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Abstract: Liming surface water is a fairly popular method of increasing the pH values and decreasing
the concentration of phosphates and heavy metals. According to the Environmental Protection
Agency (EPA) recommendations, the increase of water pH should not exceed 1.5. If surface water
is the source of water supply, liming is a process that reduces water contamination. This should
prevent the creation of an additional load for the water treatment plants in urban settlements. This
article is an interdisciplinary research study aiming to (1) determine and compare the doses of new
dispersed, thermally activated limestone and natural limestone, (2) find the relation between dose
value and initial water parameters (pH, Eh and total mineralization), and (3) create an artificial neural
network (ANN) model to predict changes in water pH values according to EPA recommendations.
Recommended doses were obtained from experimental studies, and those of dispersed, thermally
activated limestone were lower than the doses of natural limestone. Neural networks were used to
predict the changes in water pH values when adding different doses of limestone with different initial
water parameters using the ANN model. Four ANN models with different activation functions and
loss function optimizers were tested. The best results were obtained for the network with the ReLU
activation function for hidden layers of neurons and Adam’s loss function optimizer (MAPE = 14.1%;
R2 = 0.847). Further comparison of the results of the loss function and the results of calculating the
quality metric for the training and validation dataset has shown that the created ANN can be used to
solve the set research issue.

Keywords: limestone; water pH; surface water; artificial neural network; modelling

1. Introduction

Appropriate water management is essential for implementing Sustainable Develop-
ment Goals (SDGs). Management of surface water includes maintaining its desired quality.
Often, surface water is the only source of water supply for cities and villages [1], where low
water pH value may lead to serious problems in the water treatment system. Such water
contains increased concentrations of pollutants due to sediment dissolution in the lake
bottom, frequently needing additional resources (chemical reagents, additional purification
equipment) for the water treatment stations [2] required to purify surface waters following
the existing standards. The issue can be solved using natural limestone, a secondary
product of limestone quarries [3]. The use of limestone to maintain water pH within the
neutral values will allow the water treatment plant to operate without the use of additional
resources [4,5]. In addition, the application of dispersed, thermally active limestone may
help reduce the accumulation of secondary products of limestone quarries. Thus, land
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use (use of secondary products of limestone quarries) has an impact on water use, with a
cascading effect on reducing the use of additional resources for water purification.

Low pH of surface water can be a consequence of anthropogenic influence (eutrophica-
tion) and is one of the most common causes of water quality deterioration [6]. The problem
of low pH value can be solved using CaO, Ca(OH)2, Na2CO3, and limestone CaCO3 addi-
tives [7,8]. The use of limestone CaCO3 has several advantages over CaO due to the fact
that the addition of CaO increases water temperature since its interaction with water is an
exothermic reaction. The use of Ca(OH)2 also has a number of limitations associated with
the preparation of its solution and the use of dispensers. Moreover, when added to water,
its pH value can increase sharply and lead to chemical burns of flora and fauna. Na2CO3
is also applied for the neutralization of natural waters [9]. The disadvantage of using
this material is its high price compared to natural limestone. The use of CaCO3 provides
longer-lasting changes in water pH value compared with other neutralizing materials such
as CaO, Ca(OH)2, Na2CO3.

When in water, limestone dissolves slowly and therefore, the increase in water pH does
not cause chemical burns of flora and fauna [10]. In addition, carbonate can be an important
source of CO2 for photosynthesis in water, and thus crucial for the bioavailability decrease
in toxic divalent cations of heavy metals (e.g., Ni, Cd, Cu, Pb, Zn) due to the formation
of insoluble complexes with metals [11–14]. Furthermore, accurate liming practices often
result in decreased mercury contents in fish [15].

Limestone is the best and most frequently used neutralizing agent for treating acidified
surface waters worldwide, and the recommended limiting doses are indicative. The most
commonly used doses of fine-grained limestone are in the range of 750–1000 kg/ha (for the
typical depth of natural lakes at 1.0–1.2 m). The dose of limestone from the proposed range
depends on water pH level and sediment type in the reservoir bottom. A smaller dose is
applied when the bottom is sandy and a higher dose when the bottom is muddy [16].

The Swedish Liming Programme recommended another approach to determine the
dose of limestone [17]. The dose depends on water pH and retention time; for lake water,
the dose is 10–75 g/m3, and for watercourses—10–30 g/m3. Liming of lakes by adding
doses of 10–30 g/m3 should be repeated before the pH level exceeds 6. Mathematical
models can be applied to calculate limestone dosages [18].

