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Abstract: The aim of the study was to assess the effect of anode materials, namely a carbon nanotube
(CNT)-buckypaper and a commercial carbon paper (CP) on the performance of a two-chamber micro-
bial electrolysis cell (MEC), in terms of hydrogen production and main electrochemical characteristics.
The experiments were performed using both acetate-based synthetic wastewater and real wastewater,
specifically the effluent of a dark fermentative hydrogenogenic reactor (fermentation effluent), using
cheese whey (CW) as substrate. The results showed that CP led to higher hydrogen production
efficiency and current density compared to the CNT-buckypaper anode, which was attributed to the
better colonization of the CP electrode with electroactive microorganisms, due to the negative effects
of CNT-based materials on the bacteria metabolism. By using the fermentation effluent as substrate,
a two-stage process is developed, where dark fermentation (DF) of CW for hydrogen production
occurs in the first step, while the DF effluent is used as substrate in the MEC, in the second step,
to further increase hydrogen production. By coupling DF-MEC, a dual environmental benefit is
provided, combining sustainable bioenergy generation together with wastewater treatment, a fact
that is also reinforced by the toxicity data of the current study.

Keywords: microbial electrolysis cell; hydrogen; carbon nanotubes; dark fermentation effluent;
toxicity assessment; electrochemical characterization

1. Introduction

The microbial electrolysis cell (MEC) is a new bio-electrochemical reactor that takes
advantage of the metabolism/respiration of a specific group of microorganisms, called
exoelectrogens, towards hydrogen production [1,2]. The electrons needed for hydrogen
generation in this system can be obtained by using renewable resources, such as organic
wastes/wastewaters as substrates, accomplishing energy recovery, in the form of hydrogen,
as well as wastewater treatment [3].

A MEC is a similar device to the traditional microbial fuel cell (MFC), with the
difference that consists of a hermetically sealed cathode, where hydrogen is produced, and
also requires an external voltage (at least 0.11 V), which theoretically needs to be supplied
to overcome the thermodynamic barrier [3,4]. In practice, due to the system overpotentials,
a much higher voltage is commonly required [5], which in all cases is considerably lower
than the respective required for water electrolysis (1.23 V), under standard conditions [6].

Energies 2021, 14, 8375. https://doi.org/10.3390/en14248375 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1742-2723
https://orcid.org/0000-0002-3221-9184
https://orcid.org/0000-0002-4156-2419
https://orcid.org/0000-0002-3001-2278
https://orcid.org/0000-0001-6933-2204
https://doi.org/10.3390/en14248375
https://doi.org/10.3390/en14248375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14248375
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14248375?type=check_update&version=2


Energies 2021, 14, 8375 2 of 20

In general, a MEC consists of an anode and a cathode, typically separated by a
membrane. At the anode, exoelectrogens, forming an electro-active biofilm, oxidize the
organic substrates and use the electrode as a direct electron acceptor. The electrons pass,
to the cathode, via an external circuit, where they react with hydrogen cations (migrating
from the anode) that get reduced to form hydrogen gas. The electrochemical performance
of the MEC, and thus hydrogen production efficiency, is highly affected by the abiotic and
biotic characteristics of the system and their interactions. The electrodes’ characteristics,
such as conductivity, biocompatibility, structure and active surface area, are among the
crucial factors which determine the transfer of electrons at both electrodes, influencing
the redox reactions which take place there [7]. Although the cathode limitations are
significant [8–10], the anode characteristics contribute also significantly to the overall MEC
performance [11]. Along this line, research efforts have been done for improving the
electro-catalytic properties of the anode materials, so as to overcome the anode limitations
and realize the practical application of MECs.

Similar to MFCs, in the majority of MECs systems carbon-based materials, such as
carbon cloth (CC), carbon paper (CP) and graphite granules (GG), are commonly used
as anodic electrodes, thanks to their biocompatibility with exoelectrogens, high electrical
conductivity and low toxicity. In order to further enhance the MEC performance, special
attempts have been made in the last few years on the development of new materials with
improved electrocatalytic properties, such as carbon composites and nanomaterials [12].
Carbon nanotubes (CNTs) are conductive materials that have been used for anode con-
struction in MFCs [13] due to their structural, electrical and chemical characteristics [14].
Depending on the number of graphene layers rolled to form a tube, either multi-walled
CNTs (MWCNTs) or single-walled CNTs (SWCNTs) have been tested to enhance the per-
formance of different MFCs systems [15,16] before or after functionalization with carboxyl
(-COOH) or hydroxyl (-OH) functional groups [17,18]. It is reported that MWCNTs-based
materials have biological advantages, such as biocompatibility, chemical activity and
resistance to decomposition [19]. They also have unique surface properties, such as hy-
drophilicity/hydrophobicity and functional groups which can affect cell adhesion, growth,
and metabolism. On the other side, it is reported that nanomaterials can inactivate bac-
teria [20], thus further investigation of their negative effects on bacteria metabolism is
essential, before their promotion in microbial electrochemical technologies. Given that
MEC technology is a new technology, compared to MFC technology, the use of CNT-based
materials as anodes in MECs is still limited.

On the other side, their use as cathodic electrodes is less ambiguous, since cathodes are
usually abiotic. In this respect, the replacement of the fossil cathodic electrodes with CNTs-
supported Pt can increase the reaction activity and reduce the high cost of noble metals.
Wang et al. [21] developed CNT-based cathodes in a single-chamber, membrane-free MEC
operated under an applied voltage of 0.9 V. They also reported that a Pt/MWCNT-based
cathode yielded a comparable MEC performance, like that for conventional electrodes of
carbon cloth coated only with Pt. For further improvement of the performance of the MEC
using MWCNTs-based cathodes, functionalization with polymers, such as polyaniline
(PANI) was performed, and PANI/MWCNT composites were used as cathode catalysts in
the same single-chamber membrane-free MEC [22]. The results obtained showed that due
to the PANI conductivity and special properties, the developed PANI/MWCNTs cathodes
yielded a MEC performance with a similar hydrogen production rate to the respective
Pt/C cathode.

