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02-525 Warsaw, Poland; anna.mroziewicz@pw.edu.pl (A.S.-M.); andrzej.ordys@pw.edu.pl (A.O.);
ali.soltani_sharif_abadi.dokt@pw.edu.pl (A.S.S.A.)

2 School of Engineering and Information Technology, University of New South Wales, Canberra 2612, Australia;
p.alinaghi_hosseinabadi@adfa.edu.au (P.A.H.); h.pota@adfa.edu.au (H.P.)

* Correspondence: jakub.mozaryn@pw.edu.pl
† These authors contributed equally to this work.

Abstract: The three-area power system is widely considered a suitable example to test load frequency
control of the distributed generation system. In this article, for such a system, for the power
stabilization task, we introduce two controllers: Linear Quadratic Regulator (LQR), which is model-
based, and Fuzzy Logic Controller (FLC), which is data-based. The purpose is to compare the two
approaches from the point of view of (i) ease of implementation and tuning, and (ii) robustness
to changes in the model. The model, together with controls strategies, has been implemented in
the MATLAB software. Then, it has been tested for different simulation scenarios, taking into
account the disturbances and faulty tie-lines between areas. Various quality measures allow to
compare the performance of each control strategy. The comparison in terms of parameter change
and load disturbances prompt us to propose suitable metrics and advice notes on the application of
each controller.

Keywords: adaptive generation control; load frequency control; linear quadratic regulator;
fuzzy logic

1. Introduction

Increased flexibility and intelligence in the optimization and control of modern power
systems seem to be necessary to maintain a generation–load balance in presence of various
disturbances. This issue has become more serious today due to the use of a large number
of microgrids (MGs). The MGs often utilize different means to generate electricity, the
parameters of which naturally fluctuate. The presence of these uncertainties and fluc-
tuations means that the conventional controllers are not efficient enough to ensure the
stability and to provide a proper performance for the different operating conditions in
power systems [1]. Off-the-shelf advanced control toolboxes need further improvements
and tuning to demonstrate significant benefits for this type of applications.

Multi-area power network system usually consists of interconnected subsystems
or control areas linked by tie-lines or High-Voltage Direct Current (HDVC) links. The
individual areas consist of generator or generators responsible for their load and scheduled
interchanges with nearby areas [2]. Load frequency control (LFC) is used in power systems
for the maintenance of the load–generation balance. The angular speed of the rotor of
the generator is a function of the mismatch between the input mechanical power and the
output electrical power [3]. The LFC allows for the controlled exchange of power to assist
in the overall robustness of operation while simultaneously allowing economic power
generation [4]. A load frequency controller is required to ensure some level of control over
the net power flow on the tie-lines.

In interconnected power system operation and design, Automatic Generation Control
(AGC) is one of the significant control issues these days because of the growing size, emerging
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renewable energy sources, and complexity of power systems [5]. AGC performs a significant
contribution towards maintaining a generation–load balance with respect to various distur-
bances. In fact, AGC is utilized to balance the changes in the generation and load to restore
frequency at the initial value and to meet tie-line flows. AGC is mainly responsible for power
interchange, frequency control, and economic dispatch. In many practical applications, some
conventional control approaches have been used for AGC such as PID, PI, and optimal
control methods, but these controllers have some limitations including difficulty in dealing
with system uncertainties, external disturbances, and the speed of response [6]. Although
some control methods such as robust control [7], MPC [8,9], and PI control [10] successfully
overcome many AGC issues, a key problem is that the uncertainties are not explicitly used
in the control design. This issue has been investigated in [11] by proposing a new optimal
controller for AGC in the presence of non-Gaussian wind power uncertainty.