Liming of surface water is not always mandatory, but EPA recommendations should
be followed if necessary. According to these recommendations, with a single application
of limestone, the pH increase should not exceed 1.5 [19]. It is very important to consider
that when limestone is added to water, the pH increase can also be high. Therefore, before
adding limestone to surface water, all factors that increase the pH value [20] must be
considered. These factors include initial pH values, total mineralization, redox potential,
and limestone dose [21,22]. The pH value and total water salinity affect the solubility of
minerals. When the initial pH value is lower, more minerals are dissolved, resulting in a pH
increase. The same pattern is observed when the mineral is dissolved in water characterized
by different mineralization. Analysis of these factors coupled with experimental studies
helps determine the optimal dose of limestone needed to reduce water pH following EPA
recommendations.

Trach et al. [23] studied the change in water pH in relation to the dose of natural
limestone. With the increase in the initial water pH values (from 3 to 7) and mineraliza-
tion (from 0.01 to 0.53 g/dm3), the required dose of limestone decreased. The results of
experimental studies have shown that with lower initial water values (pH and mineral-
ization), the required dose of limestone is also lower. To increase water pH to a neutral
value (pH ≈ 7) and ensure the safety of this process, the limestone must be added to water
several times at specific intervals. Such interval is necessary for adapting flora and fauna
after the increase in pH and water salinity. In addition to water pH and salinity, the pH
change with limestone also depends on water Eh [18]. The value of this water parameter
depends mainly on the amount of organic matter.



Energies 2021, 14, 8377 3 of 14

Next, the existing experience of using ANN in ecological engineering was analyzed.
The application of ANN for modelling time series of total phosphorus concentration was
described for the Odra River conditions [24]. Using sensitivity analysis, a relationship was
established between phosphorus concentrations and other water quality variables. Two
models were created to predict phosphorus concentrations, with one input variable and
fourteen input variables. Both ANN models showed good predictive ability with new
datasets.

Furthermore, the ANN model was applied to forecast the concentration of total
nitrogen and total phosphorus in the lakes from the United States [25]. ANN models were
trained, tested, and validated using three inputs (pH, conductivity and turbidity) that were
statistically correlated with the output data. The study results showed that ANN modelling
is a good tool for assessing nutrient concentrations in lakes.

Van et al. [26] predicted the concentration of dissolved oxygen in a river setting based
on hydrological parameters (temperature, pH, turbidity, conductivity, chemical oxygen
demand, biological oxygen demand, nitrate and phosphate). Multivariate regression
(MLR) and backpropagation neural network (BPNN) methods were used to establish these
relationships. The results of their study showed that the BPNN might accurately predict
the concentration of dissolved oxygen in the water.

Stamenković et al. [27] developed an ANN model to predict the concentration of
nitrates in river water. Their model was trained and tested on 26 input water quality
parameters. The results obtained showed the ability of ANN models to predict the con-
centration of nitrates with an average absolute error of 0.53 and 0.42 mg/dm3 for the
test data.

Krtolica et al. [28] constructed a multilayer feed-forward ANN model using macro-
phytes as independent variables for each water quality variable (dissolved oxygen, nitrate-
nitrogen, and orthophosphates). They selected 28 macrophytes as key water quality
indicators by sensitivity analysis for one environmental variable. The developed ANN
architecture presented a modelling approach that can be applied in different biological
systems.

Gebler et al. [29] performed ANN modelling of macrophyte indicators depending
on the physicochemical water parameters. They analyzed several indices of macrophyte
diversity (species richness-N, Shannon’s index-H, Simpson’s index-D and Pielou’s index-J),
as well as the ecological status index (macrophyte index for rivers-MIR). Alkalinity, conduc-
tivity, pH, nitrate and ammonium nitrogen, reactive and total phosphorus, and biochemical
oxygen demand were used as the input variables. The quality of the constructed models
was assessed using the calculated errors and the Pearson correlation coefficient.