Since the use of CNT-based electrodes as anodes in MECs still remains a challenge,
the current study aims at assessing the effect of different anode materials, namely a CNT-
buckypaper and a commercial CP, on the efficiency of two-chamber MECs, in terms of
hydrogen production and main electrochemical characteristics. The experiments were
performed using both acetate-based synthetic wastewater and real wastewater, specifically
the effluent of a dark fermentative hydrogenogenic reactor (an up-flow column bioreactor-
AUFCR), using cheese whey (CW) (CW fermentation effluent) as substrate. The AUFCR
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operated at a steady state at a hydraulic retention time (HRT) of 12 h and was fed with
diluted CW, at an initial carbohydrates concentration of 20 g/L [23]. In this respect, a
two-stage process is proposed, where dark fermentation (DF) of CW occurs in the first
step, where hydrogen and fatty acids are produced, while the effluent of that step is
subsequently used as an influent of the MEC to further increase hydrogen production. The
whole concept is based on the fact that the volatile fatty acids (VFAs), i.e., acetate, butyrate
and propionate or lactate, which are common substances in the fermentation effluents,
cannot be further decomposed by fermentative hydrogen-producing bacteria, but they
can be considered as a source of energy for electro-active bacteria, i.e., exoelectrogens,
working at the anodes of bioelectrochemical systems, such as MECs [24,25]. By coupling
DF with a MEC system, a dual environmental benefit is provided, combining wastewater
treatment together with sustainable bioenergy generation [26]. Glycerol [27], CW [25,28]
and other agro-industrial wastewaters [26] have been investigated so far for combined
hydrogen production, using DF-MEC systems. The novelty of the present work lies in the
optimization of the anode reactions, by using new anode materials, specifically MWCNTs-
based electrodes, for enhancing the efficiency of MEC and increasing the overall hydrogen
yield of CW, in the framework of a two-stage DF-MEC process. Moreover, given that the
DF effluents could not be safely discharged into the environment [29], the efficiency of the
MEC system to reduce DF toxic potential was further assessed via a small-scale toxicity
test, using the fairy shrimp Thamnocephalus platyurus, thus ensuring the safe environmental
disposal of the remaining DF-MEC effluents.

2. Materials and Methods
2.1. Fabrication of CNTs Buckypaper

CNT buckypapers (thin sheets made of an aggregate of carbon nanotubes) have been
prepared in an effort to develop free-standing electrodes. Due to their continuous nanotube
networks, they possess low contact resistance and considerably higher conductivity com-
pared to macroscopic CNT materials, such as CNT composites. Carboxyl functionalized
thin MWCNT, Thin-MWCNT-COOH, with an average length of 1–5 µm and an outer
diameter of 15 ± 5 nm were purchased from NanoLab (Waltham, MA, USA). Approxi-
mately 110 mg of those CNTs were dispersed into 35 mL of dimethyl formamide using
tip sonication for 12 min (400 W, 40% Amplitude, UP400S-Hielscher ultrasonic processor
with Sonotrode H3). The dispersion was vacuum filtered over a Nylon filtration membrane
(0.45 µm, 47 mm, Whatman). After drying with hot air, the CNT-based buckypapers, thus
fabricated were peeled off from the filtration membrane. The generated buckypapers had a
thickness of approximately 150 µm with a corresponding diameter of about 3 cm. Then the
anode was cut to the desired dimensions.

2.2. Construction and Operation of MECs

Two identical two-chamber MECs, MEC1 and MEC2, consisting of two glass bottles,
filled to 250 mL and connected via a glass tube, were used. Separation of the chambers of
each MEC was performed by a proton exchange membrane (Nafion 117, Perfluorinated
Membrane, Sigma-Aldrich), pretreated as described in Antonopoulou et al. [30]. In both
MECs, carbon cloth coated with Pt (ETEK, 0.5 mg/cm2) (2 cm × 2 cm) was used as cathodic
electrode. The anode (working) electrode in MEC1 was made of CP (Quintech), whereas
in MEC2 it was made of the prepared Thin-MWCNT-COOH buckypaper (dimensions
2 cm × 2 cm). Titanium wires connected the cell to the external circuit.

A voltage of 0.9 V was supplied to each of the two MECs using a custom-made DC
power supply. It was monitored and recorded using a data acquisition system (ADAM-
4017), as described in Antonopoulou et al. [31]. Produced current (mA) was determined
via measurement of the voltage drop across a 10 Ω resistor (resistance decade box, RS), con-
nected in series to each MEC. This resistance was much smaller than the ohmic resistance
of the MECs, as confirmed by EIS measurements.
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Anodes and cathodes were agitated and were placed in a constant temperature cham-
ber at 30 ◦C. MECs operated in three phases: (a) acclimation of the microbial consortium
and enrichment of the anodic electrode with electroactive–bacteria, (b) hydrogen produc-
tion using acetate based synthetic wastewater, and (c) hydrogen production using DF
effluent from CW, which was rich in VFAs.

During all experiments, the cathode compartments were filled with a nutrient medium
consisting of a buffer solution (3.45 g/L Na2HPO4·2H2O, 3.67 g/L NaH2PO4·2H2O) and
KCl (0.16 g/L). During the acclimation phase, the anode compartments were filled with
the aforementioned nutrient medium, but also alkalinity (5 g/L NaHCO3) and a solution
of trace elements [31], were added. Inoculation was performed with the addition of
methanogenic sludge (10% v/v) in acetate-based synthetic wastewater (chemical oxygen
demand (COD): 0.8 g/L). The sludge was obtained from an anaerobic digester and had the
following characteristics: total suspended solids (TSS): 34.60 ± 0.80 g/L, volatile suspended
solids (VSS): 17.14 ± 0.54 g/L, pH: 7.22 ± 0.01, soluble COD (s.COD): 0.52 ± 0.04 g/L.
During this phase, both cells operated as MFCs under closed-circuit conditions (external
resistance R = 100 Ω), for six successive cycles. During each cycle of MFC operation, the
cathodes were continuously aerated using an air-pump and the voltage produced was
recorded. Regarding the anodic chambers, after consumption of the COD, the anode media
were emptied and the chambers were refilled with new media (the nutrients solutions
described above and microbial inoculum), while the cathode was refilled only with the
nutrient solution.

