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Abstract: Vuilleumier refrigerators provide cooling power by utilizing a heat source at temperatures
above the ambient. This is particularly helpful in situations where waste heat is available and other
power sources are limited. Vuilleumier refrigerators come in different technical configurations; here
we analyze the thermodynamic performance of a configuration utilizing two displacer pistons with
integrated regenerators. More specifically, we optimize the cooling power by optimizing the piston
movement for a range of operation speeds. The optimization is based on the AS motion class for
cyclic dynamics and uses an endoreversible model for the refrigerator. Our focus is on the influence
of the regeneration extent present, and we find performance gains of about 17% for high regeneration
extent and of about 28% for lower regeneration extent.

Keywords: piston motion optimization; endoreversible thermodynamics; vuilleumier refrigerator;
cooling power optimization; heat-only operation

1. Introduction

In Vuilleumier machines [1,2] a working gas is cyclically transferred back and forth
between three working spaces, each of which is thermally coupled to a different external
heat bath and is thus maintained at a different temperature level. This is schematically
shown in Figure 1. The gas transfers are induced by two independently movable displacer
pistons. In order to reduce thermal mixing—and the resulting entropy production—during
those gas transfers, two regenerators are employed in the ports between the hot and
medium as well as the medium and cold working spaces.

In fact, Vuilleumier refrigerators come in different technical configurations. The
two regenerators mentioned above often consist of an open-pored metal matrix that is fixed
at the main structure of the machine. Here however, we consider a different configuration
where they are integrated in the displacer pistons, as depicted in Figure 1. Apart from
the regenerator configuration, different types of piston drives are possible. The displacer
pistons can, for example, run in different cylinders where they are driven by a mechanical
linkage. Alternatively, a free-piston configuration can be used, where the displacers are
oscillators constituting a pressure-driven, damped mass–spring system.

In any case, the control of the two displacer pistons is performed in such a way that it
leads to the thermal compression and expansion of the working gas, which in turn induces
heat fluxes between the three external heat baths and the working spaces. Thus, heat
coming from the hot bath can be utilized to extract heat from the cold bath and reject
both heats to the medium bath. Correspondingly, the Vuilleumier machine can act as a
heat-driven heat pump such as in residential heating [3–5], or it can act as a heat-driven
refrigerator for low-temperature cooling [6–10], air conditioning [11], or waste heat-driven
cargo cooling such as on fishing vessels [3].
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Figure 1. Schematic representation of a Vuilleumier engine consisting of the three subsystems 1, 2,
and 3, which are connected by two displacer pistons with postions xH(t) and xC(t). The subsystems
represent the working spaces containing the working fluid characterized by its temperature Ti, its
pressure pi , and its chemical potential µi. The working spaces exchange entropy fluxes JS

1,h, JS
3,m, and

JS
2,c with external heat baths with temperatures TH > TM > TC, respectively. The pistons control the

volume of the adjacent subsystems and additionally act as regenerators. Note the surface differences
between both ends of the hot-side piston, which is required in order to gain the power to operate the
piston drive.

The thermodynamic operation of a Vuilleumier refrigerator can be understood as
a combination of a Stirling engine and a Stirling refrigerator in the sense that both—
the Vuilleumier refrigerator and the combination—lead to the same overall changes in
the environment:

In the combination, the clockwise-run Stirling cycle in the Stirling engine takes heat
from the hot bath, disposes it to the medium bath, and produces work. This work is
transferred to the counterclockwise-run Stirling cycle in the Stirling refrigerator and is
employed there to pump heat from the cold bath to the medium bath. Additionally, part
of the work gained in the clockwise-run Stirling cycle may be used to compensate for
frictional losses of the displacer pistons and the pressure drop across the regenerators. In
the Vuilleumier refrigerator, the described work transfer occurs internally, and the cold side
of the driving Stirling engine and the hot side of the refrigerating Stirling engine share the
same working space (the medium working space in Figure 1), from which heat is disposed
into the environment.

The control (or motion) of the displacer pistons strongly influences these processes. In
real Vuilleumier machines the displacer motion is typically close to the harmonic functions
of time. This is, however, not necessarily optimal regarding the cooling power or coefficient
of performance. In fact, Chen et al. [12,13] showed that significant performance improve-
ments are possible by adapting the displacer piston motion of a Vuilleumier machine.
In this particular case, a dwell-based piston motion [14] was used, where the displacers
were held in their extreme positions for defined shares of the cycle time. Interestingly,
for different Stirling engines, which are thermodynamically closely related to Vuilleumier
machines, it was found that power-optimal piston motions tend to involve such piston
dwells [15–18].

The aim of this investigation is to determine the possible gain in cooling power by
optimizing the displacer piston motion. In particular, we are interested in the dependence
of this potential gain on the regeneration extent of the regenerators used as well as on the
engine speed.

In order to optimize the piston motion, several possibilities exist. One is to use
optimal control theory, which has already been applied successfully to a variety of thermal
devices ranging from nano devices [19] to, for instance, diesel [20–22] and light-driven
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engines [23–25]. However, with the increasing complexity of thermal devices, the numerical
effort of using control theory is also growing rapidly. In particular, the use of cyclic optimal
control theory requires additional considerations with added numerical demands due to
the settling times necessary to reach cyclic operation. Thus, in this study, we opt for a novel
approach by using, on the one hand, an endoreversible model of limited complexity that
captures the main loss mechanisms in a Vuilleumier refrigerator, and on the other hand,
the recently introduced AS (“adjustable sinusoidal”) motion class for cyclic dynamics [17],
which provides a parameterized set of functions for the piston movement. This approach
lead to a much lower numerical demand from the optimization procedure already present
in our work on the optimized piston motion for a Stirling engine [18]. We note however,
that solutions based on the AS motion class give only lower bounds on the performance
gains, which might later be determined by control theory for this given engine model. In
that sense, our work can provide directions for more elaborate studies in the future.