Chen et al. [30] developed three models for estimating the concentration of dissolved
oxygen: backpropagation neural network (BPNN), adaptive neural fuzzy inference system
(ANFIS), and multilinear regression model (MLR). The input variables of the neural net-
work were water temperature, pH, conductivity, turbidity, suspended solids, total hardness,
total alkalinity, and ammonia nitrogen. The performance of the models was assessed using
the mean absolute error, root-mean-square error, and correlation coefficient. Comparative
analysis of the models showed that ANN had the best performance characteristics.

In the study performed by Wen et al. [31], the authors used a three-level backprop-
agation ANN with a Bayesian regularization learning algorithm. The input variables of
the neural network were pH, conductivity, chloride (Cl−), calcium (Ca2+), total alkalinity,
total hardness, nitrate-nitrogen (NO3

−N), and ammonia nitrogen (NH4
−N). The values of

obtained correlation coefficient and root-mean-square error showed the effectiveness of the
ANN model.

Singh et al. [32] described the training, validation, and application of ANN models
to calculate dissolved oxygen levels and biochemical oxygen demand. Their models used
eleven input water quality variables measured in river water. The efficiency of ANN
models was assessed using the coefficient of determination (R2) and root-mean-square
error, calculated based on values of the output variables measured and calculated in the
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models. The authors summarized that ANN models could be used to calculate water
quality parameters.

Csábrági et al. [33] aimed at predicting the concentration of dissolved oxygen based
on easily measurable parameters of water quality (pH, temperature, conductivity) and
runoff. Four linear and nonlinear models were adapted, i.e., multivariate linear regression
model, multilayer neural network (perceptron), radial base function neural network, and
general regression neural network model. The performance of the models was evaluated
using various statistical indicators. Nonlinear models gave better results than linear ones.
To determine the parameter that had the most significant impact on the performance of
the models, the authors conducted a sensitivity analysis, which showed that for all three
neural network models, pH played the most important role in estimating the content of
dissolved oxygen.

As indicated above, ANN has been successfully used for modelling various physic-
ochemical processes in different site conditions. This is because most environmental
processes are nonlinear due to their complex chemical and physical nature. Nevertheless,
the task of assessing the permissible pH level when adding limestone to water has not been
fully accomplished.

This article is an interdisciplinary research paper aiming at:

(1) Determination and comparison of the doses of new dispersed, thermally activated
limestone and natural limestone,

(2) Finding the relation of dose value to initial water parameters (pH, Eh and total
mineralization values).

(3) Creation of a model using artificial neural networks (ANN) to predict changes in
water pH values in line with EPA recommendations.

The doses of dispersed, thermally activated limestone were determined, taking into
account EPA recommendations, the use of which has an advantage over natural limestone.
The limestone application helped to reduce the accumulation of secondary products of
limestone quarries.

In addition, the systematization of various scientific directions in one study is the
scientific novelty of this research.

2. Materials and Methods
2.1. Materials

The material used in the study was dispersed, thermally activated limestone mined
in a quarry in Ternopil, Ukraine (Figure 1). Preparation of such limestone in the Ternopil
Quarry enterprise is carried out according to a specific algorithm (Figure 2). Directly at
Ternopil Quarry is an accumulation of fine fractions (0–40 mm) of carbonate rocks, which
do not satisfy the requirements for building mortar fillers and are unsuitable as building
stone. Therefore, the enterprise produces dispersed limestone from unused limestone
screenings. Such limestone is used as a Ca-rich mineral fertilizer.
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The raw materials for the production of dispersed limestone are primary and sec-
ondary crushing screenings with sizes up to 40 mm. Wet limestone is loaded into a
shaft dryer. The gas temperature at the dryer entrance is 200–250 ◦C, and at the dryer
exit-100–120 ◦C. A pipe is used for drying and separating the material that is 1 mm in size.
Particles larger than 1 mm settle in the pipe and are sent for grinding in a hammer mill,
after which they return to the drying pipe. This technological process produces dispersed,
thermally activated limestone with a grain size below 0.001 mm.

2.2. Methods

As input values of the model, the following parameters were used: pH, redox potential
(Eh), total dissolved solids (TDS), and various doses of dispersed, thermally activated
limestone. For experimental studies, the applied doses of limestone were at 0.025, 0.05, and
0.1 g/dm3. Initial water pH values were 4.0, 5.0, and 6.0, Eh was 120, 280, and 420 mV, TDS
was 0.02, 0.240, and 0.56 g/dm3. Experimental studies were performed at a temperature of
15 ± 0.5 ◦C.

