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Abstract: Recent episodes of natural disasters have challenged the resilience of power grids. Ade-
quate distribution grid planning that properly captures the risk aversion of the utility system planner
is a key factor to increase the flexibility of distribution networks to circumvent these events. In this
paper, we propose a methodology to determine the optimal portfolio of investments in lines and
storage devices in order to minimize a convex combination between expected value and CVaR of
operational costs, including energy not served, while taking into account the multistage nature of
the energy storage management within this context. While the expected value of energy not served
has been traditionally employed to tackle routine failures, we also minimize the CVaR of energy not
served to address high-impact, low-probability (HILP) events. We illustrate the performance of the
proposed methodology with a 54-Bus system test case.

Keywords: nested Benders; dynamic programming; distribution expansion planning; risk aversion

1. Introduction

Traditional distribution grid planning is primarily focused on reliability metrics [1]
and comprises the application of simulation-based probabilistic evaluation techniques [2],
which were later updated to include emerging challenges of power distribution reliability,
such as the presence of distributed energy resources (DERs) [3]. More recently, these relia-
bility targets started to be added in the context of expansion and planning of distribution
grids, a class of methods aiming at optimizing the portfolio of network infrastructure
investments, including substation/circuit upgrade and reinforcement [4,5].

However, recent episodes of natural disasters such as floods, windstorms, or earth-
quakes have caused billions of dollars of irreparable damage in grid assets and long-term
interruption of service [6,7], raising governments awareness regarding resilience of energy
infrastructures [8] to face these high-impact, low-probability (HILP) events. From a power
grid perspective, these events are different from normal routine failures captured by reli-
ability indices and they require specific resilience metrics, evaluation techniques as well
as new approaches to include them into the economic expansion and planning problem.
Similarly to reliability evaluation, simulation techniques have been proposed in the context
of resilience to assess the power grid’s ability to withstand, mitigate, and recover from
extreme events. In general, these techniques rely on two types of approaches: (i) methods
that do not require a detailed model of the extreme events, such as complex networks (CN)
methodologies that assess resilience based on network topological characteristics [9,10];
(ii) Monte Carlo methods based on probabilistic models of the events combined with
fragility curves to simulate network failures and their HILP consequences [11,12]. Instead
of looking at the routine aspects (i.e., expected value) of the outage impacts, these resilience
probabilistic models are often focused on the tails of outage distributions, describing re-
silience as risk metric, such as Value at Risk (VaR) or Conditional Value at Risk (CVaR),
associated with the loss of load [13].
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According to [14], there are three main stages when dealing with critical disruptive
events that challenge the resilience of power grids: (a) the first stage is the resilience invest-
ment, done years ahead of the events; (b) the second and third stages are corrective actions
and restoration, respectively, which take place during and after the event materializes. In
this paper, we present a methodology to determine investments in new lines and storage
devices in order to address the first stage in a way that facilitates corrective actions to
minimize the energy not served when a critical event takes place.

Stochastic optimization is a powerful framework to solve investment problems under
uncertainty and has been employed in relevant works that address resilience investments
in power grids. At the transmission system level, a two-stage stochastic MINLP model was
presented in [15] to find investment strategies to improve resilience, considering a range of
earthquake events. In distribution grids, a storage sitting and sizing model to maximize
resilience against seismic hazards is presented in [16]. The method takes the earthquake
fragility curves as an input and solves the storage planning problem through a combina-
tion of heuristics (to select candidate nodes) and linear programming. An extension to
mobile storage investments, using stochastic resilience optimization solved via progressive
hedging (PH), is proposed in [17]. Additional network investments are considered in the
context of earthquake impact mitigation through a two-stage optimization via simulation
method [18]. An analogous two-stage approach is presented in [19], considering circuit
hardening, automatic switches and DER investments to mitigate extreme weather events.

A number of works have recently addressed the distribution grid planning problem
as discussed in [20]. Some pertinent examples are [21–30] to mention a few. In [21],
a stochastic optimization-based methodology is presented to address the distribution
system planning by selecting investments in batteries, feeders, and substations while
considering uncertainty in demand and electricity prices as well as the impact of battery
degradation. In [22], a trilevel model is proposed to identify line hardening solutions
to protect the distribution grid against intentional or unintentional attacks. In [23], a
methodology is developed to plan distribution grids while considering the flexibility
provided by thermal building systems to reduce peak demands and consequently the grid
capacity requirements. In [24], an algorithm that combines particle swarm optimization
and tabu search is presented to plan the expansion of large electric distribution networks.
In [25], the authors propose to plan the distribution system expansion while taking electric
vehicles and uncertainty in renewable energy sources into account. In [26], the authors
present a methodology to expand the distribution system while considering three different
players, namely the distribution company (DISCO), the private investor (PI) who owns
distributed generation, and the demand response provider (DRP). On one hand, PI and
DRP are risk-averse and therefore seek to maximize the CVaR of their profits due to the
existing uncertainty in renewable generation and availability of demand response. On the
other hand, the DISCO aims to upgrade the system (via line reinforcement) to minimize
cost and increase reliability in a risk-neutral fashion by minimizing expected energy not
served due to failures of lines. In [27], a methodology is proposed to select investments
in dispatchable units, DER units, and line reinforcement while considering uncertainty in
load and DERs production and adequacy to this uncertainty without taking into account
failure of system elements. In [28], the distribution planning problem is approached
from a game-theoretical perspective. In [29], a bilevel mixed-integer programming model
is proposed to determine the distribution system expansion planning considering the
contribution of electric vehicles (EVs) in public parking lots. The first level sets grid
investment decisions in circuits and substations, while the second level optimizes the
EV charging strategies to achieve maximum parking lot remuneration from grid services.
Although the framework presented in [29] is interesting, the proposed solution approach
does not guarantee optimality as the solution method is based on an immune genetic
algorithm. In [30], the authors propose a two-stage robust optimization model to select
investments in line hardening and distributed generation. Despite its resilience oriented
objective, the work in [30] is specific for hurricanes and does not cover other extreme
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events. The relevance of the aforementioned papers notwithstanding, to the best of our
knowledge, there is still no work in the literature that models and solves to optimality
the decision making process of a risk-averse distribution system planner that needs to
select investments in lines and storage devices to minimize a convex combination between
expected value and CVaR of costs while taking the multistage nature of storage devices
operation into account. In this paper, we aim to bridge this gap.