Our presentation is organized as follows. We start with an introduction to the AS mo-
tion class, which will be used for the piston motion. Then, we develop the thermodynamic
model of the Vuilleumier refrigerator based on Endoreversible Thermodynamics. In partic-
ular, the important loss mechanisms in heat and gas transport as well as frictional losses
are considered. We also describe the regeneration process in detail using the r-regenerator
model developed in [18]. Subsequently, the optimal piston motion is determined and the
cooling power gains are studied in relation to the engine speed. Moreover, the changes
in the piston motion compared to the standard case are presented. Finally, the design
requirements to guarantee a heat-only driven operation of the Vuilleumier refrigerator
without auxiliary power are discussed.

2. The AS Motion Class

The AS (“adjustable sinusoidal”) motion class for cyclic dynamics [17] describes a
set of functions, which are parameterized by the two parameters σ and δ. All members
fAS(x; σ, δ) of the class are periodic with period 1: fAS(x; σ, δ) = fAS(x + 1; σ, δ). The
motion class is based on the two defining functions

f1(x; σ) = (sin(2πx + σ sin(4πx)) + 1)/2 (1)

and

f2(x; δ) = x + δ(1− cos(2πx)), (2)

which are combined to give the AS motion function

fAS(x; σ, δ) = f1( f2(x; δ); σ). (3)

For our application it is helpful that the AS motion class allows for the recovery of the
standard sin function scaled to values between 0 and 1 by setting σ = δ = 0. Moreover, to
ensure the desired shape and features of fAS, the parameters σ and δ are constrained to
the intervals −0.13 < σ < 0.6 and −0.08 < δ < 0.08. The bounds on sigma and delta are
chosen such that fAS features only one interval with values close to its maximum value and
one close to its minimum value. In addition, for vanishing delta and minimal sigma the
resulting piston motion nearly has constant speed during extended periods of the cycle.

The influence of the two parameters, σ and δ, is shown in Figures 2 and 3, respectively.
Positive σ leads to a prolonged residence time close to the extreme values 0 and 1, with
a corresponding faster movement between these phases. Negative values shorten the
periods close to the extreme values. The parameter δ allows to shift that time, when the
start/end value of 0.5 is crossed during the cycle, to shorter or longer times, as can be seen
in Figure 3.
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For the configuration of the Vuilleumier refrigerator with its two pistons containing the
regenerators chosen here, we set the position of the two pistons xH(t) and xC(t) as follows:

xH(t) = s fAS(t/t0; σ1, δ1),

xC(t) = s fAS(t/t0 + ∆; σ2, δ2),
(4)

where t0 is the cycle time, and s is the stroke length of the pistons.
Note the parameter ∆, which facilitates a phase shift between the two piston motions.

The standard harmonic dynamics of the Vuilleumier refrigerator has a phase shift of π/2
leading to ∆ = 0.25 and is defined by σ1 = δ1 = σ2 = δ2 = 0.

�� σ=����� δ=�
�� σ=-��� δ=�
�� σ=����� δ=�

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

�

� �
�
(�
�σ
�δ
)

Figure 2. The defining function fAS(x; σ, δ) of the AS motion class for three values of the shape
parameter σ compared to standard sinusoidal motion (ST) at σ = 0. Note that fAS(x; σ, δ) is periodic
with period 1 as a function of its independent variable x. For values σ < 0, the shape of the motion is
shifted to be more triangular, while for values σ > 0, the shape becomes increasingly square-like.
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Figure 3. The defining function fAS(x; σ, δ) of the AS motion class for three values of the shape
parameter δ. This parameter controls the time fraction spent above and below 1/2. Equal times spent
within both regions are found at δ = 0.

3. An Endoreversible Model of the Vuilleumier Refrigerator

Establishing realistic bounds for the performance gains of Vuilleumier refrigerators
through an optimized piston motion requires an adequate treatment of the important loss
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terms in a real device. At the same time it is necessary to obtain a numerically efficient
model that is suitable for performing optimizations. Therefore, in this study, we use a
modeling ansatz for the Vuilleumier refrigerator that is based on Endoreversible Thermo-
dynamics [26–28]. In essence, the idea is that the overall non-equilibrium system can be
described as a network of internally reversible (“endoreversible”) subsystems that interact
in irreversible ways. Thus, the subsystems can be modeled with the tools of equilibrium
thermodynamics, while irreversibilities are captured in the transfer laws that constitute the
interactions of those subsystems. This network approach leads to a clear model structure
and has also been used in other science fields in connection with control problems; for
instance, see [29]. The advantages of the endoreversible approach become apparent in dif-
ferent types of thermodynamic systems such as solar-power driven thermal engines [30–33]
and chemical devices [34–38]. At the heart of Endoreversibe Thermodynamics are of course
heat engines operating at deterministic [39–42] and randomly varying conditions [43–45].
Recent applications of the underlying ideas cover thermoelectric devices [46,47], waste
heat recovery [48], and optimization studies [49–52].