Experimental studies were carried out under static conditions. A magnetic stirrer
(model JNE FK-25W) was used to mix water and the analyzed limestone at a mixing speed
of 0–2400 rpm and a maximum mixing volume of 3000 mL.

The changes in pH and TDS were determined using a multimeter (Milwaukee MW802,
Rocky Mount, NC, USA). Eh was measured using an ORP meter (Milwaukee MW500
PRO, Rocky Mount, NC, USA). The MW802 has TDS measuring ranges up to 4000 ppm
(4 g/dm3). The pH measuring ranged from 0.00 to14.00. Graduation was set as 0.10 pH,
10 ppm (0.01 g/dm3). Accuracy (25 ◦C): ±0.20 pH, TDS: ±0.02% of full scale. MW500
PRO measures Eh in a ±1000 mV range. The accuracy is at (25 ◦C): ±5 mV. Total dissolved
solids (TDS) represent a measure of the dissolved combined content of all inorganic and
organic substances present in a liquid in molecular, ionized, or microgranular (colloidal sol)
suspended form (g/dm3). TDS concentrations are often reported in parts per million (ppm)
or mg/L. Water TDS concentrations were determined using a digital meter. Before starting
a series of measurements, the multimeter was calibrated using three buffer solutions (pH
values at 4.00, 6.86 and 9.01), according to the recommendations for their use to ensure
measurement accuracy. To adjust the required initial pH values, Eh and TDS, 0.1 M HCl,
0.1 M NaOH, and a potassium humate solution were applied. For experimental studies
of the dependence of limestone dissolution on water Eh, a 10% solution of potassium
humate was prepared. Chemical characteristics of potassium humate were as follows:
water solubility (dry basis) —100%, humic acid (dry basis)—60%, fulvic acid (dry basis)—
10.0–15.0 %, and potassium (K2O dry basis)—10.0%–12.0%, moisture—15.0%.

2.3. ANN Modelling

ANN can be thought of as a system of interacting artificial neurons. Connected in
a large network with controlled interactions, neurons can solve fairly complex problems.
The advantage of neural networks over mathematical methods is that they can look for
patterns in fuzzy data, learn and systematize solutions. A neural network can generalize
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and highlight hidden dependencies between input and output data. Once trained, the
network can predict future values based on previous values and various existing factors.

Within the framework of this study, data were collected, analyzed, and prepared, four
ANN models were created, and a comparative analysis of their effectiveness was carried
out. Normalization of input variables and ANN modelling, training, and testing were
performed using the Keras library in the Python programming language. The results were
visualized using the Matplotlib library in the Python programming language.

The ANN architecture proposed in this study has one input layer, two hidden layers
and one output layer of neurons. The neural network architecture is a specific neuron
arrangement and connection. The scheme of ANN architecture used in this study is shown
in Figure 3. The input layer consists of four variables, the first hidden layer has 128 neurons,
the second hidden layer has 64 neurons, and the output layer consists of one neuron.
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The number of hidden layers and neurons was determined empirically. Initially, one
hidden layer of neurons was used (n1 = 128); in this case, the model showed a large error
(MAPE = 48.3%). It was decided to increase the number of hidden layers and neurons
(n1 = 128, n2 = 64). This led to an improvement in the ANN model performance with a
slight increase in the calculation time.

In the first stage of ANN use, input layer neurons get an input signal and send an
output signal to the hidden layer neurons. The neurons in the hidden layer calculate
activation and send a signal to the neurons in the output layer. For an ANN, the total input
signal is calculated by the formula [34]:

net =
n

∑
i=1

xiwi (1)

where: xi are input variables, wi are weights.
The neurons of the output layer calculate activation and send the input signal. The

activation function is used to calculate the neuron activation. In this study, ANN models
were tested using two activation functions: the sigmoid (logistic) function and the ReLU
(Rectified Linear Unit).

The sigmoid function is a smooth, monotonically increasing nonlinear function, which
is defined as [34]:

f (x) =
1

1 + e(−x)
. (2)
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This function can be used in neural networks with many layers, as well as train these
networks using the backpropagation method. The sigmoid function has the advantage of
normalizing the output to the range (0, 1). This is useful when the resulting layer value
must represent the probability of a random variable.