In this paper, we present a stochastic optimization model for expansion planning of
distribution grids considering both reliability and resilience criteria, thus adding to the
existing approaches that either consider reliability [4,5] or resilience [15–19] in this problem.
We propose a static expansion planning model (i.e., investment decision can be taken
only once) where the operation of the system in the short term is modeled in a multistage
fashion. We consider different distribution grid investments to minimize the expected
value and the CVaR associated with outages caused by routine failures and HILP events.
Differently from [15–19], our model takes into account investment in storage devices and
the corresponding multistage nature of their operation under uncertainty. More specifically,
we formulate a stochastic optimization problem as a mixed integer linear program (MILP)
where, once investment takes place, the operation of the system is modeled as a multistage
problem. In order to circumvent tractability issues associated with the size of the problem,
we develop a solution methodology based on nested Benders decomposition. While
this decomposition approach is traditionally employed to minimize the expected value
metric [31,32], our tailored multistage temporal decomposition is also capable to minimize
the CVaR metric, adding risk aversion to decision making. The result is an innovative
investment planning approach where the “reliability vs. resilience” preferences of the
planner are explicitly provided as an input of the problem. The specific contributions of
this paper are twofold:

1. A stochastic investment and planning model for distribution grids with risk-based
explicit metrics that allow utilities and network planners to explore the trade-offs
between reliability and resilience when selecting the best portfolio of conductors and
DER investments. This model is able to capture the system operation, in particu-
lar the multistage aspects of time-coupling constraints related with energy storage
management.

2. A tailored novel temporal decomposition framework that renders a tractable and
effective solution approach for the model and accommodates the minimization of
expected value and CVaR of the operational costs, including energy not served.

The remainder of this paper is laid out as follows. In Section 2, we present the
mathematical formulation to model. We describe the proposed solution methodology in
Section 3. In Section 4, a case study with a 54-bus test system illustrates the proposed
methodology. In Section 4, the proposed methodology is illustrated through a case study
based on a 54-bus test system. Finally, we draw the conclusions in Section 5.

2. Mathematical Formulation: Incorporating Risk Aversion into Distribution
Grid Planning

The proposed model aims at determining the optimal investments in line branches
and/or storage devices to improve the system performance in terms of reliability. As
in [4,5], we formulate this planning problem as a MILP. Nevertheless, unlike [4,5], we also
consider the impact of HILP events in our formulation and the installation and operation
of storage devices. Our proposed formulation is a static expansion planning problem
(i.e., investment decision can be taken only once) with a multistage representation of the
short-term system operation. That being said, once an investment decision is made (for a
target year as customary in static expansion planning models [33]), the system is operated
for a set of typical days that represent a certain horizon (e.g., one year). The stages basically
represent short-term operation within each typical day, i.e., each stage comprises some
hours of operation. In this manner, we can model the multistage nature of the management
of the states of charge of the storage devices.
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We illustrate in Figure 1 our modeling framework when considering two typical days
with three stages each (an illustrative example of this modeling framework is also provided
in the link where we provide input data for the case study). In this framework, investment
decisions are taken only in the first stage. As can be seen, each day d ∈ D has a given
load profile and is constituted of a scenario tree, composed by different stages e ∈ E. Each
stage e ∈ E contains a set of scenario tree nodes m, with a set of hours Tm. The storage
operation is modeled throughout each day d and its respective scenario tree, in which the
node m comprises a given state of grid ylmtd (which is assumed to be a given parameter)
that represents the current network configuration with each element being equal to 1 if
line l is available and switched on for scenario tree node m, hour, t and day d or 0 if the
line is either out-of-service (due to failure) or switched off (due to radiality constraints).
The transition probabilities πmd indicate how likely it is to reach a scenario tree node m
that comprises one or more failures. Naturally, scenarios tree nodes associated with HILP
events and the failure of more than one line have a much lower transition probability. If
the planner is interested is just minimizing the expected value of operational costs when
determining the investment decisions, scenarios tree nodes comprising HILP events will
have little or no impact in the final expansion plan. As a result, the first-stage investment
decision x will not include lines that need to be activated according to ylmtd due to the
failure of other lines during a HILP event. In addition, this investment decision will not
comprise extra necessary installation of storage devices either. Therefore, as one of the main
contributions of this paper, we provide a methodology general enough to minimize the
convex combination between expected value and CVaR of the operational costs, including
energy not served. In this manner, we can properly capture the effect of the HILP events
while expanding the system in a risk-averse fashion.
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Figure 1. Modeling framework.

In the next subsections, we describe the proposed MILP formulation that mathemati-
cally represents our model.



Energies 2021, 14, 8482 5 of 21

2.1. Costs and Risk-Averse Modeling

The costs associated with investments and operation are modeled as follows.

Minimize
βL

ljmtd ,βTr
njmtd ,∆+

nmtd ,∆−nmtd ,

χmd ,ψjd ,cTotal
md , flmtd ,

gTr
nmtd ,pin

hmtd ,pout
hmtd ,

SOChmtd ,SOC†
hmd ,umd ,vnmtd ,

xL, f ix
lmd ,xL, f ix,acu

lmd ,xL, f ix†
lmd ,

xSD, f ix
hmd ,xSD, f ix,acu

hmd ,xSD, f ix,†
hmd ,

xSD,var
hmd ,xSD,var,acu

hmd ,xSD,var,†
hmd

∑
d∈D

Wdχ1d (1)

subject to:

χmd = cTotal
md ; ∀d ∈ D, m ∈ Md|ed(m) = |E| (2)

χmd = cTotal
md + (1− λ) ∑

j∈N+
md

πjdχjd + λ

[
umd + ∑

j∈N+
md

πjdψjd
1

αCVaR

]
; ∀d ∈ D,

m ∈ Md|ed(m) ≤ |E| − 1 (3)

ψjd ≥ χjd − umd; ∀d ∈ D, m ∈ Md, j ∈ N+
md (4)

ψjd ≥ 0; ∀d ∈ D, m ∈ Md, j ∈ N+
md (5)

umd ≥ 0; ∀d ∈ D, m ∈ Md (6)

cTotal
md = ∑

l∈LC

[ C f ix
l

∑d∈DWd
xL, f ix

lmd

]
+ ∑

h∈HC

[ CSD, f ix
h

∑d∈DWd
xSD, f ix

hmd +
CSD,var

h
∑d∈DWd

xSD,var
hmd Pin

h

]

