and lower sides.
• Case 6: Three-phase unbalanced load in the upper and lower sides.
• Case 7A–7C: Single-phase unbalanced load on the upper side and balanced load on

the lower side.
• Case 8A–8C: Balanced load on the upper side and single-phase unbalanced load on

the lower side.

The results for VP, which is the calculated induced voltage using Equation (10) and
EMTP simulation, are compared in Table 5. The simulation results show the minimal
differences between the calculated values and simulation results.

Table 5. Load condition results of DCL.

Case Study
Load Condition

VP
(V)

VEMTP
(V)

VDiff.
(%)UA

(MVA)
UB

(MVA)
UC

(MVA)
LA

(MVA)
LB

(MVA)
LC

(MVA)

Case 4 1 1 1 1 1 1 0.330 0.329 0.1
Case 5 1 1 1.3 1 1 1.3 0.401 0.388 1.3
Case 6 1 1.1 1.2 1 1.1 1.2 0.406 0.396 1.0

Case 7A 1.3 1 1 1 1 1 0.430 0.426 0.4
Case 7B 1 1.3 1 1 1 1 0.819 0.808 1.1
Case 7C 1 1 1.3 1 1 1 0.284 0.275 0.9
Case 8A 1 1 1 1.3 1 1 0.412 0.410 0.2
Case 8B 1 1 1 1 1.3 1 0.525 0.516 0.9
Case 8C 1 1 1 1 1 1.3 0.253 0.252 0.1

In Table 6, the induced voltage VG, VU, VL, and VN in DCL cases can be derived using
Equation (10). However, the inducing side voltage is further categorized as an upper side
voltage (VU) or a lower side voltage (VL). VU is caused by an upper three-phase current,
VL is caused by a lower three-phase current, and VN is caused by neutral current (sum of
the three-phase current on the upper and lower sides) [19].

Table 6. DCL calculation of induced voltage using (10).

Case Study VG (V) VU (V) VL (V) VN (V)

Case 4 0.322 ∠ −21.9◦ 0.354 ∠ −132.7◦ 0.391 ∠ 48.4◦ 8.6 × 10−15 ∠ 172.4◦

Case 5 0.343 ∠ −88.0◦ 6.421 ∠ −10.6◦ 7.041 ∠ −5◦ 13.697 ∠ 172.4◦

Case 6 0.411 ∠ −52.6◦ 3.500 ∠ 19.8◦ 4.292 ∠ 24.5◦ 7.909 ∠ −157.5◦

Case 7A 0.294 ∠ 26.2◦ 7.085 ∠ −128.0◦ 0.391 ∠ 48.4◦ 6.849 ∠ 52.4◦

Case 7B 0.642 ∠ −22.0◦ 6.507 ∠ 114.9◦ 0.391 ∠ 48.4◦ 6.849 ∠ −67.6◦

Case 7C 0.292 ∠ −70.0◦ 6.421 ∠ −10.6◦ 0.391 ∠ 48.4◦ 6.849 ∠ 172.4◦

Case 8A 0.284 ∠ −2.0◦ 0.354 ∠ −132.7◦ 6.298 ∠ −127.6◦ 6.849 ∠ 52.4◦

Case 8B 0.462 ∠ −21.9◦ 0.354 ∠ −132.7◦ 6.961 ∠ 109.4◦ 6.849 ∠ −67.6◦

Case 8C 0.283 ∠ −41.7◦ 0.354 ∠ −132.7◦ 7.041 ∠ −5.0◦ 6.849 ∠ 172.4◦

The induced voltages in DCL configurations in Table 6 are classified as the shielding
side, inducing side, and induced voltages, as with SCL cases. Due to the difference in
direction between VU + VL and VG + VN phase angles, the induced voltages in the DCL
case are classified as the shielding side and inducing side voltages, as shown in Table 7.
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Table 7. Inducing and shielding side analysis in DCL.