Load Frequency Control (LFC), as an integral part of the power system operation and
control, has been proposed to cater for parametric changes or uncertainties in the system
and performance improvement of the multi-area power systems [5]. The LFC is an integral
part of the multi-area power systems as it is responsible for the load–generation balance
and simultaneously regulating the output power of each generator at preset levels. The
LFC is becoming more challenging and significant due to increasing penetration level of
renewable energy in power production in modern power systems. This issue and effects
of renewable distributed generations, such as photovoltaic stations and wind turbine
generator, on LFC has been rarely investigated [12–16]. Additionally, many contributions
in the literature aimed towards the optimization of LFC for power systems are mostly
based on conventional control methods. Usually such controllers does not provide a
proper performance with uncertainties and fluctuations caused by renewable distributed
generations [1]. Multiple control schemes have been proposed for the design of an LFC,
mainly the proportional and integral (PI) control [17], proportional integral derivative (PID)
control [18–21], model predictive control (MPC) [8,22,23], robust MPC [24] robust control
scheme [25], neural network control method [26], and sliding mode control scheme [27–29].
A decentralized adaptive back-stepping excitation controller has been designed in [30]
for stability enhancement of multi-machine power systems. The adaptive control has
been used in [2] to develop a robust LFC scheme for a multi-area power system with
parametric uncertainties. The sliding mode control has been used in [31] to design a
discrete LFC for multi-area power systems with matched and unmatched uncertainties,
and a sliding mode load frequency controller (SMLFC) has been designed for a power
system with mismatched uncertainty in [32]. The common problem with sliding mode
control is chattering phenomenon due to discontinuous terms, and different approaches
have been proposed for its reduction [33]. The proportional integral derivative (PID) LFC
has been designed together with the robust technique in [34] for multi-machine power
systems. However, the generation rate constraint, unmatched uncertainty, and resource
variation were not studied in those researches. Furthermore, most of the research only
considered a single area power system.

Tie-line Bias control has been utilized as the desired control scheme in North America
for the past 75 years. The term Area Control Error (ACE) was introduced in the early
1950s for the specific implementation of coordinated Tie Line Bias control which is now
widely used throughout the world. The Balancing Area’s ACE is calculated by AGC
from interchange and frequency data. The ACE informs if that the system is in balance
or requires some adjustments to generation. The ACE represented in MW comprises
the difference between the Balancing Authority Area’s Actual Net Interchange and its
Scheduled Net Interchange, plus its Frequency Bias Setting obligation, plus correction
for any known meter error. In the Western Interconnection, reporting ACE consists of
Automatic Time Error Correction [35]. Much effort has been made to use the concept of
ACE for the LFC in the literature. The concept of ACE based on frequency and tie-power
deviation, inadvertent interchange, and time error has been utilized in [36] to control the
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battery energy storage system. In [37], in order for bounding the system frequency within
a target range, a concept of ACE has been utilized.

Linear Quadratic Regulator (LQR) is an effective optimal control method based on the
selection of feedback gain in a manner to minimize the cost function [38,39]. The LQR is an
optimal control approach based on a cost function which contains weighting matrices to
achieve a desired behaviour [40]. The LQR is applicable for optimizing multiple input mul-
tiple output systems and its properties depend on the appropriate selection of matrix that
reflects the weighting on the non-zero penalties on the states and the matrix which corre-
sponds to the weightings on the penalties on process inputs [41]. The LQR enables stability
in systems and it allows for voltage regulation and load sharing simultaneously [42,43].
However, the robustness of the LQR control scheme is poor. In [44], an LQR has been
proposed for the inner voltage control loop in an islanded microgrid. A robust control
scheme based on LQR-fuzzy logic was designed in [45,46] for a single area power system.

Fuzzy logic, proposed by Lotfi A. Zadeh in 1965 is a model-free approach utilizing
linguistic variables to imitate the human operator’s way of thinking [47]. As the fuzzy logic
is a model-free approach, it has no requirement on the model structure or the knowledge
of the rules controlling the relationship between the process inputs and outputs of the
system [48]. This makes it suitable for complicated systems whose mathematical models
are difficult to establish. Fuzzy logic, however, has the disadvantage of the requirement of a
vast information to compensate for system parameter changes or when there is an increase
in the number of inputs [49,50]. Fuzzy logic integrated with sliding mode control [51] or
back-stepping provides an effective way to increase the robustness of the controller with
respect to parametric uncertainties and external disturbances [52].

Aim of the Paper

The paper aims to analyze and compare the quality of LQR and Fuzzy Logic Controller
in three area power distribution systems. While LQR controller for power generation is a
relatively well established technique, it relies on knowledge of the model of the system
in order to build a state-space representation. On the other hand, the fuzzy control is
gaining more interest recently, because it does not require a precise state-space model of
the controlled system. Therefore, the idea to compare the two approaches taking into
consideration: (i) ease of implementation and tuning of the controller and (ii) robustness
of the control to changes in the parameters of the system. To this end, three simulation
scenarios have been selected to progressively test both controllers against increasingly
difficult control tasks. The first two scenarios test the dynamic responses of the system
whereas the third scenario assumes changes in the system model, caused by decoupling
of the areas, which are not visible to the controller. The model and the controls strategies
have been implemented in the MATLAB software. The implementation is available at the
MATLAB file exchange platform [53]. The performance control strategies is compared
using various quality measures.