The endoreversible approach maps real systems undergoing thermodynamic pro-
cesses into a network of subsystems, which exchange thermodynamic extensities and the
accompanying energy. The extensities of interest here are the entropy S, volume V, and
mol number n, but more generally, the extensities (extensive thermodynamic variables)
may also include charge, momentum, or angular momentum. If an extensity α is added to
a thermodynamic subsystem i by an extensity flux Jα

i,k through a contact point (i, k), the total
content Xα

i of this extensity in subsystem i can be described by a balance equation:

Ẋα
i = ∑

k
Jα
i,k, (5)

where the sum runs over all contact points of extensity α in subsystem i. The endoreversibil-
ity assumption for a subsystem requires the subsystem to be in thermal equilibrium, which
means that its energy can be expressed as a function of its extensive variables [53]:

Ui = Ui(Xα). (6)

For subsystem i, one then knows all intensive thermodynamic variables, referred to
here as intensities

Yα
i =

∂Ui(Xα
i )

∂Xα
i

, (7)

through the differentiation of U with respect to the corresponding extensity Xα
i . Subsystems

which obey the relations above are referred to as finite reservoirs. As opposed to that,
for infinite reservoirs (as for instance an infinite-capacity heat bath), the internal energy is
infinite and therefore instead of defining Ui(Xα

i ) the intensity values Yα
i are prescribed.

In this case, the Yα
i are not changed as extensity fluxes enter or exit the infinite reservoir.

Finite and infinite reservoirs build a first group of subsystems.
The second major group of subsystems encompasses engines. Endoreversible engines

operate reversibly and can redistribute energy “carried” into it by an extensity Xα to
another extensity. However, contrary to reservoirs, engines have no storage facility for
extensities, such that in the model used here the inflows of all extensities have to balance at
each moment:

0 = ∑
k

Jα
i,k for each α. (8)
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The same applies for the accompanying energy fluxes:

0 = ∑
α,k

Yα
i,k Jα

i,k = ∑
α,k

Iα
i,k, (9)

where we made use of the relation Iα
i,k = Yα

i,k Jα
i,k, which couples an energy flux to its “carrier”

extensity flux through the corresponding intensity. Note that for an engine i, the intensities
Yα

i,k associated with an extensity α can be different at each of its contact points (i, k). This is
not so for reservoirs, which are usually considered to be homogeneous, thus causing each
intensity Yα

i to have the same value at all contact points of a reservoir.
Reservoirs and engines are the nodes of the endoreversible network and will be labeled

by a sequence of upper case letters or numbers in the endoreversible model developed
below. The connections between the nodes are built up by interactions, which describe the
transport of extensities and the accompanying energies between the nodes. Interactions
will be labeled by sequences k of lower case letters, and we will use those to label the
contact points at subsystem i of that interaction by the tuple (i, k).

Typically, an interaction is defined by transport equations such as the Fourier law for
heat transport or the diffusion equation for particle transport. Technically, an interaction is
defined by specifying its set of contact points and the extensity fluxes at each contact point.
Alternatively, as the extensity flux and the corresponding energy flux are coupled by the
contact point intensity in Iα

i,k = Yα
i,k Jα

i,k, one can specify the energy flux of the extensity α.
Such interactions can be reversible or irreversible, and below we will encounter both

cases. In the interactions considered here, all extensities apart from entropy are conserved:

0 = ∑
i

Jα
i,k for each k and each α other than S. (10)

In a reversible interaction the entropy is also conserved, while in an irreversible
interaction entropy will be produced and—as there is no storage for entropy—has to leave
the interaction through an entropy contact point. Thus, an entropy contact point must
be part of the contact point set of an irreversible interaction. Sometimes, if one is only
interested in the energetic features of certain interactions, one does not specify their carrier
extensities and thus considers only their energy fluxes, which are then labeled by Pi,k.

3.1. The Endoreversible Vuilleumier Refrigerator Model

In Figure 4 the endoreversible Vuilleumier refrigerator model is shown. It features
nine subsystems and six bookkeeping reservoirs. The latter are present to facilitate the
bookkeeping of extensities. There are in particular three external heat baths, H, M, and C,
which are infinite capacity reservoirs with constant temperatures TH, TM, and TC, respec-
tively. “External heat bath” here does not refer to the original source or sink of heat; it
instead refers to the input side of the heat exchangers of the Vuilleumier refrigerator. Each
of the heat baths is connected by heat conduction to a working space with working gas,
which is at a temperature “close” to its corresponding heat bath temperature. We will
refer to these finite capacity reservoirs as working spaces 1, 2, and 3, respectively. The two
engines TH and TC represent the piston mechanisms, which transform the pV-work of
the working spaces into work; this is then split into a fraction that covers frictional losses
transported to the bookkeeping reservoir WF and a fraction of usable work entering the
bookkeeping reservoir WT. In order to balance the volume fluxes in TH and TC, we have
an infinite volume reservoir E with a fixed pressure pE. Finally, there are bookkeeping
reservoirs SRH and WRH for the hot regenerator, and SRC and WRC for the cold regenera-
tor. The operation of the regenerators are mapped into two complex interactions rh and rc.
For further nomenclature see Figure 4.

In the following detailed description of the model, we will first discuss the interactions;
we start with the volume interactions connected to the two engines TH and TC.
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JS
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PWT,tcw

PWF,tcf

Figure 4. Endoreversible model of the Vuilleumier refrigerator. Note the three external reservoirs (TH, TM, TC) and the
corresponding internal reservoirs (T1, T2, T3). The two engines TH and TC transform the volume work fluxes into power
streams entering the bookkeeping reservoirs WT and WF.

