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Abstract: The paper presents an original method underlying an efficient tool for assessing the
condition of photovoltaic (PV) modules, in particular, those made of amorphous cells. Significantly
random changes in operational parameters characterize amorphous cell operation and cause them to
be challenging to test, especially in working conditions. To develop the method, the authors modified
the residual method with incorporated histograms. The proposed method has been verified through
experiments that show the usefulness of the proposed approach. It significantly minimizes the risk
of false diagnostic information in assessing the condition of photovoltaic modules. Based on the
proposed methods, the inference results confirm the effectiveness of the concept for evaluating the
degree of failure of the photovoltaic module described in the paper.

Keywords: photovoltaic cell; residual method; modeling; inefficiency; randomness

1. Introduction

Photovoltaic (PV) systems have become a symbol and integral part of a new approach
to obtaining green energy. Photovoltaic systems and other energy generation systems
based on sunlight operation make energy production independent from fossil fuels. Re-
cent decades of intensive research and development introduced photovoltaic systems for
widespread use in households and industry. The lifetime and reliability of the panels in-
creased while the cost of installation was lowered. Photovoltaic panels are now a practical
product and a real alternative to conventional sources of electricity. However, these are still
solutions with the potential for improvement, especially in assessing the condition of PV
modules, as discussed in this article.

Solar collectors are one of the cleanest and most efficient heating systems generally
available, but still, research is undertaken to increase their energy conversion efficiency. PV
systems are characterized by variability related to the randomness of atmospheric phenom-
ena, including wind energy changes, shading, air temperature, environmental pollution, or
the operation requiring the cooling of photovoltaic modules. These unfavorable conditions
can be partially prevented through the buffering of produced energy. The most popular
solutions for energy storage are based on electrochemical reactions ensuring flexibility of
use and ease of transport. However, the number of devices in the system and powered
by the system adversely affects its reliability. It may lead to failures resulting in power
outages when this randomness is not under control. Therefore, it is crucial to develop
effective methods for determining the technical condition of the elements of the PV system
to prevent such failures. The report on the condition of the cells allows for quick reaction
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in the control system, which disconnects damaged, dirty, or shaded PV modules from the
installation and/or remote notifying the service.

Shading is not the only factor that randomly affects the operation of a photovoltaic
module. Still, it is a rapidly changing and commonly observed phenomenon of significant
influence. The authors intend to minimize false assessments of the PV modules condition
caused by quickly changing fluctuations in working conditions, including shading from
cloud cover or interference with animals (birds, cats)—unlike, for example, dirt from bird
droppings or wet leaves. The authors used shading to illustrate the broader issue. The
influence of other fast-changing factors, such as local temperature changes caused by
gusts of wind or precipitation, can be similar. The essence of the effect of shading on the
operation of PV installations was analyzed in [1], where the mathematical model reflecting
the impact of shading on the operating parameters of PV modules was constructed.

The remaining part of this paper is organized as follows. Section 2 provides a literature
review about the topic and related areas. In Section 3 equivalent circuit of the photovoltaic
panel is described as a background to modification of the residual method and methods of
assessing photovoltaic cell wear and defects. In Section 4, verification of the inefficiency
detection method is described and establishment and analysis of periodic malfunctions
from diagnostic data are provided. Finally, in Section 5 conclusions are summarized.

2. Literature Review

The condition of PV installations under random operation conditions is related to the
technical parameters and operation characteristics of their components and surroundings.
Research on PV development provided broad material for comparison.

The variability of PV panels is related to the stochastic character of atmospheric
phenomena [2,3], including changes in wind energy [4], air temperature [5], environmental
pollution, amount of solar energy reaching the panels, or shading. Air pollution can
attenuate solar radiation, which can be a significant parameter in PV panel efficiency
and reliability [6,7]. Shading conditions and their influence on PV panel efficiency were
also a subject of study. Ali et al. [8] provided a search tracking algorithm maximizing
power efficiency. Shaded areas of PV panels can cause heat-related damage [9]. Various
methods of counteracting partial shading are introduced; hardware-mitigation techniques
and software-mitigation techniques [10]. Hardware methods use the bypass and blocking
diodes or modified converters [11,12]. Partial shading can be countered by Artificial
Intelligent solutions [13,14] and others.