Case Study Inducing Side
VU + VL (V)

Shielding Side
VG + VN (V)

Induced Voltage
VP (V)

Case 4 0.037 ∠ 58.3◦ 0.322 ∠ −21.9◦ 0.330 ∠ −15.5◦

Case 5 13.446 ∠ −7.7◦ 13.644 ∠ 173.8◦ 0.401 ∠ −126.1◦

Case 6 7.785 ∠ 22.4◦ 7.813 ∠ −154.6◦ 0.406 ∠ −70.0◦

Case 7A 6.695 ∠ −127.8◦ 7.114 ∠ 51.4◦ 0.430 ∠ 38.5◦

Case 7B 6.672 ∠ 111.8◦ 7.312 ∠ −64.0◦ 0.819 ∠ −27.5◦

Case 7C 6.631 ∠ −7.7◦ 6.719 ∠ 174.6◦ 0.284 ∠ −114.6◦

Case 8A 6.651 ∠ −127.9◦ 7.017 ∠ 50.5◦ 0.412 ∠ 24.2◦

Case 8B 6.802 ∠ 112.1◦ 7.179 ∠ −64.9◦ 0.525 ∠ −22.3◦

Case 8C 6.831 ∠ −7.3◦ 6.616 ∠ 173.8◦ 0.253 ∠ −38.9◦

The vector analysis of the induced voltage VP is shown in Figure 6. As the VP vectors
in Case 7B and Case 8B depict, they are very small compared to VU + VL and VG + VN.
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3.3. Comparison of Case SCL and DCL Studies

Figure 7 shows the induced voltages in SCL and DCL configurations with the same
load condition. The induced voltage in the SCL case is larger than the induced voltage in
the DCL case, except for the C-phase unbalanced load case. The Case 2C and Case 5 results
indicate that the induced voltage in the DCL case is larger than the inducing side voltage
and VN (shielding side), as shown in Table 8.
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Table 8. Comparison of Case 2C and Case 5.

Case Study Inducing Side Shielding Side
VG + VN (V)

Induced Voltage
VP (V)

Case 2C 6.976 ∠ −4.71◦ 0.198 ∠ −57.54◦ + 6.783 ∠ 172.7◦ 0.353 ∠ 20.23◦

Case 5 13.446 ∠ −7.7◦ 0.343 ∠ −88.0◦ + 13.697 ∠ 172.4◦ 0.401 ∠ −126.1◦

Figure 8 shows that the induced voltage with the upper and lower sides of the
DCL carry the same single-phase unbalanced load. The induced voltage in the DCL
configuration is different than in the SCL configuration due to inductive coupling on the
pipeline located at different single-phase unbalanced loads.
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The induced voltage of the lower side in Case 8A–8C is larger than the induced
voltage of the upper side in Case 7A–7C, due to the effect of lower side-induced voltages,
which are closely arranged to the pipeline. However, the result indicates that the lower
single-phase unbalanced load is smaller than the upper single-phase unbalanced load.
Since the inducing and shielding side voltage magnitudes in Case 8 are smaller than the
voltage magnitude in Case 7, the simulation results agree with the vector analysis shown
in Table 7.

Tables 9 and 10 show EMTP simulation results by separation distance in the SCL
case. The separation distance is ±90 m between 1 km lengths of the parallel overhead
distribution lines.

Table 9. Induced voltage according to the separation distance in SCL.

Case Study

Separation Distance (VEMTP (V))

−90
(m)

−60
(m)

−30
(m)

0
(m)

+30
(m)

+60
(m)

+90
(m)

Case 1 0.111 0.141 0.216 1.540 0.287 0.187 0.142
Case 2A 0.099 0.136 0.236 0.332 0.533 0.336 0.250
Case 2B 0.271 0.326 0.448 0.565 0.552 0.387 0.309
Case 2C 0.207 0.275 0.434 0.177 0.341 0.213 0.156
Case 3 0.209 0.268 0.407 0.243 0.411 0.271 0.207
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Table 10. Inducing and shielding side analysis in Case 2A of Table 9.