3.1.1. Volume Interactions

First, we introduce the volume dynamics in the three working spaces based on the AS
motion class introduced above. Depending on the cross sectional area of the pistons on
their two sides, which can differ from one another as schematized in Figure 1, the position
dynamics of the pistons from Equation (4) leads to the following volume dynamics in
working spaces 1, 2, and 3:

V1(t) = V0 + D1 fAS(t/t0; σ1, δ1), (11)

V2(t) = V0 + D2 fAS(t/t0 + ∆; σ2, δ2), (12)

where V0 is the dead volume, and the D1 and D2 are the respective displacements. Working
space 3 is virtually split into two parts facing working spaces 1 and 2:

V31(t) = V0/2 + D31(1− fAS(t/t0; σ1, δ1)), (13)

V32(t) = V0/2 + D32(1− fAS(t/t0 + ∆; σ2, δ2), (14)

V3(t) = V31(t) + V32(t). (15)

Based on the volume dynamics, we can now specify the volume interactions. On the
hot side of the Vuilleumier refrigerator, these are the volume exchanges between working
spaces 1 and 3, the environment E, and engine TH. These interactions are reversible; thus,
for each interaction the pressure at its contact point of the engine is the same as at the
contact points of the other connected subsystem. Their volume fluxes are

JV
1,th1 = V̇1(t) = −JV

TH,th1 JV
3,th3 = V̇31(t) = −JV

TH,th3. (16)
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Applying Equation (8) for the engine TH to the extensity “volume”, one finds JV
TH,th1 +

JV
TH,th3 + JV

TH,the = 0 and thus

JV
TH,the = −JV

TH,th1 − JV
TH,th3 = −JV

E,the. (17)

The energy harvested from these volume interactions is split into two “pure” energy
fluxes PWF,thf and PWT,thw. The first one captures the frictional losses due to the piston
movement and that of connected parts, which are here modeled as follows:

PWF,thf = βV̇2
31. (18)

These will be dissipated to heat outside of our model. The remaining pure energy flux
PWT,thw follows from Equation (9):

PWT,thw = −PWF,thf + IV
TH,th1 + IV

TH,th3 + IV
TH,the. (19)

We finish this section by pointing out that the interactions on the cold side of the
Vuilleumier refrigerator are treated in exactly the same way by replacing the temperature
label “H” or “h” with “C” or “c”, and the working space label “1” with “2”. This also
applies to the following discussion of the regenerator interactions.

3.1.2. The Regenerators

Regenerators are devices which cyclically take up heat from hot streams of working
gas and provide it to cold streams of working gas. Thus, they improve the efficiency of
heat engines or refrigerators by avoiding the discharge of temporarily unused energy. As
usual, the regeneration processes require finite energy fluxes; thus, dissipation is practically
inevitable. In fact, the regenerator’s performance depends on a variety of features and is
degraded by several loss mechanisms. For example, such losses have been designated as
reheat loss, temperature swing loss, thermal conduction loss, internal temperature swing
loss, dispersion loss, and bypass loss [54].

For the energetic balance of the regeneration process the important question is to what
extent the withdrawal of energy from and its subsequent addition to the gas flow succeeds.
Based on the assumption that the gas content inside the regenerator is of minor importance
in the description and can thus be neglected, the r-regenerator model was developed in [18].
We will use this model here as well. It captures the effects of regeneration in the form of an
irreversible interaction. For more elaborate models see [55,56].

We start with the observation that gas leaving the hot working space and entering
the regenerator has the properties of the gas in the source working space, while the gas
leaving the regenerator and entering the sink working space will typically have properties
in between those of the hot and the cold working space.

Let us consider the hot regenerator operating between working spaces 1 and 3. This
interaction is labeled rh and describes the gas flow as a multi-extensity flux [37]. The two
extensities in this flux are particles (mols) of working fluid and entropy. The particle fluxes
are assumed to be proportional to the pressure difference:

Jn
1,rh = α(p3 − p1) = −Jn

3,rh, (20)

where α is the mass transfer coefficient, which shall have the same value in the cold regenerator.
As already pointed out above, the flow direction of the gas in the regenerator is

important. We will thus write fluxes as the sum of two parts, one which corresponds to a
positive mol number flux, and one which which corresponds to a negative mol number flux:

Jα
i,r = Jα

→i,r + Jα
←i,r , (21)

Iα
i,r = Iα

→i,r + Iα
←i,r , (22)
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where Jα
→i,r and Iα

→i,r apply when Jn
i,r is positive and gas flows into reservoir i, while Jα

←i,r
and Iα

←i,r apply when Jn
i,r is negative and gas flows out of reservoir i.

For instance, for the energy flux carried by the multi-extensity gas flow this leads to

ISn
←1,rh =

{
Jn
1,rh h1 if Jn

1,rh < 0,
0 otherwise,

(23)

where hi = Hi/ni is the molar enthalpy of subsystem i. For the other flow direction, this
leads to

ISn
→1,rh(rh1) =

{
Jn
1,rh(rh1 h1 + (1− rh1) h3) if Jn

1,rh > 0,
0 otherwise,

(24)

where rh1 is the hot regeneration coefficient for working space 1 characterizing the regener-
ation extent. It determines the properties of the gas entering the sink working space.

For the fluxes at working space 3, one sets the following:

ISn
←3,rh =

{
Jn
3,rh h3 if Jn

3,rh < 0,
0 otherwise,

(25)

and

ISn
→3,rh(rh3) =

{
Jn
3,rh(rh3 h3 + (1− rh3) h1) if Jn

3,rh > 0,
0 otherwise,

(26)

where rh3 is the hot regeneration coefficient for working space 3.
As in real operation, the gas flow leaving a working space thus has the properties of

the compartment it comes from, while the properties of a flow entering a working space
come closer to those of the receiving compartment with better regeneration. For a perfect
regeneration (rh1 = rh3 = 1), the flow would have exactly those of the receiving one.
For rh1 = rh3 = 0, the gas would enter the receiving compartment with the unchanged
properties of the origin compartment.