Recently, the ReLU activation function has gained wide popularity. If the argument
takes a negative value when calculating this function, then the function is equal to 0; in the
case of a positive value of the argument, the function returns the number itself:

f (x) =
{

0 f or x < 0
x f or x ≥ 0.

(3)

The advantage of ReLU is activation sparsity. In networks with a large number of
neurons, the use of the sigmoid function entails the activation of almost all neurons, which
can affect the model performance. When using ReLU, the number of included neurons
becomes smaller due to the function characteristics, and the network itself becomes more
productive.

The next stage of ANN operation is the calculation of the loss (error) function. The loss
function measures “how good” the neural network is for a given training set and expected
responses. The loss function is responsible for assessing how well the model predicts the
real value, and building the model comes down to solving the problem of minimizing the
value of this function at each stage. The calculation of the loss (error) includes comparing
the actual and target values for each neuron. The ANN learns until it achieves the global
minimum error between the actual and target data.

In this study, the Mean Square Error (MSE) was used to calculate the loss function:

MSE =
1
n

n

∑
i=1

(
Y′i −Yi

)2 (4)

where:
Y′i is the output calculated by the model, Yi is the target output.
The squared deviation is calculated for each dataset, after which the resulting values

are summed up and divided by the total number of datasets. The closer the obtained value
is to zero, the more accurate the model is. This calculation method is highly sensitive to
outliers in the sample or samples where the range of values is large.

For the appearance of overfitting, the early stop method was used [35]. Training the
network stops when the monitored metric no longer shows improvement. The monitored
metric was validation loss. A training loop checks whether the loss no longer decreases at
the end of every epoch. In such a case, the training stops.

Various methods can be used to minimize the loss function. In this study, two gradient
descent methods were tested to optimize ANN training: Stochastic Gradient Descent (SGD)
and Adaptive Moment Estimation (Adam).

The SGD algorithm updates the neural network weights using a single training sample
at each step [36]. SGD does not perform unnecessary calculations since the loss function
is calculated not for the entire training set but only for one example. This contributes
to the algorithm learning much faster. However, because at each step of the algorithm,
the gradient is calculated based on different sets of initial data, updates of the weight
coefficients are accompanied by frequent fluctuations of the objective function. Thus, on
the one hand, SGD allows to move to potentially better local minima quickly, but on the
other hand, large fluctuations significantly slow down the convergence.

According to Kingma and Ba [37], Adam’s method is computationally efficient, re-
quires little memory, is invariant to diagonal scaling of gradients, and is well suited for
large data and parameter problems. The rule for updating the weights in Adam’s method
is determined by using estimates of two different moments; the first uses the previously
calculated values of partial derivatives, and the second uses their squares.
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In this study, to assess the performance of the ANN models presented, the quality
metric Mean Absolute Error (MAE) was used. MAE is the average sum of the absolute
values of the difference between the real and predicted values [38]:

MAE =
1
n ∑n

i=1

∣∣Y′i −Yi
∣∣ (5)

The metric functions are similar to loss functions, except that the results of the use of
the metric function are not applied in the model training.

MAE is similar to MSE in many ways but is less sensitive to outliers. The main reason
is that in MSE when squaring errors, the outliers (which usually have higher errors than
other samples) dominate the final error and affect model parameters.

One of the primary tasks of this study was the choice of the optimal ANN model.
For comparative analysis of the accuracy of four neural networks, the Mean Absolute
Percentage Error (MAPE) and the Coefficient of determination (R2) were used.

MAPE is a ratio defined by Formula (6) [39]:

MAPE =
100%

n ∑n
i=1

∣∣∣∣Yi −Y′i
Yi

∣∣∣∣ (6)

R2 is a statistical measure used in various models, for example, for predicting future
outcomes or testing hypotheses based on other related information. R2 provides a measure
of how well the observed results are reproduced by the model, based on the proportion of
the total variation in the results explained by the model. The values of the coefficient of
determination belong to the interval [0, 1]. R2 can be calculated by the formula [40]:

R2 = 1− ∑
(
Yi −Y′i

)2

∑
(
Yi −Yi

)2 (7)

where:
Yi—is the mean of the target output data.
After ANN training, the process proceeds to the validation stage.
The aim of this stage is to guarantee that the ANN can settle resumptive data on the

training stage [41]. The next phase is the testing stage that involves checking the network’s
performance on data that was never seen during the previous steps [42].