Fuzzy logic has been integrated with the adaptive control technique to design a LFC
for a multi-area power system [54]. In [55], fuzzy control has been used to design and
implement the energy management system (EMS) for a DC microgrid. In [56], a generalized
droop control (GDC) has been firstly designed to minimize the reactive power and active
effects on the frequency and voltage. Then, a fuzzy logic has been employed for tuning the
secondary control parameters (PI) and the GDC. The results reveal that the proposed fuzzy
logic controllers outperform non-fuzzy control method.

The paper is organized as follows. The first part of the paper describes a general
mathematical model of the multi-area generation network and then narrows it down to the
model of three coupled areas. Furthermore, it describes the theoretical background of the
LQR and the proposed fuzzy controller and explains their implementation for the model of
the 3-area network. The Simulation and Results chapter describes simulation scenarios and
controller parameters. This is followed by the simulation results presented in graphical and
tabular forms. This chapter also contains a comparison of control quality for the algorithms
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and the scenarios. The Discussion section shows the advantages and disadvantages of
methods in terms of stability, accuracy, and robustness. The overall conclusions and
discussion of possible directions of future work are provided in the Conclusions section.

2. Materials and Methods
2.1. Mathematical Model of the Multi-Area Power Generation Network

Figure 1 shows a model for the i-th area of an N-area power system. In the case
considered in this paper, each area consists of governor-turbine energy generator with
the non-reheat steam turbine. It is connected in the closed loop with the power system.
Although a power system is nonlinear, the use of the linearized model is permissible in the
LFC problem because only small changes in load are expected during its normal operation.
Therefore, each element is described with the corresponding transfer function as follows:

Governor transfer function
Ggi =

1
1 + sTGi

(1)

where TGi—governor time constant.
Turbine transfer function

Gti =
1

1 + sTTi
(2)

where TTi—turbine time constant.
Generator transfer function

GPi =
KPi

1 + sTPi
(3)

where KPi—power system gain and TPi—power system time constant.
The N-area power system is described with the following equations:

∆ ḟi(t) =−
1

Tpi

∆ fi(t) +
Kpi

Tpi

∆Pgi (t)−
Kpi

Tpi

∆Pdi
(t)

−
Kpi

2πTpi

N

∑
j=1,j 6=i

Ksij
{

∆δi(t)− ∆δj(t)
} (4)

∆Ṗgi (t) = −
1

Tti

∆Pgi (t) +
1

Tti

∆Xgi (t) (5)

∆Ẋgi (t) =
−1

RiTGi
∆ fi(t)− 1

TGi
∆Xgi (t)−

1
TGi

∆Ei(t) + 1
TGi

ui(t)
(6)

∆Ėi(t) = KEi

[
KBi ∆ fi(t)+

+ 1
2π ∑N

j=1,j 6=i Ksij
{

∆δi(t)− ∆δj(t)
}] (7)

∆δ̇i(t) = 2π∆ fi(t) (8)

where i = 1, . . . , N is the area number and N—number of the areas.
Equations (4)–(8) can be represented in state space form as

ẋi(t) = Aixi(t) + Biui(t) +
N

∑
j=1
j 6=i

Eijxj(t) + Fi∆Pdi
(t) (9)
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where

Ai =



− 1
Tp1

Kpi
Tpi

0 0 − Kpi
2πTpi

∑N
j=1
j 6=i

Ksij

0 − 1
TTi

1
TTi

0 0

− 1
RiTGi

0 − 1
TGi

− 1
TGi

0

KEi KBi 0 0 0
KEi
2π ∑N

j=1
j 6=i

Ksij

2π 0 0 0 0


(10)

Eij =


0 0 0 0

Kpi
2πTpi

Ksij

0 0 0 0 0
0 0 0 0 0

0 0 0 0 −KEi
2π Ksij

0 0 0 0 0

 (11)

Bi =
[

0 0 1
TGi

0 0
]T

(12)

Fi =
[
−Kpi

Tpi
0 0 0 0

]T
(13)

xi(t) =
[

∆ fi(t) ∆Pgi (t) ∆Xgi (t) ∆Ei(t) ∆δi(t)
]T (14)

where xi(t) ∈ <ni —the state vector; xj(t) ∈ <nj —the adjacent area state vector of xi(t);
ui(t) ∈ <mi —the control vector; ∆Pdi