+ ∑
t∈Tm

[
∑

n∈ΨSS

p f CTr
nmdgTr

nmtd + p f CL
[

∑
n∈ΨSS

nJ

∑
j=1

γTr
nj βTr

njmtd + ∑
l∈L

nJ

∑
j=1

γL
ljr

len
l βL

ljmtd

]

+ p f CImb ∑
n∈ΨN\ΨSS

[
∆−nmtd + ∆+

nmtd

]]
; ∀d ∈ D, m ∈ Md (7)

gTr
nmtd =

nJ

∑
j=1

βTr
njmtd; ∀n ∈ ΨSS, d ∈ D, m ∈ Md, t ∈ Tm (8)

0 ≤ βTr
njmtd ≤ β

Tr
nj ; ∀n ∈ ΨSS, j = 1, . . . , nJ , d ∈ D, m ∈ Md, t ∈ Tm (9)

nJ

∑
j=1

βL
ljmtd ≥ flmtd; ∀l ∈ L, d ∈ D, m ∈ Md, t ∈ Tm (10)

nJ

∑
j=1

βL
ljmtd ≥ − flmtd; ∀l ∈ L, d ∈ D, m ∈ Md, t ∈ Tm (11)

0 ≤ βL
ljmtd ≤ β

L
lj; ∀l ∈ L, j = 1, . . . , nJ , d ∈ D, m ∈ Md, t ∈ Tm. (12)

The objective function (1) to be minimized comprises a weighted sum of the overall
costs associated with each day d ∈ D, represented in a recursive manner. For instance,
considering an annual operation, parameter Wd corresponds to the number of days in
the year that can be represented by day d in terms of load profile and probability of line
outages.

Constraints (2)–(6) describe one of the main modeling features that we aim to address
in this paper. Here, we combine risk-neutral (expected value) and risk-averse (CVaR)
metrics in order to consider both reliability (associated with routine events) and resilience
(associated with HILP events) as targets. For instance, in (3), a risk-neutral planner would
set λ = 0 and minimize only the expected value of the costs, therefore neglecting HILP
events as they are present scenario tree nodes with small transition probabilities πmd. A
non-risk-neutral planner, on the other hand, would set a λ higher than zero in order to
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determine a plan that also minimizes the CVaR of the costs and therefore captures the
impact of HILP events. Thus, the convex combination in (3) allows for the planner to
express their level of risk aversion. The higher this risk aversion, the higher the planner
will set the value of λ so as to put more weight on the CVaR metric in the objective function.
In this recursive framework, the scenario tree nodes that belong to the last stage of each
d ∈ D are the base case and their overall cost (2) is simply equal to the cost of the current
scenario tree node, cTotal

md . In their turn, the remaining nodes (not in the last stage) comprise
an additional cost (3), formed by a convex combination between the expected value and
the CVaR of the cost of the descendent nodes (i.e., the kid nodes), contained in set N+

md.
Constraints (4)–(6) complement the modeling of the CVaR of the cost of the next stage for
each scenario tree node m and day d.

Constraints (7) represent the cost of investment and operations associated with each
scenario tree node m. The investment cost comprises new lines and storage devices while
the operation costs include power injections in the substation, transformer and line losses,
as well as energy not served. As explained in the next subsections, investment can only be
made at the first stage, so for most of the scenario tree nodes m, no investment decision
is considered. The transformer and line losses penalized in (7) are represented through
piecewise linear approximations via expressions (8)–(12).

2.2. Investment in Lines

The investment in lines is mathematically described as follows.

xL, f ix
lmd ∈ {0, 1}; ∀l ∈ LC, d ∈ D, m = 1 (13)

xL, f ix
lmd = 0; ∀l ∈ LC, d ∈ D, m ∈ Md|m ≥ 2 (14)

xL, f ix
l,1,d = xL, f ix

l,1,d−1; ∀l ∈ LC, d ∈ D|d ≥ 2 (15)

xL, f ix,acu
lmd = xL, f ix,†

lmd + xL, f ix
lmd ; ∀l ∈ LC, d ∈ D, m ∈ Md (16)

xL, f ix,†
lmd = xL, f ix,acu

lm−d ; ∀l ∈ LC, d ∈ D, m ∈ Md|m ≥ 2 (17)

xL, f ix,†
lmd = 0; ∀l ∈ LC, d ∈ D, m = 1. (18)

Constraints (13) impose the binary nature to variables xL, f ix
lmd and constraints (14)

do not allow investment at scenario tree nodes that do not belong to the first stage.
Constraints (15) enforce the same investments in lines to be made for all considered days
d ∈ D. Expressions (16)–(18) model the transition between stages of the decisions on
line investments. The index m− in (17) signifies the parent node of scenario node m. In
Figure 1, for example, for m = 2, we have m− = 2− = 1 as scenario node 1 is the parent of
scenario node 2. Within this context, expression (17) carries information from the parent
scenario node m− to the current scenario node m. In this stagewise communication setting,
each scenario node only receives information from the immediate predecessor node (the
parent node).
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2.3. Investment in Storage Devices

The investment in storage devices is expressed as follows.

xSD, f ix
hmd ∈ {0, 1}; ∀h ∈ HC, d ∈ D, m = 1 (19)

xSD, f ix
hmd = 0; ∀h ∈ HC, d ∈ D, m ∈ Md|m ≥ 2 (20)

xSD, f ix
h,1,d = xSD, f ix

h,1,d−1; ∀h ∈ HC, d ∈ D|d ≥ 2 (21)

xSD, f ix,acu
hmd = xSD, f ix,†

hmd + xSD, f ix
hmd ; ∀h ∈ HC, d ∈ D, m ∈ Md (22)

xSD, f ix,†
hmd = xSD, f ix,acu

hm−d ; ∀h ∈ HC, d ∈ D, m ∈ Md|m ≥ 2 (23)

xSD, f ix,†
hmd = 0; ∀h ∈ HC, d ∈ D, m = 1 (24)

xSD,var
hmd ≤ xSD, f ix

hm xSD
h ; ∀h ∈ HC, d ∈ D, m = 1 (25)

xSD,var
hmd = 0; ∀h ∈ HC, d ∈ D, m ∈ Md|m ≥ 2 (26)

xSD,var
h,1,d = xSD,var

h,1,d−1; ∀h ∈ HC, d ∈ D|d ≥ 2 (27)

xSD,var,acu
hmd = xSD,var,†

hmd + xSD,var
hmd ; ∀h ∈ HC, d ∈ D, m ∈ Md (28)

xSD,var,†
hmd = xSD,var,acu

hm−d ; ∀h ∈ HC, d ∈ D, m ∈ Md|m ≥ 2 (29)

xSD,var,†
hmd = 0; ∀h ∈ HC, d ∈ D, m = 1. (30)

Constraints (19) describe xSD, f ix
hmd as binary variables. Constraints (20) enforce no binary

investments to be made in storage devices at scenario tree nodes that do not belong to
the first stage. Constraints (21) impose the same binary investments in storage devices
to be made for all considered days d ∈ D. Expressions (22)–(24) model the transition
between stages of the decisions on binary investments in storage devices. Analogously,
constraints (25)–(30) model continuous investments in storage devices, where xSD

h is the
maximum investment in storage device h.