Once the anode enrichment with bacteria was performed, both systems were operated
potentiostatically as MECs (applied voltage 0.9 V), without further microbial inoculum
addition, but using the same anolytes and catholytes as in the previous phase. Finally,
the acetate based synthetic wastewater was replaced by real wastewater, specifically the
fermentation effluent of a hydrogenogenic reactor treating CW. The main characteris-
tics of the effluent used were: pH: 5.72 ± 0.03, total carbohydrates: 1.80 ± 0.14 g/L,
soluble carbohydrates: 0.69 ± 0.14 g/L, total COD (T.COD): 36.50 ± 0.71 g/L, s.COD:
24.95 ± 0.39 g/L, TSS: 6.36 ± 0.70, VSS: 4.06 ± 0.42, acetic acid: 2.55 ± 0.07 g/L, propionic
acid: 0.31 ± 0.01 g/L, butyric acid: 7.42 ± 1.45 g/L, valeric acid: 0.65 ± 0.03 g/L, caproic
acid: 1.91 ± 0.35 g/L. Prior to its use as substrate in the MECs, the effluent was diluted, so
the initial COD concentration was reduced to ca. 0.8 g/L.

2.3. Calculations

The volumetric hydrogen productivity during a batch cycle of operation is calculated
as [3]:

HPRv
(

mLH2

L d

)
=

VH2

Vrt
(1)

VH2: the hydrogen volume (mL), Vr: the working volume (L) and t: the time of the
cycle (d)

Hydrogen yield can be calculated on a molar or on a mass basis. On a mass basis, the
yield is given by [3]:

YH2

(
gH2

gCOD

)
=

VH2 P MH2

R T ∆COD
(2)

where P: the hydrogen pressure (bar), R: 0.08314 L bar/(K mol), T: the temperature (K),
MH2: is the molecular weight of hydrogen (2 g/mol) and ∆COD: is the COD consumption
of the substrate over a batch cycle (gCOD).

On a molar basis, the yield is given by [3]:

YH2 = nH2/nS (3)



Energies 2021, 14, 8375 5 of 20

where nH2: the hydrogen generation and nS the substrate consumed (both in moles).
The hydrogen yield could be expressed on a percent basis, compared to the theoretical
maximum production (nth), as [3]:

YH2,th = (nH2/nth) 100%. (4)

The value of nth based on COD is calculated by:

nth =
2∆COD

MO2
(5)

MO2: the oxygen molecular weight (32 g/mol).
The quantity of hydrogen (moles) which could be theoretically obtained based on the

measured current, nCE, is expressed as [3]:

nCE =

∫ t
t=0 Idt

2F
(6)

where I: the measured current (A), dt: the data collection interval (s), F: the Faraday
constant and 2: conversion factor of electrons to hydrogen (in moles).

Theoretical hydrogen recovery nCE related to the Coulombic efficiency, (CE) is given
from Equation (3):

CE =
nCE
nth

(7)

The cathodic hydrogen recovery is the ratio of hydrogen recovered at the cathode to
the theoretical produced, for the measured current [3]:

rcath =
nH2

nCE
(8)

The overall hydrogen recovery is given by [3]:

rH2 = CE rcath. (9)

2.4. Electrochemical Characterization

The electrochemical characterization was conducted applying an Autolab PGSTAT204
(0.4 A/20 V) potentiostat–galvanostat. Cyclic voltammograms (CVs) and electrochemical
impedance spectroscopy (EIS) measurements, with the results presented in the form of
Nyquist and Bode plots, were conducted in order to study the electrochemical characteris-
tics of the anode electrodes. These measurements were performed with the anode acting as
the working electrode (WE), the cathode was used at the counter electrode (CE) whereas
an Ag/AgCl (3M KCl) was employed as the reference electrode (RE). CVs were obtained
within the potential range −1 to 1 V by scanning the applied potential with a rate equal
to 50 mV/s, while EIS spectra were obtained in the range of 100 kHz to 1 mHz, under
potentiostatic mode, applying a stimulus of 10 mV amplitude.

2.5. Toxicity Test

The CW fermentation effluent of a hydrogenogenic reactor, as well as DF-MEC1 and
DF-MEC2 samples, were used for the application of the small-scale (24 h) toxicity test,
using instars II–III larvae of the fairy shrimp T. platyurus, previously hatched from cysts
purchased by MictoBio Tests Inc. (Belgium). The procedure was carried out in accordance
with ISO 14380, 2011 protocol, while species’ health status was verified by the use of
potassium dichromate (K2Cr2O7), as previously mentioned [32–34]. After checking the
critical range of species, tests were performed by using all samples at concentrations
ranging from 2.5 to 100% v/v. The results expressed as the mean value ± SD of the 24 h
EC10, 20 and 50 effective concentration endpoints (% v/v) in each experiment that performed
in triplicate. EC endpoints were calculated by Probit analysis (p < 0.05), based on log-
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transformed values in all cases, while differences among DF, DF-MEC1 and DF-MEC2 toxic
endpoints were checked non-parametrically (Mann–Whitney U-test, p < 0.05), using the
IBM SPSS Inc. 17 software, after checking for homogenicity (Levene’s test).