(t) ∈ <ki —the vector of load disturbance; ∆ fi(t),
∆Pgi (t), ∆Xgi (t), ∆Ei(t) and ∆δi(t)—state variables, i.e., the incremental deviation in fre-
quency (Hz), generator output (p.u. MW), governor valve position (p.u. MW), integral
control and rotor angle, respectively; Kpi , Ri, KEi , and KBi are the power system and ma-
chines gain, speed regulation coefficient (p.u. MW −1), integral control gain, and frequency
bias factor, respectively; Tpi , Tti , and TGi are the time constants in (sec) of power system
and machines, turbine and governor, respectively; Ksij is the interconnection tie line gain
between area i and j (j 6= i). The dimensions of the i-th area matrices in (9) are Ai ∈ <ni×ni ,
Eij ∈ <ni×nj , Bi ∈ <ni×mi , Fi ∈ <ni∈ki .

Figure 1. i-tharea model of the N-area power system.

2.2. Three-Area Model

The three-area model considered in this paper is described with parameters given in
Table 1.

The block diagram of the considered in the paper control system for three-area power
generation system is given in Figure 2. In this paper, we consider a case of individual
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control system for each area. The control in each area is based on measurements in this
area only, plus agglomerated information about the frequency deviations.

Table 1. Parameters of the 3-area model.

Parameter i = 1 i = 2 i = 3
KBi 0.41 0.37 0.40
KEi 0.15 0.15 0.12
Ri 2.4 2.7 2.5
Kpi 120 112.5 115
Tpi 20 25 20
TGi 0.08 0.072 0.07
Tti 0.3 0.33 0.35
Ksij j = 1 j = 2 j = 3

i = 1 0.55 0.55 0.55
i = 2 0.65 0.65 0.65
i = 3 0.545 0.545 0.545

Figure 2. The block diagram of the control of three-area power generation system.

2.3. Description of Control Algorithms
2.3.1. Linear-Quadratic Regulator—LQR

In the case of the Linar-Quadratic Regulator, the optimal control is used minimizing
the following cost function:

JLQR =
∫ ∞

0

(
‖x(t)‖2

Q + ‖u(t)‖2
R

)
(15)
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where Q ∈ <nx×nx—symmetric non-negative definite state weight matrix and R ∈ <nu×nu

—symmetric positive definite control signal weight matrix. In most cases, matrices Q and R
are diagonal.

The optimal state-feedback LQR controller has a form of the matrix gain as follows:

u(t) = −KLQRx(t), KLQR ∈ <nu×nx (16)

For the set of the time-invariant matrices A, B, Q, and R, the control matrix gain KLQR
in (16) minimizing the cost function (15), can be calculated as

KLQR = (R + BT PB)−1BT PA (17)

where P is a solution of the following algebraic Ricatti equation:

P = Q + AT(P− PB(R + BT PB)−1BT P)A (18)

Therefore, the solution of the LQR problem is the state-feedback control matrix (17).
In the LQR controller design the coefficients of diagonal weight matrices Q, and R

should be chosen. The initial values can be selected using the following Bryson’s rule [57]

Qii =
1

x2
iacc

, i = 1, . . . , nx, Rjj =
1

u2
jacc

, j = 1, . . . , nu (19)

where xiacc, ujacc are the maximum acceptable values of the i-th internal state and j-th
control signal, respectively.

Maximum acceptable values in (19) depend on the additional requirements of the
proposed control system. In case of no limitations, the corresponding weights based on
Bryson’s rule should be equal to 0.

2.3.2. Fuzzy Controller

The problems with the model uncertainty and disturbances can be addressed using
the fuzzy logic controller. This method is based on describing the behavior of a Multi-
Input Multi-Output (MIMO) dynamical system using fuzzy inference rules. It allows to
build controller with the use of fuzzy rules, obtained either from domain experts domain
experts or observed control actions or both. The advantage is a lack of the requirement of a
mathematical model of the physical phenomena describing multi-area power system.

In this section, the fuzzy logic controller (FLC) is applied to the three area power
generation system. As mentioned, FLC is not model-based, thus it cannot take advantage
of the knowledge of the model parameters. However, it is easy to implement. By comparing
the output of the system and the desired values, based on observations, it can provide
us with desired results. Here, for each area, FLC has been considered individually. The
absolute values of 5 states of the system have been used as inputs for FLC’s for each area.
Then, the fuzzy inference is performed by defining a membership function and fuzzy rules.
Fuzzy rules are based on cause-effect relationships in the system which is defined here
based on the observation of the system behaviour.