The total energy flux of this multi-extensity interaction at a contact point is the sum of
the two energy fluxes carried by the particle flux and the entropy flux:

ISn
i,rh = In

i,rh + IS
i,rh, (27)

which allows for the identification of the entropy flux. Using Iα
i,k = Yα

i,k Jα
i,k, one finds for

incoming fluxes:

JS
→i,rh = (ISn

→i,rh − µi J
n
→i,rh)/Ti, (28)

where µi = Yn
i is the chemical potential in subsystem i, and for outgoing fluxes:

JS
←i,rh = si J

n
←i,rh, (29)

where si = Si/ni is the molar entropy of subsystem i.
Finally, the fluxes into the bookkeeping reservoirs WRH and SRH are defined as

IWRH,rh = −ISn
1,rh − ISn

3,rh and (30)

JS
SRH,rh = −JS

1,rh − JS
3,rh. (31)

For cyclic operation with cycle time t0, these allow for the definition of the cycle-
averaged energy flux from regenerator RH in the bookkeeping reservoir WRH. By applying
the requirement, that in any interaction energy must be conserved, to the energy fluxes of



Energies 2021, 14, 8376 10 of 21

the rh-interaction (see Figure 4), we find 0 = IWRH,rh + Isn
1,rh + Isn

3,rh. Solving for IWRH,rh and
splitting Isn

1,rh and Isn
3,rh according to Equation (22), we arrive at the following:

PRH =
1
t0

∫ t0

0
IWRH,rhdt =

−1
t0

∫ t0

0
(ISn
←1,rh + ISn

←3,rh + ISn
→1,rh(rh1) + ISn

→3,rh(rh3))dt. (32)

The cycle-averaged energy flux PRH depends on the regeneration coefficients rh1 and
rh3 for the hot r-regenerator [18] and must obey PRH = 0 in order to insure the cyclicity
of the regenerator. Based on that relation, for a given regeneration coefficient rh of the
hot regenerator, the values of rh1 and rh3 are chosen so that the conditions PRH = 0 and
rh = (rh1 + rh3)/2 hold true.

3.2. Heat Transfer and Heat Leaks

The Vuilleumier refrigerator operates between the three heat baths H, M, and C, which
represent the input side of the refrigerator’s heat exchanges. The heat transport from there
into and out of the refrigerator working spaces is modeled to be Newtonian. These heat
fluxes are described by the interactions h, m, and c, for which the energy fluxes at the
contact points are

IS
1,h = κ(TH − T1) = −IS

H,h, (33)

IS
3,m = κ(TM − T3) = −IS

M,m, (34)

IS
2,c = κ(TC − T2) = −IS

C,c. (35)

Here, κ is the heat conductance, which is assumed to be the same for all three interac-
tions. The ensuing entropy fluxes are

JS
1,h = IS

1,h/T1, JS
H,h = IS

H,h/TH, (36)

JS
3,m = IS

3,m/T3, JS
M,m = IS

3,m/TM, (37)

JS
2,c = IS

2,c/T2, JS
C,c = IS

C,c/TC. (38)

While the above heat fluxes are intentional, there are are further heat fluxes which are
not. In any real refrigerator, heat leaks are present where energy flows from hotter parts of
the device towards colder parts. Such heat leaks are unavoidable even though they can
be somewhat diminished by appropriate insulation. However, that is not always possible;
the cylinder tubes of the Vuilleumier refrigerator need to sustain pressures on the 100 bar
scale and are thus built with metal. In general, heat leaks may be due to heat conduction
in the cylinder walls, the regenerators, or other structural elements connecting the hot
and cold parts of the refrigerator and can have a decisive influence on the performance of
thermodynamic devices [39,41,57,58]. Such losses are independent of the engine speed and
will be modeled here by the two heat fluxes

IS
M,hleak = κLeak(TH − TM) = qhLeak, (39)

IS
C,cleak = κLeak(TM − TC) = qcLeak, (40)

which capture the heat leak losses due to heat transport inside the refrigerator in an across-
the-board fashion. We note that these losses are independent of the engine operation and
thus coincide with their cycle-averaged values qhLeak and qcLeak.

Based on all of the introduced extensity fluxes above, we can now determine the
thermal dynamics of variables describing the working fluid in the working spaces.

3.3. Thermal Dynamics of Working Spaces 1, 2, and 3

In the three reservoirs representing the three working spaces, the thermodynamics
is determined by the physical properties of the gas used as working fluid. Here, we
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have chosen to use an ideal gas with a given molar heat capacity ĉV R, where ĉV is the
dimensionless specific heat capacity at constant volume and R is the gas constant. For the
ideal gas, the thermal equation of state is

pV = nRT, (41)

where p, V, n, and T are the pressure, volume, mole number, and temperature, respectively.
The caloric equation of state is

U = ĉVnRT, (42)

with U being the internal energy.
For the working fluid considered here, the internal energy can be expressed in terms

of its natural extensities S, V, and n. However, any other combination of three variables
containing at least one extensity out of the intensities T, p, µ—with µ being the chemical
potential—and the extensities S, V, n and energy U suffice to describe the state of the
working gas. Here, we will use U, V, and n as independent variables. Then, the other
variables can be expressed in those terms. The entropy reads as follows:

S(U, V, n) = nR
(

ĉV ln
U
U0

+ ln
V
V0
− (1 + ĉV) ln

n
n0

)
+ n

S0
n0

(43)

with the reference entropy S0(U0, V0, n0) and U0, V0, and n0 denoting the reference internal
energy, volume, and mole number, respectively. The intensities have the following form:

T(U, V, n) =
U

ĉVnR
, (44)

p(U, V, n) =
U

ĉVV
, (45)

µ(U, V, n) =
U

ĉVn

(
1 + ĉV + (1 + ĉV) ln

n
n0
− ĉV ln

U
U0
− ln

V
V0
− S0

n0R

)
. (46)

For given volume fluxes JV
1,th1, JV

2,tc2, JV
3,th3, and JV

3,tc3, we can now—based on the balance
Equations (8) and (9) applied to working spaces 1, 2, and 3—determine the evolution
equations for the respective extensity contents of working spaces 1 and 2:

U̇1 = IS
1,h + IS

1,rh + In
1,rh + IV

1,th1, U̇2 = IS
2,c + IS

2,rc + In
2,rc + IV

2,tc2, (47)

V̇1 = JV
1,th1, V̇2 = JV

2,tc2, (48)

ṅ1 = Jn
1,rh, ṅ2 = Jn

2,rc, (49)

as well as for working space 3:

U̇3 = IS
3,m + IS

3,rh + In
3,rh + IV

3,th3 + IS
3,rc + In

3,rc + IV
3,tc3 (50)

V̇3 = JV
3,th3 + JV

3,tc3, (51)

ṅ3 = Jn
3,rh + Jn

3,rc. (52)

4. Cycle-Averaged Energy Fluxes and COPs

In our study, we are primarily interested in maximizing the cooling power of the
Vuilleumier refrigerator. To be specific, we use the cycle-averaged cooling power

qC =
1
t0

∫ t0

0
IS
2,c dt (53)
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as our performance criterion. We will also need the cycle-averaged mechanical power input

Paux = − 1
t0

∫ t0

0
PWT,thw + PWT,tcw dt (54)

as well as the cycle-averaged heat flux

qH =
1
t0

∫ t0

0
IS
1,h dt (55)

entering the Vuilleumier refrigerator in the discussion below.
These cycle-averaged energy fluxes allow us to define an exergetic COP in which the

heat input is scaled with the Carnot efficiency ηC = 1− TM/TH, which would apply to
a heat engine operating between the hot heat bath H and the intermediate bath M. The
COP puts the cycle-averaged cooling power qC into relation with the exergy influx from
heat bath H and a potentially present auxiliary power input. For vanishing heat leaks, this
leads to the following definition:

COP =
qC

ηCqH + Paux
. (56)

This choice of an exergetic COP allows for a direct comparison with power-driven
refrigerators because the driving power is measured on the basis of its exergy content. In
the presence of heat leaks, the cycle-averaged cooling power is diminished by the leak
flux qcLeak, as can be seen in Figure 4. With an unchanged operation, the leak flux qcLeak
becomes part of the cooling load and the corresponding amount the cooling power thus
decreases. Furthermore, with an unchanged operation, the heat input needs to be increased
by an additional heat input compensating qhLeak, which results in the following definition:

COPLeak =
qC − qcLeak

ηC(qH + qhLeak) + Paux
. (57)

5. Heat-Only Driven Vuilleumier Refrigeration

Our focus in this investigation is on the performance features of a Vuilleumier refriger-
ator with limited regeneration in a heat-only driven operation mode. With the configuration
shown in Figure 1, such an operation mode is not possible for pistons with the same cross-
sectional area on all four sides. In order to overcome that limitation, we will adapt the
displacement D1 of working space 1 (for instance by changing its cross-sectional area)
while keeping the displacements for working spaces 2 and 3 fixed such that no auxiliary
power influx is needed, i.e., we require:

Paux = 0. (58)

This requirement is implemented by adjusting D1 for a given piston motion until
Paux = 0 is met.

6. Results

In order to determine the possible cooling power gains of Vuilleumier refrigerators
by optimizing the piston motion, we determined the optimized piston motion using the
AS motion class. The results for the optimized motion will be labeled as “OS” (optimized
sinusoidal). We will compare these results with those of the standard motion, which will
be labeled as “ST”. To be more specific, for each set of motion parameters, regeneration
coefficients, and the displacement for working space 1 {σ1, δ1, σ2, δ2, ∆, rh1, rh3, rc2, rc3, D1},
the dynamics given by Equations (47)–(52) is integrated numerically until cyclic behavior
has been reached. Then, needed bookkeeping quantities are determined. The optimal pis-
ton motion is determined by changing the motion parameters σ1, δ1, σ2, δ2, and ∆ until the
cooling power increases no further. We stress that for each set of motion parameters, cyclic
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operation needs to be established, including the adjustment of the regeneration coefficients
and the displacement D1. The procedure is based on the Nelder–Mead algorithm [59] and
uses parallel execution with runtimes on the order of an hour for one data point in the
OS-motion graphs.

The refrigerator parameters are chosen to reflect results for a few kW of cooling
power. They are: TH = 300 °C, TM = 25 °C, TC = 0 °C, t0 = 0.1 s, n0 = 5 mol, V0 = 0.1 L,
D2 = D31 = D32 = 1 L, ĉV = 5/2. Moreover, we have three parameters describing the
non-equilibrium features of the refrigerator: These are the heat conduction coefficient
κ0 = 20 kW/K, the mass transport coefficient α0 = 300 mol/(s bar), and the friction
coefficient β0 = 20 kJs/m6. With this choice, the cooling power does not increase much
further for enlarged heat conduction and mass transport. We will refer to this parameter
set together with κLeak = 0 W/K as the “base case”, and with κLeak = 5 W/K as the
“standard case”.