2.6. Analytical Methods

The measurements of COD, TSS and VSS were carried out based on Standard Meth-
ods [35], while the determination of carbohydrates and VFAs as well as of hydrogen content
in the gas phase was performed as presented in Antonopoulou et al. [36]. Raman spectra
were recorded in the backscattering geometry using a UV-Vis Labram HR-800 (Horiba
Jobin-Yvon) system. The excitation line was the 441.6 nm (by an air-cooled HeCd laser of
Kimmon Electric Co.; dual, 325/442 nm, UV/blue, 20/80 mW, IK5651R-G model laser).
The laser power on the specimen was 1.8 mW.

Scanning electron microscopy (SEM) images were taken with a Zeiss SUPRA 35VP-
FEG instrument, operating at 5–20 keV. Fixation of microorganisms was performed as
described by Dounavis et al. [37].

The CNTs BET specific surface area was determined using the nitrogen physical
adsorption–desorption isotherms (at 77 K), recorded after degassing at 300 ◦C for 2 h, using
a Micromeritics apparatus (FlowPrep 060 Sample Degas System–Tristar 3000 porosimeter)
and the corresponding software. The hydrophilicity/hydrophobicity of the two electrodes
was assessed through images of the drops captured with a digital camera and the contact
angles were calculated with Opendrop.

3. Results and Discussion
3.1. Characterization of CNTs Buckypaper

Raman spectroscopy was employed for the characterization of the prepared buckypa-
per (Figure 1). The most significant spectral features observed are the disorder-induced D
band at 1365 cm−1 and the tangential G band at 1578 cm−1. The latter is associated with the
graphite tangential E2g Raman allowed mode, where the two atoms in the graphene unit
cell vibrate tangentially one against the other; neighboring atoms are moving in opposite
directions along the surface of the tube as in 2D graphite [38]. The second-order related
harmonic G’ (or 2D) band is located at ~2700 cm−1.
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Figure 1. Raman spectrum of Thin-MWCNT-COOH buckypaper. 
Figure 1. Raman spectrum of Thin-MWCNT-COOH buckypaper.

The morphology of the Thin-MWCNT-COOH buckypaper was determined by SEM.
The image depicted in Figure 2 shows the entanglements of CNTs, while CP is also depicted
for comparison. A continuous tube network can be clearly seen. During the creation of the
buckypaper through filtration, the tubes are interlaced and self-assembled into bundles due
to the van der Walls forces, giving rise to this characteristic network For buckypaper-based
electrode application, the porous nature of the membrane surface is a prerequisite in order
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to permit the electrolyte to infiltrate the membrane and form a large efficient capacity
surface. The specific surface area determined from BET analyses was 145.0 m2/g.
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3.2. MECs Performance Using an Acetate-Based Synthetic Wastewater as Substrate

During the acclimation phase, experiments were conducted using the acetate-based
medium and both systems were operated as MFCs for six successive cycles so as the anodes
be enriched with electrochemically active bacteria; 25 mL of anaerobic sludge was added
in the anode compartments, along with the addition of acetate-based nutrient medium.
Once the substrate was consumed, the cell potential dropped to zero and the addition of a
new batch of bacteria together with the acetate-based medium was repeated for six cycles
until the maximum voltage was generated and was reproducible for at least two cycles.
In Table 1, the maximum voltage values recorded during the operation of the systems as
MFCs, for six successive cycles, are presented.

Table 1. Maximum voltage obtained during the acclimation phase of MEC1 and MEC2 (operated as
MFC, R = 100 Ω) for six cycles of operation.

Cycle Number Voltage of MEC1 (mV) Voltage of MEC2 (mV)

1 12.7 2.9
2 82.6 51.3
3 91.2 53.5
4 94.2 56.0
5 102.5 61.6
6 103.1 63.0

From the table, it is obvious that the voltage values obtained in MEC1, where CP was
used as an anode, were higher than the corresponding values obtained in MEC2, where
Thin-MWCNT-COOH-based buckypaper was used as an anode, which indicates better
colonization of the CP electrode with electroactive bacteria. This was also evident, since a
less intense biofilm was attached to the CNT-electrode of MEC2, compared to the electrode
of MEC1, indicating that the biofilm formation and selection of bacteria on the bioanodes
were probably affected by the anode material.

Once the acclimation period was finished, the systems were operated potentiostati-
cally as MECs via the application of a constant voltage of 0.9 V at each MEC. From this
point onward, both MECs operated without the addition of microorganisms, since it was
presumed that the anodes were enriched with electrochemically active bacteria. MEC1
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and MEC2 were operated for one cycle with the acetate-based medium and hydrogen
evolution was observed just after the onset of the cycles (Figure 3), accompanied by a
gradual consumption of the COD (Figures 4a and 5a). The main characteristics which
determine the performance of both MECs are presented in Table 2.
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For MEC2, hydrogen evolution almost ceased after 50 h of operation, which was not
accompanied by a proportional reduction of the current density or COD removal, like in
the case of MEC1. Cumulative hydrogen production, HPRV and yields (Table 2), as well as
the current density (normalized to the anodic surface area, 2 × 2 cm2) (Figures 4b and 5b)
of MEC1 with a CP anode, were higher than the respective ones for MEC2, with a Thin-
MWCNT-COOH–buckypaper anode. The pH of the anodic chamber of MEC1 dropped
slightly from 7.2 to 6.5, while that for MEC2 remained stable to a value around 7 (right axis
of Figures 4a and 5a), indicating sufficient transport of protons from the anodes (where they
are generated upon decomposition of the organic substrates) to the cathodes (where they
are consumed) and ensuring no voltage losses due to membrane pH gradient, according to
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the Nernst equation [3]. In MEC1, the COD consumption was 70.0% and 93.4% after 240
and 310 h of operation, respectively, while in MEC2 it was 80.0% after 168 h.

Energies 2021, 14, 8375 9 of 22 
 

 

 

(a) (b) 

Figure 5. (a) COD, pH of the anolyte, and (b) current density (normalized to the anodic surface, 2 × 2 cm2) for MEC2 vs. 

operation time, for an acetate-based synthetic wastewater feed. Applied cell potential: 0.9 V. 