The fuzzy controller provides us with 5 different outputs, ki,j; i = (1, 2, 3, 4, 5). These
outputs, ki, are gains of the controller, i.e.,

uj = −KFLC,jxj; KFLC,j = [k1 . . . k5]j (20)

where j is the area number.
Note that the concept of state controller has been considered to design FLC where the

gain of controller ki is obtained using fuzzy logic rules. The conditions for all fuzzy simula-
tion are considered as follows: Fuzzy system: Mamdani; And method: min; Or method:
Max; Implication: min; Aggregation: sum; Defuzzification: entroid. The considered fuzzy
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rules are provided in Table 2, for i = (1, 2, 3, 4, 5). The structure of fuzzy system is shown
in Figure 3.

Table 2. Fuzzy rules for each area.

If Is Then Is
xi(t) Very Small (VS) ki Small (S)
xi(t) Small (S) ki Medium (M)
xi(t) Medium (M) ki High (H)
xi(t) High (H) ki Very High (VH)
xi(t) Very High (VH) ki Very High (VH)

Figure 3. The structure of fuzzy system.

3. Simulations and Results
3.1. Simulation Model: Three-Area AGC Systems

Three-area AGC was simulated using MATLAB software and ode45 solver. The
control signal of the LQR controller was calculated based on LQR function from Control
System Toolbox. The control signal of the FLC controller was calculated using Fuzzy
Logic Toolbox.

3.2. Simulation Scenarios

Three different scenarios are proposed for the comparison of LQR and fuzzy con-
trollers. Different initial conditions, disturbances, and parameters changes of the controlled
three-area power system are considered. It shall allow to draw conclusions on the robust-
ness of the proposed solutions.

• The simulation scenario 1 is the analysis of the control system response to non zero
initial conditions, i.e., ∆ f1 = 0.15, ∆ f2 = 0 and ∆ f3 = −0.1.
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• The simulation scenario 2 is the analysis of the control system response to non zero
initial conditions, i.e., ∆ f1 = 0.15, ∆ f2 = 0 and ∆ f3 = −0.1 and the step change in the
disturbance load, i.e., ∆Pd1 = 0.02, ∆Pd2 = 0.015, and ∆Pd3 = 0.01.

• The simulation scenario 3 is the analysis of the decoupled control system response
to non zero initial conditions, i.e., ∆ f1 = 0.15, ∆ f2 = 0 and ∆ f3 = −0.1 and the step
change in the disturbance load, i.e., ∆Pd1 = 0.02, ∆Pd2 = 0.015, ∆Pd3 = 0.01. The
system decoupling is achieved by substituting the zero values for Ksij parameters.

All scenarios were repeated for both controllers: (1) LQR controller with the exact
model parameters and (2) Fuzzy Logic Controller.

Controller Gains

As it is presented in the results of different scenarios, the controller gains differ,
depending on the algorithms. However, the gains vectors for each controller have the same
size, i.e., dim(KLQR) = dim(KFLC) = 5, and are the weights of the elements of the same
state vector x ∈ R5×1. Therefore, the algorithms are compared here as it will allow to better
understanding of the performance of the control system.

The input membership function of the FLC for different scenarios is given in Figure 4.
The output membership functions of the FLC for scenario 1 are given in Figure 5 and for
scenarios 2 and 3 are given in Figure 6. Note that the output membership functions of
the FLC for scenario 1 compared to the one for scenarios 2 and 3 are different which is
considered based on the observation of the results to enhance the accuracy.

• Initial value for area 1: x1(0) = 0.15, x2(0) = 0.1, x3(0) = 0.2, x4(0) = 0.5, x5(0) = 0
• Initial value for area 2: x1(0) = −0.1, x2(0) = 0.1, x3(0) = 0.15, x4(0) = 0, x5(0) = 0.1
• Initial value for area 3: x1(0) = 0.2, x2(0) = 0.1, x3(0) = 0.1, x4(0) = 0.1, x5(0) = 0.1

Figure 4. Input membership function Scenarios 1, 2, and 3.
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Figure 5. Output membership function for Scenario 1.
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Figure 6. Output membership function for Scenarios 2 and 3.