6.1. Optimized Piston Motion: Cooling Power

Our first analysis is focused on the optimized cooling power. We have analyzed
a given Vuilleumier refrigerator, for which we determined the cycle-averaged cooling
power qC as a function of the engine speed. Of course, the cooling power will depend
on the regeneration ability of the refrigerator. We thus analyzed the cooling power and
other quantities for two different regeneration abilities: One for high regeneration with
regeneration coefficients rh = rc = 0.9 and one for low regeneration with regeneration
coefficients rh = rc = 0.8.

The results for the optimized piston motion OS and the high regeneration case are
shown on the left in Figure 5. Starting at an engine speed of 100 rpm, the cooling power
increases to its maximum at around 450 rpm and falls off with a further increase in speed.
Beyond 750 rpm, the cooling power becomes negative. The general shape of the cooling
power roughly follows a parabola. This also applies to the results of the standard harmonic
piston motion. The maximum cooling power is reached at about 500 rpm, which is only
slightly above the OS maximum. The overall gain of cooling power by optimizing the
piston motion is more than 15% compared to the maximum for the standard motion as
well as to the standard motion at the same engine speed.

For the low-regeneration case, the general shape of the cooling power results is similar,
as shown on the right in Figure 5. However, the cooling power is reduced to about 70% of
the high-regeneration case for the OS motion and 60% for the ST case. The OS maximum is
achieved at about 350 rpm, and the ST maximum at a slightly higher speed. For the low-
regeneration case, the relative gain of about 30% due to the optimized motion is however
much larger.

6.2. Optimized Piston Motion: Efficiency at Maximum Cooling Power

The efficiencies of the Vuilleumier refrigerator at maximum cooling power is shown for
the AS and ST motions for both regeneration cases in Figure 6. The efficiencies are measured
by the exergetic COP defined above with Paux = 0 kW as we consider heat-only operations.
In all cases, the COPs fall off from their maximum at 100 rpm in a roughly linear fashion to
values close to zero at 750 rpm (OS) and 500 rpm (ST), respectively. With increasing engine
speed, the OS cases fall off faster than the ST cases, and for high regeneration, the OS COP
is practically equal to the ST COP. While with high regeneration the COPs are in the range
between 0.2 and 1.5, the low regeneration COPs are much smaller, with a range between 0
and 0.7. This very clearly shows that the regeneration extent plays an important role in the
efficient operation of the Vuilleumier refrigerator.
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Figure 5. The cooling power qC vs. engine speed for OS and ST motion at different values of the
regeneration coefficient (left/right). Comparing the cooling power for r = 0.9 (left) and r = 0.8
(right), it is apparent that the larger regeneration coefficient allows for a considerably higher cooling
power. We also note that optimizing the piston motion (OS) causes a substantial increase in the
cooling power, especially at intermediate speeds for both regeneration cases.
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Figure 6. The base case COP vs. engine speed for OS and ST motion at different values of the
regeneration coefficient (left/right). The larger regeneration coefficient leads to roughly doubled
COP values as compared to the lower regeneration case. We note that the slower the engine operates,
the larger the COP gain by optimized piston motion (OS) is.

6.3. Heat Leak: Efficiency at Maximum Cooling Power

In oder to show the influence of the heat leaks on the performance of the Vuilleumier
refrigerator, we show the COPLeak for the standard case with κLeak = 5 W/K in Figure 7.
As already pointed out above, the energy fluxes through the heat leaks are independent
of the engine speed and become particularly important at low speeds. On the left side of
Figure 7, this effect can be observed for high regeneration in both the OS case and the ST
case, where it leads to a maximum of the COPLeak at low speeds. On the right of Figure 7,
one sees that this effect is also present for low regeneration, but not strong enough to lead
to a similarly distinct maximum of COPLeak in the range of engine speeds considered here.

In contrast to the COP of the base case without heat leaks, the COPLeak for the standard
case with κLeak = 5 W/K features maximum values in the considered range of engine
speeds, which are reduced by about 30% for the high-regeneration OS case. Comparing the
high and low regeneration cases, both the COP and the COPLeak show a drastic reduction
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in efficiency for reduced regeneration. Both drop by about 50% when the regeneration
coefficients are reduced by 10%. This stresses once again, how important the regeneration
is for the overall performance of the Vuilleumier refrigerator.
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Figure 7. The standard case COP vs. engine speed for OS and ST motion at different values of the
regeneration coefficient (left/right) under the influence of a heat leak of κLeak = 5 W/K. Again,
a larger regeneration coefficient allows for higher COP values, and the slower the engine operates,
the larger the COP gain by optimized piston motion (OS) is. At very low operating speeds, the
standard case COP decreases due to the heat leak.

6.4. Heat-Only Operation: Displacement Ratio

A heat-only operation requires that the frictional losses are compensated by mechani-
cal power obtained from the volume work of the working spaces captured by the pistons.
For this purpose, the overall gas volume must change over the cycle, which typically
happens in real Vuilleumier refrigerators due to the finite diameter of the driving rods
of the displacers. In the particular configuration considered in our theoretical analysis, it
leads to the requirement that the displacement D1 must be larger than its counterpart D31.
In Figure 8 the ratio D1/D31 is shown as a function of the engine speed. The ratio increases
with the engine speed. Interestingly, the ratio for the OS and ST cases are close together,
with the OS case being larger in both regeneration cases. Note that the high regeneration
case requires larger displacement ratios only at larger engine speeds.

6.5. Optimized Piston Motion: Dynamics

We now turn to the optimized piston motion and its dynamical features. Figures 9–12
present a comparison of the optimized sinusoidal (OS) motion for the maximum cooling
power at 450 rpm against the standard sinusoidal (ST) motion at the same speed.