Table 2. The main characteristics of both MECs for an acetate-based synthetic wastewater feed 

Characteristics MEC1 MEC2 

HPRv (mL/L d) 23.6 9.8 

YH2 (mgH2/gCOD) 33.3 8.6 

YH2,th (% molH2/mol) 26.7 6.9 

CE (%) 55.6 19.9 

Cathodic hydrogen recovery, % 48.0 34.6 

Hydrogen recovery, % 26.7 6.9 

For MEC2, hydrogen evolution almost ceased after 50 h of operation, which was not 

accompanied by a proportional reduction of the current density or COD removal, like in 

the case of MEC1. Cumulative hydrogen production, HPRV and yields (Table 2), as well 

as the current density (normalized to the anodic surface area, 2 × 2 cm2) (Figures 4b and 

5b) of MEC1 with a CP anode, were higher than the respective ones for MEC2, with a 

Thin-MWCNT-COOH–buckypaper anode. The pH of the anodic chamber of MEC1 

dropped slightly from 7.2 to 6.5, while that for MEC2 remained stable to a value around 7 

(right axis of Figures 4a and 5a), indicating sufficient transport of protons from the anodes 

(where they are generated upon decomposition of the organic substrates) to the cathodes 

(where they are consumed) and ensuring no voltage losses due to membrane pH gradient, 

according to the Nernst equation [3]. In MEC1, the COD consumption was 70.0% and 

93.4% after 240 and 310 h of operation, respectively, while in MEC2 it was 80.0% after 168 

h. 

The better performance of MEC1 compared to MEC2 could be attributed to the effi-

cient colonization of the MEC1 anodic electrode with electroactive bacteria, which is cor-

roborated by the higher voltage values of MEC1 during the acclimation phase (Table 1) 

and by the thickness of the formed biofilm. Given the similar operational conditions of 

both MECs and the same cathodes, the difference in their performances could be at-

tributed to the different anode materials used. Based on the literature, although CNTs 

exhibit excellent electrical, mechanical and thermal properties, their practical application 

in MEC is doubtful, due to many issues, such as biotoxicity and biosafety that should be 

addressed [39]. The negative effects of nanomaterials on the biofilm formation in MEC2, 

strengthen the argument regarding bio-toxicity and negative effects of CNT-based mate-

rials on bacteria metabolism [20]. 

Figure 5. (a) COD, pH of the anolyte, and (b) current density (normalized to the anodic surface, 2 × 2 cm2) for MEC2 vs.
operation time, for an acetate-based synthetic wastewater feed. Applied cell potential: 0.9 V.

Table 2. The main characteristics of both MECs for an acetate-based synthetic wastewater feed.

Characteristics MEC1 MEC2

HPRv (mL/Ld) 23.6 9.8
YH2 (mgH2/gCOD) 33.3 8.6

YH2,th (% molH2/mol) 26.7 6.9
CE (%) 55.6 19.9

Cathodic hydrogen recovery, % 48.0 34.6
Hydrogen recovery, % 26.7 6.9

The better performance of MEC1 compared to MEC2 could be attributed to the ef-
ficient colonization of the MEC1 anodic electrode with electroactive bacteria, which is
corroborated by the higher voltage values of MEC1 during the acclimation phase (Table 1)
and by the thickness of the formed biofilm. Given the similar operational conditions of both
MECs and the same cathodes, the difference in their performances could be attributed to
the different anode materials used. Based on the literature, although CNTs exhibit excellent
electrical, mechanical and thermal properties, their practical application in MEC is doubt-
ful, due to many issues, such as biotoxicity and biosafety that should be addressed [39].
The negative effects of nanomaterials on the biofilm formation in MEC2, strengthen the
argument regarding bio-toxicity and negative effects of CNT-based materials on bacteria
metabolism [20].

The current densities values obtained from MEC1 (3.8 A/m2) and MEC2 (2.7 A/m2)
are like those obtained in other studies. For instance, Flayak et al. [40] obtained a current
density of 2.28 ± 0.62 and 2.44 ± 0.71 A·/m2 when using acetate and lactate at con-
centrations of 80 mM, as substrates in two-chamber MECs with carbon plates as anode
electrodes and plates of 90% Pt and 10% Ir, as cathodes. The HPRv values obtained in MEC1
(23.6 mL/L/d) are like those obtained in similar studies. Rozendal et al. [41] reported
a HPRv of 20 mL/L/d when using acetate in a two-chambered MEC under application
of 0.5 V. However, higher HPRv values and hydrogen recoveries (overall and cathodic)
have been usually reported for MECs fed with acetate, but with different configurations or
electrode materials [42]. For instance, Jeremiasse et al. [43] achieved a HPRv of almost 50 L
H2/L/d in a two chamber MEC, operating with a biocathode, under an applied potential
of 1 V.
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In MEC1, coulombic efficiency CE, which expresses the yield of acetate oxidation to
release e−, was calculated equal to 55.6%, while the cathodic hydrogen recovery (e− to H2)
was equal to 48%. Thus, the overall efficiency (acetate to H2) was just 26.7%. Low CEs,
reveal that acetate consumption is not mainly directed to current production. This could
be attributed to a partial loss of electrons for the biosynthesis of cellular components, e.g.,
biofilm formation [26]. In addition, the low cathodic hydrogen efficiency could be attributed
to a possible loss of hydrogen due to diffusion through the Nafion 117 membrane [41],
from the cathode to the anode chamber, as happens in the case of oxygen in MFCs [30].

3.3. MECs Performance Using the DF Effluent from CW as Substrate

Following the MECs operation with acetate-based synthetic wastewater as substrate,
diluted CW fermentation effluent of a AUFCR, rich in VFAs and fed with CW, was used as
an energy source. COD and pH of the anolytes, as well as the obtained current densities vs.
operation time are shown in Figures 6 and 7, respectively. The main characteristics of the
MECs are presented in Table 3.
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Table 3. The main characteristics of both MECs for the DF effluent feed.