2.4. Operation of the Grid

The operation of the network is modeled as follows.

0 ≤ gTr
nmtd ≤ GTr

n ; ∀n ∈ ΨSS, d ∈ D, m ∈ Md, t ∈ Tm (31)

V ≤ vnmtd ≤ V; ∀n ∈ ΨN , d ∈ D, m ∈ Md, t ∈ Tm (32)

− ylmtdFl ≤ flmtd ≤ ylmtdFl ; ∀l ∈ LE, d ∈ D, m ∈ Md, t ∈ Tm (33)

− ylmtdxL, f ix,acu
lmd Fc

l ≤ flmtd ≤ ylmtdxL, f ix,acu
lmd Fc

l ; ∀l ∈ LC, d ∈ D, m ∈ Md, t ∈ Tm (34)

∑
l∈L|to(l)=n

flmtd − ∑
l∈L| f r(l)=n

flmtd + gTr
nmtd = 0; ∀n ∈ ΨSS, d ∈ D, m ∈ Md, t ∈ Tm (35)

∑
l∈L|to(l)=n

flmtd − ∑
l∈L| f r(l)=n

flmtd = ∑
h∈Hn

pin
hmtd − ∑

h∈Hn

pout
hmtd − ∆−nmtd + ∆+

nmtd

+ Dnmtd; ∀n ∈ ΨN \ΨSS, d ∈ D, m ∈ Md, t ∈ Tm (36)

−M(1− ylmtd) ≤ ZL
l rlen

l flmtd −
(
v f r(l),m,t,d − vto(l),m,t,d

)
≤ M(1− ylmtd);

∀l ∈ LE, d ∈ D, m ∈ Md, t ∈ Tm (37)

−M(1− ylmtd)−M(1− xL, f ix,acu
lmd ) ≤ ZL

l rlen
l flmtd −

(
v f r(l),m,t,d − vto(l),m,t,d

)
≤ M(1− ylmtd) + M(1− xL, f ix,acu

lmd ); ∀l ∈ LC, d ∈ D, m ∈ Md, t ∈ Tm. (38)

Constraints (31)–(38) present a linear grid operation model proposed in [34] and used
in other works such as [4]. Constraints (31) and (32) limit the substation injection and
nodal voltages, whereas (33) and (34) impose flow limits to existing and candidate lines.
According to (33) and (34), existing and candidate lines can be utilized if they are part of
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the current configuration or state of the grid, i.e., their respective parameters ylmtd are equal
to 1. Otherwise, if ylmtd = 0 for a certain line, such a line is open. Expressions (35) and (36)
represent the nodal power balance of buses with and without a substation. Power flows
are described in a linear fashion by constraints (37) and (38).

2.5. Operation of Storage Devices

The operation of storage devices is modeled as follows.

SOChmtd = SOChm0d; ∀h ∈ H \ HC, d ∈ D, m ∈ Md|e(m) = |E|, t = last(Tm) (39)

SOChmtd = SOChm0dxSD, f ix,acu
hmd ; ∀h ∈ HC, d ∈ D, m ∈ Md|e(m) = |E|,

t = last(Tm) (40)

SOChmtd = SOC†
hmd + e f f δpin

hmtd − δpout
hmtd; ∀h ∈ H, d ∈ D, m ∈ Md, t = f irst(Tm) (41)

SOChmtd = SOCh,m,t−1,d + e f f δpin
hmtd − δpout

hmtd; ∀h ∈ H, d ∈ D, m ∈ Md,

t ∈ Tm|t ≥ f irst(Tm) + 1 (42)

SOC†
hmd = SOCh,m− ,last(Tm− ),d

; ∀h ∈ H, d ∈ D, m ∈ Md|m ≥ 2 (43)

SOC†
hmd = SOChm0d; ∀h ∈ H \ HC, d ∈ D, m = 1 (44)

SOC†
hmd = SOChm0dxSD, f ix,acu

hmd ; ∀h ∈ HC, d ∈ D, m = 1 (45)

SOChmtd ≤ Pout
h (|E| − ed(m))|Tm|+ SOChm0d; ∀h ∈ H \ HC, d ∈ D, m ∈ Md,

t = last(Tm) (46)

SOChmtd ≤ xSD,var,acu
hmd Pout

h (|E| − ed(m))|Tm|+ xSD, f ix,acu
hmd SOChm0d; ∀h ∈ HC,

d ∈ D, m ∈ Md, t = last(Tm) (47)

SOChmtd ≤ S Pin
h ; ∀h ∈ H \ HC, d ∈ D, m ∈ Md, t ∈ Tm (48)

pin
hmtd ≤ Pin

h ; ∀h ∈ H \ HC, d ∈ D, m ∈ Md, t ∈ Tm (49)

pout
hmtd ≤ Pout

h ; ∀h ∈ H \ HC, d ∈ D, m ∈ Md, t ∈ Tm (50)

SOChmtd ≤ S xSD,var,acu
hmd Pin

h ; ∀h ∈ HC, d ∈ D, m ∈ Md, t ∈ Tm (51)

pin
hmtd ≤ xSD,var,acu

hmd Pin
h ; ∀h ∈ HC, d ∈ D, m ∈ Md, t ∈ Tm (52)

pout
hmtd ≤ xSD,var,acu

hmd Pout
h ; ∀h ∈ HC, d ∈ D, m ∈ Md, t ∈ Tm. (53)

Constraints (39) and (40) impose, for existing and candidate storage devices, the value
of state of charge for the last period of the scenario tree nodes that belong to the last
stage. Constraints (41)–(47) model the transition of the state of charge of the existing and
candidate storage devices throughout the stages of the scenario tree of each considered day
d ∈ D. Constraints (41)–(47) impose the limits of charging/discharging and state of charge
for existing and candidate storage devices.