The volume dynamics is shown Figure 9. On the left, the harmonic standard motion
is displayed, while the optimized motion can be seen on the right. The OS motion shows,
especially for V1, a clear prolongation of the times spent close to the volume extremes,
while for V2 this is less prominent but also visible. The V3 dynamics is—due to the chosen
refrigerator configuration—given through the V1, V2 dynamics.
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Figure 8. The displacement ratio D1/D31 necessary to gain sufficient mechanical power to overcome
the friction vs. engine speed for OS and ST motion at different values of the regeneration coefficient
(left/right). With increasing speed, the displacement ratio increases more than linear. For high-
regeneration as well as high-operation speed a slightly larger displacement ratio is necessary. Note
that the optimized motion (OS) necessitates a larger displacement ratio as compared with the standard
motion (ST).
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Figure 9. The volume of reservoirs 1, 2, and 3 vs. time during one cycle at 450 rpm for ST motion
(left) and OS motion (right). Comparing the respective trajectories, one sees that the trajectory of the
hot regenerator shows a more square-like shape, while the trajectory of the cold regenerator is still
close to a sinusoidal shape.

The effects of the altered volume dynamics also show up in the pressure and tempera-
ture dynamics.

In Figure 10 the temperature differences between the working spaces and their cor-
responding heat bath are shown. One notices that for the OS motion, the temperature
differences are, on average, larger than for the ST motion. This is a consequence of the
increased heat flows necessary for the maximized cooling power. In the ST motion, quick
changes of the hot temperature around the minimum and maximum of the volume dynam-
ics can be observed. Overall, the observed temperature differences are small compared to
the absolute temperatures.
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Figure 10. The temperature differences between the internal reservoirs T1, T2, and T3 and the
corresponding external reservoirs TH, TC, and TM vs. time during one cycle at 450 rpm for ST motion
(left) and OS motion (right). The figure gives direct insight into the the heat flows, which are
proportional to the respective temperature differences. The figure reveals that there are two periods
during the cycle in which all heat flows are small, separating a phase in which the hot and cold
reservoirs receive heat; the medium reservoir discharges heat from a phase in which the cold heat
flux remains small while the hot reservoir gains and the medium reservoir looses heat.

In Figure 11 the pressures are shown as a function of time, while in Figure 12 the
pressure differences between adjacent working spaces are displayed.

It is apparent that the pressures do not differ much between the working spaces, which
is a consequence of the large mass transportation coefficient α0. For the ST motion the
pressures follow a close-to-harmonic dynamics, while in the OS motion one finds stretches
of almost linearly decreasing and increasing pressures. The pressures show a variation of
about 10 bar around an average of 60 bar.
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Figure 11. The pressures p1, p2, and p3 of the three reservoirs vs. time during one cycle at 450 rpm for
ST motion (left) and OS motion (right). In general, the pressure differences between the reservoirs
are small compared to the absolute pressure values. We note the distortion of the pressure trajectories
for the OS motion due to the more square-like motion of the hot piston.
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Figure 12. The pressure difference p1 − p3 and p2 − p3 across the hot and cold piston vs. time during
one cycle at 450 rpm for ST motion (left) and OS motion (right). These differences are caused by the
gas flow resistance of the regenerators.

The pressure differences in Figure 12 reveal the important changes in the pressure
dynamics. This is especially apparent in the pressure difference between working spaces 1
and 3. Here, stretches of a close-to-zero pressure difference occur in the OS motion, which
have no analogue in the ST case. Note that pressure differences allow a direct view on
the mass fluxes between the working spaces. The OS motion shows pronounced enlarged
mass fluxes on the hot side of the refrigerator, with comparable maximal mass flux values
for the hot and cold refrigerator sides.

7. Conclusions

The goal of this research effort was to investigate the performance features of heat-only
driven Vuilleumier refrigerators. In particular, we were interested in the possible cooling
power gains by optimizing the piston motion. For realistic results, we considered the
main loss mechanisms (i.e., heat leakage and mechanical friction) in our endoreversible
modeling as well as the effects of limited regeneration. To optimize the motion of the
Vuilleumier refrigerator’s regenerator pistons, we employed the adjustable sinusoidal (AS)
motion class.

Our analysis showed that possible performance gains depend clearly on the extent of
regeneration. We presented optimized piston motions for a high-regeneration case (r = 0.9)
and a low-regeneration case (r = 0.8). In the case of high regeneration, the optimized AS
motion led to a gain of about 17% in cooling power as compared to the standard sinusoidal
motion, while for the low-regeneration case, the performance gain was about 28%. This
shows that with decreasing regeneration, the potential gain by an optimized motion
increases considerably. A possible explanation for this feature is, that for lower regeneration
the losses are generally larger and thus the optimization potential of an optimized piston
motion is larger as well. Of course, it is always advisable to reduce mechanical losses and
to increase the regeneration and heat transfer coefficients. Nonetheless, applying optimized
piston motion allows for even larger gains at less favorable boundary conditions.

The importance of heat leaks for the operation of Vuilleumier refrigerators becomes
apparent in the comparison of the COPs with and without the inclusion of a heat leak.
Especially at lower engine speeds, a sizable decrease in COP under the influence of a heat
leak of about 30% for the chosen model parameters can be observed. But we note, that
in waste heat applications COP considerations are often less important than the cooling
power optimization.

In future work, the application of control theory methods can show to what extent
a fully optimized piston motion can increase the cooling performance even further. In
addition, the use of more elaborate regenerator models will shed light on the performance
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gains possible in real refrigerators. An interesting open problem, especially for applications
using waste heat, is the optimization of the auxiliary power and its minimization. The
heat-only operation discussed here certainly needs further work in order to establish design
rules for such refrigerators.
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