Characteristics MEC1 MEC2

Cumulative hydrogen production (mL) 51.3 5.0
HPRv (mL/Ld) 29.3 1.6

YH2 (mgH2/gCOD) 25.5 2.7
YH2,th (% molH2/mol) 20.4 2.2

CE (%) 39.3 76.9
Cathodic hydrogen recovery, % 51.9 2.8

Hydrogen recovery, % 20.4 2.2

As in the case of synthetic substrate feed, cumulative hydrogen production, HPRV
and hydrogen yields (Table 3), as well as current density (Figures 6b and 7b) for MEC1,
were significantly higher than for MEC2. These results, in combination with SEM images
of the surfaces of the anodic electrodes, at the end of the operation cycles with DF effluents
(Figure 8), confirmed the hypothesis of better colonization of the MEC1 anodic electrode
with electroactive microorganisms. In this phase, a partial decomposition or detachment
of the formed biofilm had possibly occurred. Specifically, due to the negative effects of
CNT-based materials on the bacteria metabolism, it is possible that some electroactive
bacteria initially established in the biofilm which was attached to the anode of MEC2 were
deactivated and as a result, the performance of MEC2 was much lower compared to MEC1.
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It has been shown that the biofilm viability and hydrogen evolution, can for different
bacteria, be affected by the hydrophobicity/hydrophilicity of the anode. The hydrophilic-
ity/hydrophobicity of CNT-buckypaper and commercial CP was evaluated (Figure 9) with
contact angle measurements using a drop of water on their surface. The contact angle
is ca. 46◦ for CNT-buckypaper while for the CP is ca. 128◦. These results indicate high
wettability for CNT-buckypaper, thus confirming the best hydrophilic behavior. These
results are consistent with the results of De-la-Pinta et al. [44] who assessed the effect of
roughness and hydrophobicity of different biomaterials on the biofilm formation of differ-
ent microorganisms. Based on their study, hydrophobic materials led to more abundant
and profuse biofilms and their influence was more significant in the formation of biofilm
than the roughness of the biomaterials.
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The HPRv values obtained in MEC1 (29.3 mL/L/d) are similar to those reported in
other studies, where DF effluents were used as substrates. Rivera et al. [45] observed a rate
of 81 mL H2/L/day using a DF effluent in a two-chamber MEC (applied potential: 0.55 V)
with graphite cloth as an anode. However, higher HPRv values have been also reported for
MECs with different configurations (e.g., one-chamber MECs, without membranes, etc.),
fed with real wastewaters [46].

In MEC1 the COD consumption was 88.5% after 168 h of operation, while in MEC2 it
was 81.3% after 312 h of operation. The current density (normalized to the anodic surface,
2 × 2 cm2) obtained from MEC1 for 0.9 V applied voltage (3.5 A/m2) was much higher
than that from MEC2 for the same voltage (2.0 A/m2). For both MEC1 and MEC2, the
obtained current density for DF effluent as feed was lower compared to that for synthetic
wastewaters feed; this was also observed as it concerns hydrogen production and yields.
This could be attributed to the different types of substrate used. DF effluent is a complex
substrate, rich in butyric and propionic acids, which are called “dead end products” due to
the fact that these compounds are not decomposed for producing hydrogen; bacteria cannot
extract energy via the corresponding reactions [3]. Those substrates are firstly fermented
towards acetate by acetogenic bacteria and then are utilized to generate hydrogen [26].
Thus, the hydrogen performance of the MECs is highly correlated to carbon availability
or degradability by specific groups of microorganisms, involved in the process. Marone
et al. [26] reported better performance in MECs fed with fermentation effluents of simple
initial composition rather than effluents with a more complex one.

The COD consumption efficiency and the current density production in MEC2 indi-
cate the possible co-existence of exoelectrogenic bacteria with fermenting bacteria, which
possibly ferment the substrate producing electrons (CE: 76.9%) but no hydrogen. The low
cathodic hydrogen recovery (2.8%) and the low overall efficiency (2.2%) in combination
with the high CE reveal that the produced electrons are either used for the formation of
new biofilm or consumed in other electrochemical side reactions, such as reduction of
metal ions in the cathodic chamber [26]. The possibility of occurrence of other competitive
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reactions in the anode, such as methanogenesis, can also explain the low cathodic yields
which were observed.

The current density of MEC1 is similar to the respective one in other studies, deal-
ing with the use of DF effluents as substrates in MECs. Marone et al. [26] reported
7.46 ± 1.76 A/m2 when the DF effluent of a batch hydrogen reactor fed with deproteinized
ricotta CW was used in a two-chamber MEC, with carbon felt as an anode. The experiments
were done under 0.44 V. vs. SHE (Standard hydrogen electrode). Rivera et al. [25] obtained
current densities of 1.5–2.5 A/m2 and 1.3 A/m2 in a single-chamber MEC, treating the
effluents of a methanogenic and a hydrogenogenic reactor fed with CW, respectively, with
a graphite felt anode (60 cm2) and a stainless steel cathode.

3.4. Electrochemical Characterization of MECs

Figure 10 shows results of electrochemical measurements (CV, EIS) carried out in both
MECs, 72 h after the onset of the operation cycle with acetate-based synthetic wastewater
as electron donor when the COD was equal to ca. 625 mg O2/L for MEC1 and 440 mg
O2/L for MEC2. Regarding the qualitative characteristics of the obtained CVs (Figure 10a)
it is evident that the anode electrode material affects significantly the electrochemical
characteristics of the anode, which in turn affects the performance of each MEC. Specifically,
in the case of the CP anode electrode (MEC1), oxidation, as well as reduction peaks, are
observed (at ca. −0.17 V in the forward scan and at ca. −0.25 V and −0.43 V in the backward
scan) whereas in the case of the Thin-MWCNT-COOH-buckypaper anodic electrode no
obvious peaks appear. In general, the CNT-based anode appears less polarizable than the
CP anode if compared over the entire potential range −1 to 1 V vs. Ag/AgCl, whereas it
exhibits a less pronounced capacitive behavior in view of the narrow CV recorded for this
electrode.