Tables 3–5 give the values of the calculated of the LQR controller, and the range
[kFLC,imin, kFLC,imax], i = 1, . . . , 5 of the adaptive changes of FLC controller parameters, and
final values of FLC controller parameters [kFLC,i], i = 1, . . . , 5. Furthermore, the controller
gains of FLC for different scenarios are given in Figures 7–9.
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Table 3. Controller gains, Area 1.

LQR

Scenario k1 k2 k3 k4 k5
S1, S2, S3 2.1747 2.6671 0.8500 0.4142 0.2574

FLC

Scenario k1 k2 k3 k4 k5
S1 70.0000 110.4000 7.4400 4.5000 8.2700
S2 177.8000 78.0000 4.1600 0.2500 32.1000
S3 80.0000 110.2000 7.4000 4.5000 8.3000
Scenario k1min k2min k3min k4min k5min
S1 43.8000 66.8000 2.2500 2.2500 8.2600
S2 170.7000 78.0000 3.2000 0.2500 32.1000
S3 40.0000 68.0000 2.2500 2.2500 8.3000
Scenario k1max k2max k3max k4max k5max
S1 110.6000 111.2000 8.2700 4.5000 8.2700
S2 186.5000 78.0000 4.5200 0.2500 32.1000
S3 110.8000 111.6000 8.3000 4.5000 8.3000

Table 4. Controller gains, Area 2.

LQR

Scenario k1 k2 k3 k4 k5
S1, S2, S3 2.3917 2.4389 0.7505 0.4142 0.2043

FLC

Scenario k1 k2 k3 k4 k5
S1 70.8000 110.4000 7.4400 8.3600 8.2800
S2 177.7000 77.9000 4.1000 0.9000 30.4000
S3 71.0000 110.2000 7.5000 8.3200 4.5000
Scenario k1min k2min k3min k4min k5min
S1 42.8000 66.8000 2.2500 8.3600 8.2600
S2 170.7000 77.6000 4.5000 0.9000 30.4000
S3 39.5000 68.0000 2.2500 8.3200 2.2500
Scenario k1max k2max k3max k4max k5max
S1 110.6000 111.6000 8.3000 8.3700 8.2800
S2 186.5000 79.0000 3.2000 0.9000 32.1000
S3 110.8000 111.5000 8.3000 8.3700 8.26000

Table 5. Controller gains, Area 3.

LQR

Scenario k1 k2 k3 k4 k5
S1, S2, S3 2.2507 2.8882 0.7763 0.4142 0.2381

FLC

Scenario k1 k2 k3 k4 k5
S1 70.9000 110.1000 7.5000 2.2500 8.3300
S2 177.8000 78.0000 4.1600 0.2600 32.3000
S3 71.0000 110.2000 7.4700 2.2500 8.2600
Scenario k1min k2min k3min k4min k5min
S1 30.000 110.1000 6.7600 2.2500 8.2600
S2 145.5000 74.5000 2.9000 0.2500 32.3000
S3 30.000 110.1000 6.7600 2.2500 7.5000
Scenario k1max k2max k3max k4max k5max
S1 72.8000 111.6000 7.5000 2.2500 8.3800
S2 183.1000 79.0000 4.6000 0.2600 32.5000
S3 73.5000 111.6000 7.7000 2.2500 8.3700
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Figure 7. Controller gains of FLC for K11 (scenario 1, area 1), K12 (scenario 1, area 2), and K13
(scenario 1, area 3).
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Figure 8. Controller gains of FLC for K21 (scenario 2, area 1), K22 (scenario 2, area 2), and K23
(scenario 2, area 3).
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Figure 9. Controller gains of FLC for K31 (scenario 3, area 1), K32 (scenario 3, area 2), and K33
(scenario 3, area 3).

3.3. Simulation Results

The simulation results for LQR and FLC strategies, as the δ f responses and corre-
sponding control signals, are presented (a) for scenario 1 in Figures 10 and 11, (b) for
scenario 2 in Figures 12 and 13, (c) for scenario 3 in Figures 14 and 15.

Figure 10. The time responses of ∆ f with LQR (left figure) and fuzzy controller (right figure) for
different areas—scenario 1.
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Figure 11. Control signals u(t) with LQR (left figure) and fuzzy controller (right figure) for different
areas—scenario 1.

Figure 12. The time responses of ∆ f with LQR (left figure) and fuzzy controller (right figure) for
different areas—scenario 2.