3. Solution Methodology: Solving the Risk-Averse Multistage Problem

Model (1)–(53) is a multistage formulation, where at each scenario tree node the
objective is to minimize the convex combination of expected value and CVaR of the cost
of the nodes of the next stage. This formulation can easily become intractable even for
medium-sized systems and a reasonable number of scenarios. Hence, in this section we
propose a multistage decomposition that circumvents the tractability issues associated with
the proposed model.
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To start the solution methodology involves the iterative solution of Algorithm 1 and 2,
which will be described in this Section. In order to develop this solution methodology, first,
we rewrite (1)–(53) as:

Minimize
χmd ,ψm

jd ,umd ,x f ix
md ,xvar

md ,zmd

∑
d∈D

Wdχ1d (54)

subject to:

Constraints (2)–(6) (55)

cTotal
md = c f ixT

x f ix
md + cvarT

xvar
md + copT

md zmd; ∀d ∈ D, m ∈ Md (56)

x f ix
1d ∈ {0, 1}LC+HC

(57)

x f ix
1d = x f ix

1,d−1; ∀d ∈ D|d ≥ 2 (58)

xvar
1d = xvar

1,d−1; ∀d ∈ D|d ≥ 2 (59)

Nvar
md xvar

md ≤ N f ix
md x f ix

md ; ∀d ∈ D, m ∈ Md (60)

Qmdzmd = bmd; ∀d ∈ D, m ∈ Md (61)

Gmdzmd ≤ E f ixx f ix
md + Evarxvar

md ; ∀d ∈ D, m ∈ Md (62)

Hmdx f ix
md = x f ix

m− ,d; ∀d ∈ D, m ∈ Md (63)

Ymdxvar
md = xvar

m− ,d; ∀d ∈ D, m ∈ Md (64)

Zmdzmd = Lzm− ,d; ∀d ∈ D, m ∈ Md, (65)

where expressions (54) and (55) replicate (1)–(6), whereas constraints (56) are equivalent to
(7). Constraints (57)–(60) represent (13)–(15), (19)–(21) and (25)–(27). Constraints (61) and
(62) correspond to (8)–(12), (31)–(38) and (46)–(53). Finally, constraints (63)–(65) are asso-
ciated with (16)–(18), (22)–(24), (28)–(30) and (39)–(45), which contain the inter-temporal
coupling constraints.

A reasonable size system combined with plausible number of stages and scenario
tree nodes can render problem (54)–(65) easily intractable due to the high number of
constraints involved. In order to withstand this tractability problem, here, we propose
a nested-Benders-type algorithm. To do so, we decompose the problem (54)–(65) into a
master problem for the first stage and several subproblems, each one corresponding to a
remaining stage. The master problem is formulated as follows:
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Q1 = Minimize
αjd ,χ1d ,ψjd ,u1d ,x f ix

1d ,xvar
1d ,z1d

∑
d∈D

Wdχ1d (66)

subject to:

χ1d = cTotal
1d + (1− λ) ∑

j∈N+
1d

πjdαjd + λ

[
u1d + ∑

j∈N+
1d

πjdψjd
1

αCVaR

]
; ∀d ∈ D (67)

ψjd ≥ αjd − u1d; ∀d ∈ D, j ∈ N+
1d (68)

ψjd ≥ 0; ∀d ∈ D, j ∈ N+
1d (69)

u1d ≥ 0; ∀d ∈ D (70)

cTotal
1d = c f ixT

x f ix
1d + cvarT

xvar
1d + copT

1d z1d; ∀d ∈ D (71)

x f ix
1d ∈ {0, 1}LC+HC

(72)

x f ix
1d = x f ix

1,d−1; ∀d ∈ D|d ≥ 2 (73)

xvar
1d = xvar

1,d−1; ∀d ∈ D|d ≥ 2 (74)

Nvar
1d xvar

1d ≤ N f ix
1d x f ix

1d ; ∀d ∈ D (75)

Q1dz1d = b1d; ∀d ∈ D (76)

G1dz1d ≤ E f ixx f ix
1d + Evarxvar

1d ; ∀d ∈ D (77)

αjd ≥ Qjd(x f ix
1,d , xvar

1,d , z1,d) + η
f ix(k)T

jd (x f ix
1,d − x f ix(k)

1,d ) + η
var(k)T

jd (xvar
1,d − xvar(k)

1,d )

+ η
z(k)T

jd L(z1,d − z(k)1,d); ∀d ∈ D, j ∈ N+
1d, k = 1, . . . , nk. (78)

Essentially, the master problem describes the decision making process of the first stage
of (54)–(65), where decisions on investments in lines and storage devices are determined.
In addition, the master problem approximates the objective function of the scenario tree
nodes that belong to the second stage by means of expression (78). The subproblems are
formulated as follows.

Algorithm 1: Compute χ†
md ∀d ∈ D, m ∈ M

for d = 1, 2, . . . , |D| do
for m ∈ M|E|d do

χ†
md = cTotal(j)

md
end

end
for d = 1, 2, . . . , |D| do

for e = |E| − 1, |E| − 2, . . . , 1 do
for m ∈ Med do

χ†
md = cTotal(j)

md + Minimize
umd≥0,ψjd

(1− λ)∑j∈N+
md

πjdχ†
jd + λ[u + 1

αCVaR ∑j∈N+
md

πjdψjd]

subject to:
ψjd ≥ χ†

jd − u; ∀j ∈ N+
md

ψjd ≥ 0; ∀j ∈ N+
md;

end
end

end



Energies 2021, 14, 8482 11 of 21

Qmd(x f ix
m− ,d, xvar

m− ,d, zm− ,d) = Minimize
αmd ,ψjd ,umd ,x f ix

md ,xvar
md ,zmd

cTotal
md + (1− λ) ∑

j∈N+
md

πjdαjd

+ λ

[
umd + ∑

j∈N+
md

πjdψjd
1

αCVaR

]
(79)

subject to:

ψjd ≥ χjd − umd; ∀j ∈ N+
md (80)

ψjd ≥ 0; ∀j ∈ N+
md (81)

umd ≥ 0; (82)

cTotal
md = copT

md zmd (83)

Qmdzmd = bmd (84)

Gmdzmd ≤ E f ixx f ix
md + Evarxvar

md (85)