These conclusions are corroborated by a comparison of the EIS characteristics of the
two anodes at 0.9 V vs. Ag/AgCl, which are depicted in Figure 10b–d, in the form of
Nyquist plots (Figure 10b), phase angle vs. log (frequency) Bode plots (Figure 10c) and
admittance plots (Figure 10d). For both MEC1 and MEC2, the ohmic resistance component
is equal to ca. 6 Ω (as determined by the intersection of the Nyquist plots with the Zre
axis at high frequencies). This is rather expected since the same anolyte and electrode
arrangement was used in both MECs. On the other hand, as concluded by comparing the
corresponding Nyquist plots, the polarization resistance is obviously much larger for the
MEC1 anode compared to the MEC2 anode, in agreement with the CV results (Figure 10a).
As shown in Figure 10c, a single peak is observed in the Bode plots for both MEC anodes,
implying that a single process mainly determines the impedance characteristics of the
compared anode electrodes, although two processes are discernible in the admittance plot
in Figure 10d for the MEC1 anode. However, the high frequency (above ca. 1 kHz) process
has a minimal contribution to the polarization resistance of the MEC1 anode, as shown in
the corresponding Nyquist plot (Figure 10b). The location of the peak for the MEC1 anode
in the Bode plot (Figure 10c) at lower frequencies compared to that for the MEC2 anode
implies (for the same ohmic resistance) an intrinsically slower process, at this specific anode
potential, in accordance with higher polarizability. It is also observed that for the MEC1
anode the phase angle at the peak in the Bode plot is closer to 90◦ than that for MEC2,
which indicates a more pronounced capacitive behavior, in agreement with the conclusion
drawn by comparison of the corresponding CV.

In general, as a lower polarization resistance is related to a better MEC performance
in terms of hydrogen production, there seems to be an apparent contradiction between the
aforementioned electrochemical characteristics of MEC1 and MEC2 and their performance,
as it concerns both the obtained current (Figure 5b) and hydrogen production (Table 2).
However, in the compared systems (with acetate as substrate) an applied voltage 0.9 V
(yielding ca. 3.5 A/m2 for MEC1 and 2.4 A/m2 for MEC2 or, equivalently, a current equal
to ca. 1.4 mA for MEC1 and 0.96 mA for MEC2) corresponds to anode potentials in the
region near 0 V vs. Ag/AgCl. Equivalently, a comparison of the EIS characteristics of the
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MEC1 and MEC2 anodes at 0.9 V vs. Ag/AgCl corresponds to MEC potential much larger
than 0.9 V. Moreover, the worst performance of MEC2 for hydrogen production may be
related to the high toxicity of the CNT anodic material which in turn may affect negatively
the metabolism of microorganisms.
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The electrochemical characteristics of MECs were also determined at the end of the
second operation phase, with DF effluent as electron donor, specifically 192 h and 336 h
after the onset of the cycle for MEC1 and MEC2, respectively, when COD in anolytes of
both MECs was lower than 100 mg O2/L.

The EIS characteristics of the anodes of the two MECs at 0.9 V vs. Ag/AgCl are
compared in Figure 11, in the form of Nyquist plots (Figure 11b), phase angle vs. log
(frequency) Bode plots (Figure 11c) and admittance plots (Figure 11d). As shown in the
Nyquist plots (Figure 11a), the ohmic component is small for both anodes (6.1 Ω in the
case of CP and 4.8 Ω in the case of CNT anode) whereas, at the specific anode potential,
the polarization resistance for the MEC2 anode is much smaller than for the MEC1 anode.
Similar to the case of acetate substrate, the Bode plot (Figure 11b) for each anode consists of
a dominant peak which is shifted to lower frequencies for the MEC1 anode and corresponds
to a phase angle closer to 90◦ compared to that for the MEC2 anode, indicating a slightly
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more pronounced capacitive behavior. It is noted that for the MEC1 anode two processes
are evident in the admittance plot (Figure 11c), however, the process corresponding to
frequencies above ca. 1 kHz does not contribute appreciably to the polarization resistance,
as shown in the corresponding Nyquist plot (Figure 11a).
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The aforementioned EIS behavior is qualitatively similar to that observed for acetate-
synthetic wastewater as feed (Figure 10), although differences exist concerning the cor-
responding quantitative features. Comparison between the anode characteristics for op-
eration with the two different substrates is not attempted here as the electrochemical
characterization was performed at different stages of the corresponding cycles. It is noted
that for DF effluent application of anode potential equal to 0.9 V vs. Ag/AgCl corresponded
to a current of ca. 1.65 mA for MEC1 and 2.2 mA for MEC2. As shown in Figure 11d, where
current-potential curves are presented for the two MECs operating on DF effluent, at 0.9 V
applied cell potential, the obtained current was equal to ca. 1.17 mA for MEC1 and 1.48 mA
for MEC2. This indicates that the applied anode potential (0.9 V vs. Ag/AgCl) in the EIS
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measurements corresponded to MEC potential higher than 0.9 V, as in the case of acetate
substrate.