3. Results and Discussion

The results of the experimental studies carried out using the described methodology
were assembled in tables. A fragment of the research results is presented in Table 1.

Table 1. Results of experimental studies of water pH increase using dispersed, thermally activated limestone.

pH ∆pH Eh, mV ∆Eh TDS, g/dm3 ∆TDS CaCO3, g/dm3 t, Equilibrium Time, Min

4.10 3.95 120 −105 0.02 70 0.1 80
4.10 3.78 120 −90 0.02 40 0.05 80
4.10 2.36 120 −72 0.02 20 0.025 50
5.01 3.78 120 −92 0.02 50 0.1 70
5.01 3.52 120 −79 0.02 40 0.05 70
5.01 2.3 120 −60 0.02 20 0.025 40
6.02 2.88 120 −71 0.02 40 0.1 50
6.02 1.97 120 −62 0.02 20 0.05 40
6.02 1.78 120 −50 0.02 10 0.025 30

The obtained results show the possibility of using dispersed, thermally activated
limestone to increase the pH of surface waters. The increase in water pH was influenced
by initial water pH, TDS, and the dose of limestone. The prepared model solutions
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with different water Eh values did not significantly affect the increase in water pH when
limestone was added at various doses to water with different pH and TDS values. Thus,
analysis of the obtained results made it possible to establish the recommended doses of the
studied limestone, presented in Table 2.

Table 2. Recommended doses of dispersed, thermally activated limestone in surface water.

pH Water with TDS 0.02 g/dm3 Water with TDS 0.24 g/dm3 Water with TDS 0.56 g/dm3

Doses of CaCO3, g/m3 Doses of CaCO3, g/m3 Doses of CaCO3, g/m3

4 25 (three times a year) 25 (twice a year) 25 (twice a year)
5 25 (twice a year) 50 (once a year) 25 (once a year)
6 50 (once a year) 50 (once a year) 25 (once a year)

It is important to remember that each water body is unique and individual in terms of
its physical and chemical composition. In addition, the terrain, climate, and anthropogenic
factors affect the physicochemical composition of the reservoir. Therefore, when deciding
on the implementation of reservoir liming, in addition to the proposed doses of dispersed,
thermally activated limestone (Table 2), the results of monitoring a specific water body
should also be considered. By combining monitoring data and results of experimental
studies, it is possible to make a determination regarding the required dose of the limestone.

After laboratory studies, a matrix was formed from the obtained data, which contained
336 rows and five columns (four columns (pH, Eh, TDS, doses CaCO3) input variables,
one column (∆pH) target output data). The ANNs model effectiveness is depended on
the data and their preparation. After the stage of data collection, they were normalized.
Normalization is a procedure of data processing when the values are brought to a certain
specified range [43]. To normalize the data, the arithmetic mean and standard deviation
were calculated for the input data. Then the arithmetic mean was subtracted from the
input data, and the result was divided by the standard deviation. The data matrix was split
into three datasets: 60% was the training set, 20% was the validation set, and 20% was the
testing set. The data were trained, validated, and tested using four ANN models.

Table 3 shows the characteristics of the ANN models and a comparison of their
performance. Model performance testing was carried out for 20, 50, and 100 epochs. The
number of epochs indicates how many times the model was exposed to training. Thus,
an epoch is one pass forward or backwards for all learning examples. An increase in the
number of epochs over 100 did not lead to any improvement in the model performance.

Table 3. Comparison of the ANN models performance.

Parameters
Models

ANN 1 ANN 2 ANN 3 ANN 4

activator Sigmoid Sigmoid ReLU ReLU
optimizer Adam SGD Adam SGD

epochs 20 50 100 20 50 100 20 50 100 20 50 100
R2 0.137 0.224 0.351 0.184 0.184 0.132 0.555 0.771 0.847 0.667 0.794 0.747

MAPE, % 45.6 41.9 46.1 46.1 46.1 43.9 28.6 18.9 14.1 26.6 17.9 17.8

Analysis of MAPE and R2 indicators showed that the ANN 3 network achieved the
best performance results (lowest Mean Absolute Percentage Error and highest Coefficient
of determination). This network used the ReLU activation function for neurons hidden
layers and the Adam loss function optimizer. The best performance was achieved for
100 epochs: MAPE = 14.1%; R2 = 0.847.