Hmdx f ix
md = x f ix

m− ,d :
(
η

f ix(k)
md

)
(86)

Ymdxvar
md = xvar

m− ,d :
(
η

var(k)
md

)
(87)

Zmdzmd = Lzm− ,d :
(
η

z(k)
md
)

(88)

αjd ≥ Qjd(x f ix
m,d, xvar

m,d, zm,d) + η
f ix(k)T

jd (x f ix
m,d − x f ix(k)

m,d ) + η
var(k)T

jd (xvar
m,d − xvar(k)

m,d )

+ η
z(k)T

jd L(zm,d − z(k)m,d); ∀d ∈ D, j ∈ N+
md, k = 1, . . . , nk. (89)

The subproblems in the form of (79)–(89) represent the operation in each of the
remaining stages, where the variables in parentheses correspond to the dual variables
related to the transition constraints. Analogously, the objective functions of the scenario
tree nodes that emanate from the current one are approximated via (89).

Algorithm 2: Solution algorithm
Step 0: initialization
Initialize the iteration counter: j← 0
Initialize the lower bound: LB(j) ← −∞
Initialize the upper bound: UB(j) ← ∞
Step 1: forward pass
Set j← j + 1
Solve Q1
for d = 1, 2, . . . , |D| do

for e = 2, 3, . . . , |E| and m ∈ Med do
Solve Qmd(·)
Store the values of Qmd(·) and cTotal(j)

md
end

end
Compute lower bound: LB(j) = Q1
Compute χ†

m ∀m ∈ M via Algorithm 1
Obtain upper bound: UB(j) ← ∑d∈DWdχ†

1d

If UB(j)−LB(j)

LB(j) ≤ ε, STOP, otherwise go to Step 2
Step 2: backward pass
for d = 1, 2, . . . , |D| do

for e = |E|, |E| − 1, |E| − 2, . . . , 2 and m ∈ Med do
Solve Qmd(·)
Feed Qm−d(·) with a cut (in the form of (89)) generated via the solution of Qmd(·)

end
end
Go to Step 1
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Thus, the solution algorithm relies on an iterative process between master and sub-
problems, comprising forward and backward passes as shown in Algorithm 2. In the
forward pass, first, the master problem (66)–(78) is solved and then, for each day d and
each stage e (going from the first to the last stage), the subproblems (79)–(89) are solved. At
this step, each scenario tree node receives information from its parent scenario tree node in
the form of x f ix

m− ,d, xvar
m− ,d and zm− ,d, which propagate decisions on investments throughout

the scenario tree and notify the state of charge of the batteries. Once the forward pass
is completed, a lower bound for the current iteration is set equal to the current value
Q1 (see (66)). On the other hand, an upper bound is calculated by making use of the
values of cTotal(j)

md obtained during the forward pass. First, values of χ†
md are computed via

Algorithm 1. Then, the upper bound is set equal to ∑d∈DWdχ†
1d. In case the convergence

criterion is not met, the backward pass is executed. In this step, again, (79)–(89) is solved
for each day d and each stage e (going from the last to the second stage) in order to provide
relevant information that is used to build the approximations (78) and (89).

4. Case Study

The performance of the proposed methodology is analyzed and illustrated with a
54-bus distribution system (depicted in Figure 2) based on [4]. We consider 50 load nodes,
4 substations, 50 existing lines, 22 candidate lines, and 4 candidate nodes to receive storage
devices (up to 400 units of 6kWh at each node). The proposed methodology has been
implemented on a Linux server with two Intel® Xeon® E5-2680 processors @ 2.40GHz and
64 GB of RAM, using Julia 1.1, JuMP and solved via CPLEX 12.9.

In this case study, regarding routine failures, we consider that all (existing and candi-
dates) lines have a rate of failure of 0.4 times per year (i.e., on average they fail once every
2.5 years), regardless of their length. In addition, we consider five critical failures with a
rate of 0.01 times per year to mimic the nature of HILP events. Two of these critical failures
involve outages of two lines simultaneously, whereas the other three comprise the outage
of three lines simultaneously.
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Figure 2. 54-bus system—Existing line segments are the solid lines and candidate lines are the dashed
lines. Buses 2, 19, 20, and 26 are candidates to receive investment in storage.
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The routine and critical failures and their respective rates are used to build scenario
trees that represent typical days of operation. More specifically, at each stage, the scenario
tree node without any current failure has a probability to transition into a scenario tree
node with a single outage in any line of the system according to its failure rate. In addition,
such scenario tree node has a probability of transitioning into a scenario tree node with a
critical failure involving more than one line according to the failure rate associated with
this critical failure. We assume these failures rates are provided by the system operator.
Nevertheless, it is important to emphasize that we use these scenarios as an input for the
proposed methodology. Developing a scenario generation technique is out of the scope of
this paper.

We take into account four typical days whose demand profiles are depicted in Figure 3.
As the study comprises one year of operation, we consider that typical day one repeats
15 times, typical day two repeats 110 times, typical day three repeats 163 times, and typical
day four repeats 77 times, adding up to 365 days. As aforementioned, each typical day
is described via a scenario tree of six stages, where each stage consists of four hours of
operation.
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Figure 3. Demand profiles.

4.1. Investment Results

To illustrate the methodology, we compare three risk aversion policies and their impact
on the expansion plan. In the first one, we set λ = 0 in expression (3). This choice of λ
indicates a reliability-oriented expansion plan focused on minimizing the expected costs
associated with investment and operation of the system. In the second plan, we set λ = 0.5,
which corresponds to a choice for a reliability and resilience oriented expansion plan.
According to (3), this plan minimizes both expected value and CVaR of the overall costs. In
the third plan, we set λ = 1 in order to obtain an expansion plan that minimizes the CVaR
of the overall costs. Table 1 compares these three plans. As expected, when the CVaR of the
total costs is taken into account, more lines are needed. Notably, the number of storage
units is particularly influenced by an increase in the risk aversion parameter.
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Table 1. Obtained expansion plans.