Summarizing, the qualitative features of the EIS plots for the anode electrodes (CP or
Thin-MWCNT-COOH-buckypaper) did not change appreciably with changing substrate
(acetate or DF effluent), although the comparison is not straightforward for reasons men-
tioned above. Observed differences in the polarization resistance values indicate differences
in the rate of the underlying electrochemical processes. The worse performance of MEC2
compared to MEC1 concerning hydrogen production for both substrates is apparently
not in agreement with the measured lower polarization resistance of the MEC2 anode.
This can be partly explained by the fact that a comparison of the EIS characteristics of the
MEC anodes was made at anode potential (0.9 V vs. Ag/AgCl) which corresponded to
MEC potential higher than 0.9 V (at which operation of MEC1 and MEC2 was tested), the
difference being significantly larger for acetate syntheticsubstrates. As discussed above,
this discrepancy could also be attributed to the negative effects of nanotubes on biofilm
formation in the case of MEC2. Both MEC1 and MEC2 exhibited superior performance in
operation (at 0.9 V) with acetate synthetic wastewater compared to DF effluent, which can
be associated with a lower polarization resistance of the anode in the former case and, con-
comitantly, with a lower polarization resistance for MEC1. This difference in polarization
resistance can be seen in Figure 12, where the EIS characteristics of MEC2 for operation
at 0.9 V with acetate synthetic wastewater and DF effluent are compared in the form of
Nyquist plots. The polarization resistance, calculated as the difference of the intersections
of the Nyquist plot with the Zre axis at high (100 kHz) and low (1 Hz) frequencies, is equal
to ca. 184 Ω for acetate and ca. 290 Ω for DF effluent as feed. Notwithstanding that the
EIS data for the two feeds were obtained at different stages of the corresponding cycles,
this difference in polarization resistances agrees with the better performance of MEC2 for
acetate substrate, considering also that for both feeds the ohmic resistance was practically
the same, equal to ca. 452 Ohm. The fact that the ohmic resistance of MEC2 is of the same
order and higher than its polarization resistance at 0.9 V indicates that a better design of
MEC2 to minimize ohmic resistance can significantly improve its performance. The same
is also expected for MEC1.
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3.5. Toxicity Assessment

In the present study, the toxic potential of DF-MEC effluents was assessed, using
the crustacean Thamnocephalus platyurus. To our knowledge, it is the first time that the
toxic potency of a DF-MEC effluent is evaluated. According to the results, DF-MEC1 and
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DF-MEC2 treated samples were significantly less toxic than the DF sample, based on the
respective higher EC values (Table 4, Figure 13). Indeed, Karadima et al. [29] reported
that the toxic potency of the DF effluent of a hydrogenogenic reactor fed with CW against
the freshwater organisms; Daphnia magna, T. platyurus and Danio rerio, remained high
enough, preventing thus the safe disposal of the final effluents into the environment, which
is in accordance with the current study. The latter could be attributed to the removal of
COD [32,47] as well as the potent removal of other inorganic substances (i.e., nitrogen-
derived, phosphates, etc.) [29,32,48]. However, considering the safe disposal of DF-MEC
effluents, more efforts could be performed, in terms of MEC utilization for enhancing the
removal of DF-MEC toxic potential in all cases.

Table 4. Toxic endpoints, in terms of 24 h EC10, 20 and 50 values (% v/v) and confidence intervals
(lower and upper bound values within parenthesis) in Thamnocephalus platyurus challenged with
different concentrations of DF effluent samples, as well as DF-MEC1 and DF-MEC2 effluents, as
obtained by Probit analysis (p < 0.05, N = 3).

DF-MEC1
EC10 45.87 (0.02–62.30)
EC20 54.38 (0.37–71.37)
EC50 75.28 (42.62–>100.00)

DF-MEC2
EC10 47.56 (n.e.)
EC20 56.46 (n.e.)
EC50 78.38 (n.e.)

DF effluent
EC10 37.89 (0.78–53.10)
EC20 44.53 (2.73–59.81)
EC50 60.67 (24.94–91.28)

n.e.: not estimated by Probit analysis.
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SD from 3 independent experiments. Values in bracket are statistically different from the respective
value obtained in feeding samples (Mann Whitney U-test, p < 0.05, N = 3).

3.6. Energy Recovery from Combining DF with MEC Technology

From the values of Table 3, it is calculated that in MEC1 with CP as an anode electrode,
7.39 L H2 can be produced per L of DF effluent, which corresponds to 310 mL H2/g
COD consumed. Taking into account that during DF of CW in the UFCR 2.08 L H2
per L of CW are also produced (220 mL H/g COD consumed) [23] and that 1 L of CW
produces 1 L of DF effluent; it can be concluded that the combination of both processes
enhances the overall hydrogen yield to 9.47 L H2 per L of CW. Despite the fact that these
results were obtained from lab-scale experiments, it is clearly presented the feasibility of
establishing a two-stage process (DF-MEC), instead of a one-stage (DF), to increase the
overall energy production from CW and to make use of its carbon content. During DF, even
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under optimum conditions, in which the maximum theoretical hydrogen yield (4 mol/mol
sugars) could be achieved, only a 20% COD reduction occurs [49]. In this respect, further
exploitation of the organic content of the DF effluent, in a second process, could increase
the COD reduction efficiency, thus leading to an almost zero-carbon effluent [50], a fact
that is also reinforced by the toxicity data of the current study.

Alternatives to DF-MEC could be DF-anaerobic digestion (AD) [51,52] or DF-MFC
technology [53], which were found to be promising for the treatment of the effluents of
hydrogenogenic reactors fed with CW. A two-stage technology, such as DF-MEC could
be installed in the premises of a cheese-making company, without the requirements of
experienced labor or expensive equipment. However, a detailed cost analysis should be
performed so that all economical and technical aspects will be taken into account.

4. Conclusions

Two different anode electrodes, a carbon nanotube (CNT)-buckypaper and a com-
mercial carbon paper (CP) were assessed in terms of hydrogen production and main
electrochemical characteristics in a two-chamber microbial electrolysis cell (MEC). The
results showed that the use of CP as anode led to a better overall performance of the
MEC, compared to the CNT-buckypaper electrode, which was attributed to the better
colonization of the CP electrode with electroactive microorganisms, something that was
confirmed by SEM images. When using the cheese whey (CW) fermentation effluent as
substrate in the MEC, a dual environmental benefit is accomplished, combining sustainable
bioenergy generation, in the form of hydrogen with the CW treatment, a fact that is also
reinforced by the toxicity data of the current study.
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