Figure 13. Control signals u(t) with LQR (left figure) and fuzzy controller (right figure) for different
areas—scenario 2.

Figure 14. The time responses of ∆ f with LQR (left figure) and fuzzy controller (right figure)
controller for different areas—scenario 3.
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Figure 15. Control signals u(t) with LQR (left figure) and fuzzy controller (right figure) for different
areas—scenario 3.

3.4. Quality Comparison
Quality Measures

For the test scenarios the quality of control has been evaluated. For this purpose, the
following quality measures in time domain were utilized [58].

• Steady-state error est—error calculated for the steady state after as an effect of the the
set-point ysp(t) step change or the disturbance d(t) step change.

• Maximum absolute error
emax = max

T
|e(t)| (21)

where T ∈ [Tsp, TR] is a time-span, Tsp—first moment of reaching the set-point value,
and TR—settling time until the moment when error esp(k) reaches a fixed value inside
a span ±0.1%. If Tsp > TR, emax = 0.

• Overshoot

γ =

∣∣∣∣ e2

e1

∣∣∣∣100% (22)

where e1 and e2 are the two consecutive maximum errors with opposite signs, where
the baseline is the steady state value of y(t) response to excitation.

• IAE—the Integral of the Absolute Error, calculated as

IAE =
∫ t f

0
|ei|dt (23)

where t f —total running time.
• ITAE—the Integral of the Time multiplied by the Absolute Error, calculated as

ITAE =
∫ t f

0
t|ei|dt (24)

• ISV—the Integral of the Square Value, calculated as

ISV =
∫ t f

0
u2dt (25)

Steady-state error est provides information of the quality in the steady-state after the
transient response. Maximum error emax describes the quality of the dynamical response
during the transition period described by settling time. Finally, overshoot γ provides the
information on the possible oscillations during the transient response and robustness of
the system. The ITAE and IAE are the measures of tracking performance for a whole error
curve, and the ISV measure describes the energy consumption [59].

The quality measures obtained for all scenarios with described controllers, are gath-
ered in Tables 6–8.
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Table 6. Quality indexes of the LQR and FLC—Area 1.

Scen. emax [%] est γ [%] IAE ITAE ISV

LQR
S1 0.15 1× 10−5 54.70 0.08 0.05 0.006
S2 0.15 1× 10−4 72.20 0.10 0.09 0.007
S3 0.15 2× 10−5 40.60 0.12 0.15 0.007

FLC
S1 0.15 2× 10−6 84.25 0.09 0.11 14.254
S2 0.03 6× 10−7 0.00 0.03 0.006 54.989
S3 0.10 6× 10−7 0.00 0.03 0.006 54.746

Table 7. Quality indexes of the LQR and FLC—Area 2.

Scen. emax [%] est γ [%] IAE ITAE ISV

LQR
S1 0.01 2× 10−7 55.60 0.01 0.01 1.4× 10−5

S2 0.02 4× 10−5 0.20 0.04 0.07 0.001
S3 0.02 1× 10−4 0.00 0.05 0.09 0.001

FLC
S1 0.15 2× 10−6 78.45 0.06 0.10 1.83
S2 0.05 6× 10−7 0.00 0.02 0.01 1.782
S3 0.10 6× 10−7 0.00 0.02 0.02 1.856

Table 8. Quality indexes of the LQR and FLC—Area 3.

Scen. emax [%] est γ [%] IAE ITAE ISV

LQR
S1 0.10 2× 10−6 64.60 0.061 0.042 0.003
S2 0.10 2× 10−5 43.10 0.07 0.08 0.004
S3 0.10 4× 10−6 6.70 0.04 0.01 0.003

FLC
S1 0.15 2× 10−6 46.66 0.06 0.10 0.63
S2 0.04 6× 10−7 0.00 0.02 0.01 0.141
S3 0.10 6× 10−7 12.33 0.02 0.01 0.138

4. Discussion

First, we would like to briefly describe the differences, in terms of quality indexes,
between control strategies used in this research, for proposed scenarios. Both control
algorithms exhibited very good performance in terms of steady-state error, however the
dynamics were significantly different.