Risk Aversion

λ = 0 λ = 0.5 λ = 1

Total investment ($) 271,618.59 602,996.97 698,766.82

Number of new lines 12 17 17

Number of storage
0 45 66units at node 2

Number of storage
0 30 46units at node 19

Number of storage
28 136 161units at node 20

Number of storage
13 71 105units at node 26

Computing time (s) 6813.41 6216.52 6202.456

4.2. Discussion: Out-of-Sample Analysis

To evaluate the performance of the three aforementioned obtained expansion plans,
we have performed an out-of-sample analysis, generating 2000 annual scenarios. In each
scenario, for each four-hour interval of the year, we generated a Bernoulli trial for line
states (1 in service; 0 failure) with probabilities according to the rate of routine and critical
failures previously mentioned. Then, the performances of the three plans resulting from
the different risk aversion policies were simulated and compared with a base case without
investments.

At first glance, this comparison can be seen in Figure 4, which depicts the inverse
probability distribution of the annual energy not served. As illustrated in this figure, the
base case (no investments) incurs in much higher probability to result in non-negligible
values of annual energy not served in comparison to the considered expansion plans.

Figure 4. Out-of-sample analysis—Inverse probability distribution of the annual energy not served.

In the next subsections, we present comparisons between the expansion plans and the
base case in terms of reliability and risk aversion metrics.

4.2.1. Reliability

In Table 2 and Figure 5, we present the results of this analysis in terms of reliability.
Table 2 shows three metrics, namely, average of annual energy not served (also known as
expected energy not served), SAIFI (system average interruption frequency index), and
SAIDI (system average interruption duration index). In addition, Figure 5 displays the
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number of hours (in logarithmic scale) for each non-negligible level of average hourly
energy not served. It is clear that the system is more reliable as investments are made and,
therefore, the energy not served decreases with the increase of the parameter λ. Moreover,
by analyzing solely Figure 5, one can conclude that if the average energy not served
(representing reliability) is the only metric of interest, the expansion plan considering
λ = 0 and even the system without any investment have an acceptable performance, as
the maximum average energy not served for the base case is less than 0.2% of the system
demand.

Table 2. Out-of-sample analysis—Reliability metrics: Average annual energy not served, SAIFI,
and SAIDI.

No Investment λ = 0 λ = 0.5 λ = 1

Average of annual energy
not served (kWh) 22,083.08 576.58 19.32 15.06

SAIFI 1.7361 0.0595 0.0097 0.0073

SAIDI (h) 2.9862 0.1802 0.0271 0.0241
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Figure 5. Out-of-sample analysis—Average hourly annual energy not served.

4.2.2. Risk Aversion

In order to compute risk-aversion metrics for each expansion plan and the base case,
first, we obtained the annual energy not served for each of the simulated annual scenarios
of operation. Then, with the 2000 values of annual energy not served in hand, we calculated
the CVaR5%, the CVaR1% and the worst case of annual energy not served, which are shown
in Table 3. Clearly, the system is less exposed to the risk of incurring in annual energy
not served as investments take place and the value of the risk aversion parameter λ is
increased.

In addition, for each hour of the year, we have computed the CVaR and the worst-case
energy not served across the 2000 scenarios. These results are reported in Figures 6 and 7.
As can be noticed, unlike Figure 5, Figures 6 and 7 explicitly illustrate the importance of
taking risk aversion into consideration to increase the resilience of the system by decreasing
its levels of energy not served during HILP events. More specifically, it can be noticed in
Figures 6 and 7 that the base case (no invesment) and the risk-neutral (and solely reliability-
oriented) expansion plan obtained with λ = 0 may incur in unacceptable levels of risk,
reaching more than 20% of energy not served in the worst case (and even more than 36% for



Energies 2021, 14, 8482 16 of 21

the base case). On the other hand, the system is much less exposed to risk when expansion
plans (obtained via the proposed methodology) for λ = 0.5 and λ = 1 take place.

Table 3. Out-of-sample analysis—Risk aversion metrics (CVaR5%, CVaR1% and worst case) of annual
energy not served.

No Investment λ = 0 λ = 0.5 λ = 1

CVaR5% of annual
energy not served 40,822.89 2975.84 151.93 114.88

(kWh)

CVaR1% of annual
energy not served 47,425.44 4476.05 400.03 276.97

(kWh)

Worst case of annual
energy not served 59,454.96 9234.41 831.60 740.66

(kWh)
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Figure 6. Out-of-sample analysis—CVaR1% of hourly energy not served.

Figure 7. Out-of-sample analysis—Worst case of annual energy not served.

4.3. Discussion: Risk-Aversion Parameter λ

In our proposed approach, the system planner is provided with opportunity to define
their level of risk aversion. There are different degrees of risk aversion. In finance, for
example, different investors may have different risk aversion profiles depending on how
much risk they are willing to take to achieve some level of investment return. In our case,
the more risk averse a system planner is, the bigger the amount of investment they will
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be willing to make to avoid the realization of scenarios associated with high loss of load.
Within our framework, the parameter λ represents the risk aversion of the system planner.
The higher the λ, the more risk averse the planner is because the CVaR will have more
weight on the objective function.

Providing general guidelines to set the value of the risk aversion parameter λ is not
a focus of this paper, as we assume the system planner will have more information to
determine the value of this parameter. However, here, we suggest three steps that can
be followed as a basic procedure to understand which values of λ can be suitable for a
particular planner. First, the planner should observe the investment costs associated with
each considered value of λ. In our case study, we show these costs in Table 1. By comparing
these costs with their investment budget, the system planner can immediately identify
which values of λ (and their corresponding investment plans) are actually achievable.
Second, the planners should consider the values of reliability indexes associated with
each λ. In our case study, we show these metrics in Table 2. Every utility company has
predefined targets of average annual energy not served—SAIFI and SAIDI, for example. In
this case, the values of λ that correspond to investment plans that comply with targets of
reliability are naturally good candidates. As we can see in Section 4.2.1, the investment
plan associated with λ = 0 already significantly improves reliability metrics. Third, the
planner needs to observe the risk aversion metrics, which we show in Table 3 for our case
study. Here, the planner would also need to define which values of CVaR and worst-case
annual energy not served are acceptable in order to choose the appropriate value of λ and
its corresponding investment plan. Once the aforementioned three steps are taken, the
planner will have investment plans associated with different values of λ that comply with
reliability and risk-aversion metrics. With these investment plans in hand, a choice for the
least-cost one will be natural.

4.4. Discussion: Imposing Investment Budget Constraint

In this section, we assess the behavior of the proposed methodology under an in-
vestment budget constraint. To do so, we have included an extra constraint that imposes
that the investment to expand the grid cannot exceed $300,000.00. The results in terms of
investments are shown in Table 4.

Table 4. Obtained expansion plans under investment budget constraint.