The research results are presented for the ANN 3 network and allow assessment of its
adequacy and possible use in forecasting new datasets. Figure 4 shows the comparison of
the loss function results for the training and validation datasets. The maximum MSE in
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the first epoch was: training set—1.0597; validation set—0.7914. The minimum MSE in the
100th epoch were training set—0.0443 and validation set—0.1725.
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Figure 5 shows a comparison of the results of calculating the quality metric for the
training and validation datasets. The maximum MAE value in the first epoch was training
set—0.7914 and validation set—0.6721. The minimum MAE for the training set (0.1399)
was reached in epoch 96 and the validation set (0.2439) in epoch 78.
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The histogram of errors (Figure 6) shows that most of the errors fall within the range
from 0 to 0.25, although there are some anomalous errors.
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In general, the prediction values fit reasonably well against the target values, except
for a few outliers. Most likely, there are significant anomalies in the output for these
values that require data cleanup. The results of the R2 calculation also serve as indirect
confirmation of the anomalies in the data. For example, there are input datasets whose R2

values are −4.73 and −1.60.
One of the main methods to analyze the ANN model is the comparison of various

indicators (mean absolute percentage error, MAPE; root mean square error, RMSE; mean
square error and MSE), and the coefficients of determination (R2) and regression (R). Tijanić,
Car-Pušić and Špera [44] argued that R2 and MAPE are the most often applied estimators
of the model accuracy. The authors set the goal of their study to predict the cost of road
construction. The values of R2 and MAPE indicators were 0.959 and 13%, respectively.
Mounter et al. [45] investigated the capabilities of ANN to improve the accuracy of long-
term predictions of building energy consumption. The MAPE indicator was 12.03%. Kulisz
et al. [46] aimed to study ANN ability to model the water quality index in groundwater.
They used the coefficient of determination (R2 = 0.998) as a measure of ANN accuracy. Szul,
Nęcka & Mathia [47] used five different ANN to predict energy consumption. To assess
the quality of the developed models, the MAPE and R2 indices were used, the values of
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which were 13.7% and 0.8, respectively. Ding et al. [48] used the ANN model to predict
the power output of a PV system. Their results showed 10.06% and 18.9% MAPE forecast
errors during sunny and rainy days, respectively.

Thus, comparing the MAPE and R2 indicators of the created ANN model
(MAPE = 14.1%; R2 = 0.847) with other cases, it can be stated that, in general, the degree of
agreement between the measured and modelled data is satisfactory.

The low level of the ANN model results (MAPE and R2) were associated with two
causes. Firstly, the peculiar ability of limestone to increase pH values faster at lower doses.
When limestone is added to water, such water becomes a complex dynamic system.

The water pH value is the ratio of H+ to OH−. The peculiarity of such a system is as
follows:

CaCO3 ↔ Ca2+ + CO3
2 (8)

The pH value increases due to CaCO3 dissolution. The peculiarity of the CaCO3
property is that its dissolution occurs up to a certain point. Then, a reverse process begins,
which is the interaction of Ca2+ with CO3

2− and the formation of CaCO3. Secondly, the
measurement of the values of water quality parameters (pH, Eh, TDS) was influenced by
the permissible metrological errors of the measuring instruments.

Based on the data obtained, the authors believe that the created ANN can be used to
achieve the study task and could later be applied to predict changes in the water pH value
when adding various doses of limestone.

4. Conclusions

The presented approach allowed us to determine and compare the doses of new
dispersed, thermally activated limestone and natural limestone. It was revealed that
the dose of dispersed, thermally activated limestone was lower than the dose of natural
limestone. It was also found that the increase in water pH was influenced by the initial
water pH, TDS, and the dose of limestone. Therefore, recommended doses of dispersed,
thermally activated limestone in surface water were established. Moreover, four ANN
models were tested that varied in the use of different activation functions and the loss
function optimizers. For a comparative analysis of ANN accuracy, the Mean Absolute
Percentage Error (MAPE) and Coefficient of determination (R2) were used. The best
performance results had the network with the ReLU activation function for neurons hidden
layers and the Adam loss function optimizer (MAPE = 14.1%; R2 = 0.847). The study had
limitations that could influence the results of the ANN model. The first was the peculiarity
of limestone, which can increase pH values faster at lower doses. The second showed that
the measurement of the values of water quality parameters (pH, Eh, TDS) was influenced
by the permissible metrological errors of the measuring instruments.
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