In the first simulation scenario, the system responded to the non-zero initial conditions.
In the case of the LQR control strategy, areas 1 and 3 had similar quality indices, while
area 2 had the smallest maximum errors, and area 3 had the biggest overshoot. The energy
generated by the controller was biggest in area 1 and smallest in area 2 (ISV index). In the
case of the FLC control strategy, the quality indexes, and energy generated by the controller,
were similar for all areas. In terms of integral indexes (IAE, ITAE, ISV), the LFC control
strategy was worse than the LQR strategy—the biggest difference was in case of area 1.
Furthermore, in all areas there was visible large overshoot.

In the second simulation scenario, the system responded to the step-change in the
disturbance load. It measures the robustness of the control system to external interferences.
In the case of the LQR control strategy, it’s visible that area 2 have a small overshoot,
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comparing to area 1 and area 3. The energy generated by the controller was biggest in area
3 and smallest in area 1 (ISV index). In the case of the FLC control strategy the quality
indexes, and energy generated by the controller, were similar for all areas. In terms of
integral indexes (IAE, ITAE), the LFC control strategy was slightly better than the LQR
strategy, with significantly worse energy consumption. Furthermore, in all areas there was
visible large overshoot.

In the final third simulation scenario, the areas in the system were fully decouples,
with all areas working independently. This, comparing with scenario 1 and 2, allowed us
to add progressively the faults in the system, and thus check the robustness. In the case
of the LQR control strategy, area 1 had the worst performance and energy consumption,
while area 2 had the best performance and energy consumption. The performance in area 3
is rather in between other areas. In the case of the FLC control strategy, the performance
measures were similar for all areas. However, in terms of integral indexes (IAE, ITAE), the
LFC control strategy was better than the LQR strategy, but it was worse in terms of the
energy consumption.

The obtained results show the significant differences in the performance of the pre-
sented control methods of the three-area power generation system. The performance of
the LQR control strategy is better than the performance of the FLC strategy, in terms of
most calculated quality indexes and energy consumption. Note that the LQR control is a
model-based strategy, and it is strongly dependent on the quality of the provided model
and requires the model in the linear form. The advantage is rather simple method to
calculate the controller gains. On the contrary, the FLC control system is much easier to
implement and develop, as it is a data-driven expert-based methodology.

The differences in the performance and energy consumption can be explained by
the significant differences in the controller gains between LQR and FLC algorithms (see
Tables 3–5, and Figures 7–9). The gains values and their range of changes during adaptation
of FLC controller are much higher than the optimal values of the LQR controller. Thus, we
get a very strong control signal.

However, the LQR controller have significant drawbacks. It is model-based optimal
controller, and it requires the exact model in the state-space linear form. It does not
preserve robustness from parameter changes and external disturbances characterizing
real-life systems [60]. In contrary, the FLC controller is fully data-driven, and the model is
in form of cause–effect relationship functions, derived on the basis of the expert knowledge.
Fuzzy control system can be used especially for the complex nonlinear process that includes
uncertainty, and therefore there is no precise mathematical model available [61] that, to
some extent, can overcome the above-mentioned problems of LQR control system.

The biggest challenge, in case of FLC, is the definition of the rule base, and the
controller parameters tuning. Most of the FLC controller tuning methods are based on
genetic algorithms [62], particle swarm optimization [63] and therefore are time-consuming
and very hard for practical implementation.

Therefore, the very simple method to minimize the gains is the introduction of the
constraints of the gains.

5. Conclusions

This paper presents the comparison of two different strategies of the three-area power
generation system (micro-grid) control. The first one is a model-based Linear Quadratic
Regulator (LQR) strategy, where one optimal controller generates the control signal for all
three areas. The second one is a data-driven Fuzzy Logic Controller (FLC), distributed to
three areas, i.e., there is one FLC controller for each area.

The comparison was made, based on three scenarios describing different working
conditions of the system, with the changing load, and decoupling of the areas. Both
controllers worked properly in all scenarios; however, as the provided values of the
calculated quality indexes show, the FLC control strategy is worse than the LQR strategy.
It is mostly due to the difficult methodology of the FLC controller tuning. We can conclude
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that even if the data-driven methods do not require the model of the system and stabilize
the system as expected, there are still problems with the proper choice of their parameters
to obtain the desired performance.

The results obtained during the presented research, with the three area power genera-
tion system, showed that to apply the proposed control algorithms it is crucial to develop
methods for tuning the controllers, especially the data-driven ones, to minimize the influ-
ence of disturbances and changes of the parameters. The proposed future work includes
research on tuning methods of FLC controllers, and the comparison of the performance
of the distributed control strategy in case of failures in areas (e.g., as the result of the
cyber-attack).
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