Risk Aversion

λ = 0 λ = 0.5 λ = 1

Total investment ($) 27,1618.59 300,000.00 300,000.00

Number of new lines 12 12 12

Number of storage
units at node 2 0 0 7

Number of storage
units at node 19 0 0 0

Number of storage
units at node 20 28 70 63

Number of storage
units at node 26 13 0 0

Computing time (s) 6813.41 9012.78 8467.41

As can be seen by comparing Tables 1 and 4, the investment for λ = 0 does not change
as the optimal investment plan for this case was already cheaper than the imposed budget
limit. For λ = 0.5 and λ = 1, however, there is a significant change in the investment
plan due to the restrictive investment constraint. More specifically, it is interesting to see
that the methodology invests in more batteries instead of including another line segment
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for λ = 0.5 and λ = 1 when investment is constrained. From λ = 0.5 to λ = 1, it is also
interesting to notice that location of the new storage units change. This result indicates that
storage devices are preferable than new line segments when investment is limited for the
54-bus system under consideration.

5. Conclusions

In this paper, we proposed a methodology to address expansion planning of distri-
bution networks in a risk-averse manner. In this methodology, we provide the system
planner with the flexibility to balance the trade-off between focusing on expected value
or CVaR of energy not served costs, therefore enabling an explicit form of controlling risk
and adjusting the grid planing to cope with routine and extreme event failures. Within this
context, our proposed methodology determines the optimal portfolio of lines and storage
devices to be installed in the grid so as to increase its reliability and resilience. In addition,
our methodology properly models the multistage nature of the energy management deci-
sions regarding reliability/resilience utilization of storage devices. Our numerical results
demonstrate that it is imperative to consider risk aversion while expanding distribution
grids in order to increase the resilience of distribution systems. In our proposed modeling,
if the system transitions to a scenario node where a certain line segment has failed at a
given stage, for the following stages (i.e., until the end of the typical day), the system will
either transition to scenario node with the same failure or with to a node with an additional
failure. In this case, investment made will have the potential to prevent or alleviate the loss
of load associated with the failures. As a potential future work, it would be also interesting
to model the repair time within our framework.
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Nomenclature

Sets
D Set of typical days.
ψN Set of indices of all buses (including substations and nonsubstations).
ψSS Set of indices of buses that are substations.
E Set of stages.
H Set of indices of all storage devices (including existing and candidates).
HC Set of indices of candidate storage devices
L Set of indices of all lines (including existing and candidates).
LC Set of indices of candidate lines.
LE Set of indices of existing lines.
M Set of indices of scenario tree nodes.
Md Set of indices of scenario tree nodes that belong to day d.
N+

m Set of indices of scenario tree nodes that are “kids” of scenario tree node m.
Tm Set of time periods of each scenario tree node.
Indices
d Index of typical days.
e Index of stages.

https://drive.google.com/drive/folders/1LmgufcIdIDbMgKbh0mY6wIK6abl914et?usp=sharing
https://drive.google.com/drive/folders/1LmgufcIdIDbMgKbh0mY6wIK6abl914et?usp=sharing
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e(m) Index of the stage to which scenario tree node m belongs.
h Index of storage devices.
l Index of lines.
n Index of buses.
m Index of scenario tree nodes.
m− Index of the scenario tree node that is the parent of scenario tree node m.
t Index of time periods.
Parameters
αCVaR CVaR parameter.

β
L
lj Maximum amount of flow in line l associated with jth piecewise linear function

used to linearize losses.

β
Tr
nj Maximum amount of substation injection in bus n associated with jth piecewise

linear function used to linearize losses.
γL

lj Slope of jth piecewise linear function used to linearize losses multiplied by
respective impedance ZL

l .
γTr

nj Slope of jth piecewise linear function used to linearize losses multiplied by
respective impedance ZTr

nj .
λ Risk aversion user-defined parameter (between 0 and 1).
πmd Probability of transition to scenario tree node m in day d.
C f ix

l Fixed investment cost of candidate line l.
CImb Cost of imbalance.
CL Cost of losses.
CSD, f ix

h Fixed investment cost of candidate storage device h.
CSD,var

h Variable investment cost of candidate storage device h.
CTr

nmd Injection cost in substation n at scenario tree node m and day d.
Fl Maximum capacity of existing line l.
GTr

n Limit of injection in substation n.
M Sufficiently large number.
nJ Number of piecewise linear functions used to linearize losses.

Pin
h Maximum charging of storage device h per stage.

Pout
h Maximum discharging of storage device h per stage.

p f Power factor.
rlen Length of line l.
S Number of time periods to fully charge storage devices.
SOChm0 Initial and final stored energy in storage device h.
V Minimum voltage.
V Maximum voltage.
xSD

h Maximum investment in storage device h.
ylmtd Parameter that determines if line l is available (being equal to 1) or unavailable

(being equal to 0).
ZL

l Impedance of line l.
Decision variables

βL
ljmtd Amount of flow in line l associated with jth piecewise linear function used to

linearize losses.
βTr

njmtd Amount of substation injection in bus n associated with jth piecewise linear
function used to linearize losses.

∆+
nmtd Positive imbalance in bus n.

∆−nmtd Negative imbalance in bus n.
ψmd CVaR auxiliary variable.
cTotal

md Total cost of scenario tree node m.
flmtd Flow in line l.
gTr

nmtd Injection via susbtation n.
pin

hmtd Charging of storage device h.
pout

hmtd Discharging of storage device h.
SOChmtd State of charge of storage device h.
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SOC†
hmd Auxiliary variable associated with the state of charge of storage device h.

umd CVaR auxiliary variable that represents the value at risk.
vnmtd Voltage in bus n.
x f ix

lmd Binary investment in line l.
x f ix,acu

lmd Accumulated binary investment in line l at scenario tree node m.

x f ix†
lmd Auxiliary variable associated with binary investment in line l at scenario tree

node m.
xSD, f ix

hmd Binary investment in storage device h.
xSD,var

hmd Continuous investment in storage device h.
xSD, f ix,acu

hmd Accumulated binary investment in storage device h at scenario tree node m.
xSD,var,acu

hmd Accumulated continuous investment in storage device h at scenario tree node m.
xSD, f ix,†

hmd Auxiliary variable associated with binary investment in storage device h at
scenario tree node m.

xSD,var,†
hmd Auxiliary variable associated with continuous investment in storage device h at

scenario tree node m.
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