Separation
Distance

Inducing Side Voltage
(V)

Shielding Side Voltage
(V)

Induced Voltage
(V)

−90 (m) 4.164 ∠ −135.51◦ 4.118 ∠ 43.26◦ 0.099 ∠ −73.53◦

−60 (m) 4.862 ∠ −132.86◦ 4.768 ∠ 45.99◦ 0.136 ∠ −87.79◦

−30 (m) 6.037 ∠ −129.93◦ 5.827 ∠ 49.09◦ 0.236 ∠ −104.45◦

0 (m) 7.086 ∠ −127.30◦ 7.411 ∠ 52.05◦ 0.332 ∠ 38.28◦

+30 (m) 5.301 ∠ −129.94◦ 5.827 ∠ 49.09◦ 0.533 ∠ 39.34◦

+60 (m) 4.438 ∠ −133.13◦ 4.768 ∠ 45.99◦ 0.336 ∠ 34.56◦

+90 (m) 3.874 ∠ −135.94◦ 4.118 ∠ 43.26◦ 0.250 ∠ 30.81◦

The induced voltage due to the inductive coupling on the pipeline located at a different
unbalanced load of single-phase simulation cases, Case 2A–2C, is shown in Figure 9. The
simulation results indicate that the induced voltage is negligible at the center of the ODL
and the peak, where the pipeline is located at a separation distance near ±15 m, as shown
in Figure 9 and Table 10.
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Table 11 shows EMTP simulation results by separation distance in the DCL case.
Induced voltage due to the inductive coupling on the pipeline located at a different unbal-
anced load of single-phase (Case 7A–7C) is shown in Figure 10.

Table 11. Induced voltage according to the separation distance in DCL.

Case Study

Separation Distance (VEMTP (V))

−90
(m)

−60
(m)

−30
(m)

0
(m)

+30
(m)

+60
(m)

+90
(m)

Case 4 0.197 0.228 0.275 0.311 0.280 0.228 0.197
Case 5 0.202 0.237 0.303 0.542 0.289 0.235 0.202
Case 6 0.247 0.286 0.351 0.439 0.347 0.286 0.247

Case 7A 0.199 0.239 0.323 0.550 0.255 0.197 0.170
Case 7B 0.383 0.447 0.562 0.864 0.605 0.470 0.399
Case 7C 0.179 0.209 0.254 0.323 0.234 0.197 0.171
Case 8A 0.171 0.196 0.234 0.381 0.290 0.219 0.184
Case 8B 0.289 0.339 0.431 0.577 0.396 0.317 0.273
Case 8C 0.158 0.178 0.201 0.181 0.265 0.216 0.184
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The induced voltage has a peak value at the center of the ODL with DCL and gradually
decreases as the transverse position of the pipeline increases. Therefore, when comparing
SCL and DCL cases by the separation distance, SCL shows asymmetric characteristics
about the y-axis, whereas DCL shows asymmetric characteristics.

4. Conclusions

This paper analyzed the induced voltage from a parallel distribution system using
Carson’s formula and vector analysis. The calculation method for the induced voltage
is not suitable due to the excessive errors caused by the screening factors of the neutral
current.

For a more practical analysis of the induced voltage, a new analysis is needed to use
the actual neutral current and to consider the overhead ground conductor and the neutral
conductor in the distribution system. The shielding effect of the neutral current was verified
by both calculation and vector analysis. Thus, the proposing method is demonstrated
without using the screening factor.

The calculation results are verified by the EMTP simulation and vector composition
method. Moreover, various case studies are analyzed according to the load conditions,
separation distance, and pole types of the distribution system. In addition, the induced
voltage of the DCLs has fewer EM effects than the induced voltage of the SCLs in the same
load condition. From the results that did not generate very much of an error, it is expected
that the proposed method can be useful to calculate the induced voltage on pipelines
located close to the parallel distribution system.
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