The construction and operation process are also sources of randomness in PV panel op-
eration. The cooling of photovoltaic modules can influence their effectiveness and reliability
since the surface temperature of the modules can impact the system’s performance [7,14].
Different methods of cooling panels can be used, such as airflow, cooling fluids, water,
nano-silica-water, or insulations [15]. Different absorbing materials are tested [16,17] for
energy and thermal efficiency, including nanofluids of other parameters. The shape pa-
rameters of the panels are also of interest to research on PV panels condition [15] since the
geometrical features of solar collectors influence the thermal efficiency [18].

All the research topics presented above impact the assessment of the condition of
PV panels under the influence of random internal and external factors. Existing research
directly related to the methods presented in this article has been woven into the course of
consideration offered in Sections 3 and 4 and is an integral part of the literature review.

3. Methodology
3.1. Equivalent Circuit of the Photovoltaic Panel

The temporal parameters of the equivalent circuit of the photovoltaic panel are critical
to estimate panel inefficiency and its changes in time. The operation conditions for pho-
tovoltaic panels are usually of random nature, as discussed in [5] or in [1], as well as [19].
The randomness must be included in the panel’s equivalent models, as proved in [20]. The
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most popular deterministic equivalent model for photovoltaic panels is the electric circuit
presented in Figure 1.
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Figure 1. Ideal equivalent circuit for a photovoltaic cell model with three parameters [21,22]:
R0 (Ω)—load resistance, Iph (A)—current in the cell exposed to solar radiation, ID (A)—current
in the diode with large surface area, I (A)—load current, U (V)—voltage decrease in the R0 receiver.

When I0 (A) stands current of the diode field-free, q for the elementary charge
(1.6·10−19 C), kB is a Boltzmann constant (1.38·10−23 J/K), T (◦C) is the temperature,
T0 = 273.15 (◦C), the output current has the following value [5,21,22]:

I = Iph − ID = Iph − I0

[
exp
(

q·U
kB(T + T0)

)
− 1
]

(1)

With the increase of the temperature T, the voltage in the open circuit of the photo-
voltaic cell decreases. Still, the short circuit current value remains unchanged, which can
be observed, in practice, as a decrease in cell power [5,23].

The Equation (2) for a photovoltaic cell, with five parameters, takes the following
form [20,21,24,25]:

I = Iph − I0

{
exp
[

q(U + I·RS)

kB·T

]
− 1
}
− U + I·RS

RW
(2)

The corresponding equivalent circuit is presented in Figure 2.
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Figure 2. Equivalent circuit for a photovoltaic cell model with five parameters [25]: R0 (Ω)—load
resistance, Iph (A)—current in the cell exposed to solar radiation, ID (A)—current in the diode with
large surface area, I (A)—load current, IW (A)—shunt resistance current, U (V)—voltage decrease
in the R0 receiver, RS —series resistance, RW —shunt resistance. Reprint with permission [25];
Copyright 2005, Computer Applications in Electrical Engineering: Poznan, Poland.

Operation of the equivalent circuit in random conditions can be illustrated by assign-
ing random values of the parameters of a single photovoltaic cell. The resultant current
and voltage are the sums of the current, for the parallel circuit and the voltage values of
individual cells, for the series circuit.

Using the constant randomization method in Equations (1) or (2) leads to obtaining the
probabilistic characteristics of the photovoltaic cell. If the temperature changes randomly,
the relation obtained for the Equation (1) is:

I = Iph − ID(t) (3)
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where:
ID(t) = ID[T(t)] (4)

and T(t) is a stochastic process.
Due to the undisclosed dependencies described and captured in the equations above,

the equations obtained are inaccurate. A better model of the photovoltaic cell inefficiency
is obtained through the rolling comparison with the averaged model based on performed
measurements. These measurements can be done for a non-defective module. The method
proposed for the analysis is based on the definition of the processed residual.

3.2. Modification of the Residual Method

There are many residual definitions, including those that are pseudo-residual. In the
simplest residual assessment method, the result of measurements designated as y is compared
with the signal ŷ generated by the model, generating the residual r (ordinary residuals) [25–29]:

r = ŷ− y (5)

When the object operates correctly, the residual value should be zero, and it should be
different from zero as soon as a failure or inefficiency appears (Figure 3).
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Figure 3. Ideal scheme for the residual assessment method: x(t)—enforcements, in a given moment in time.

Residual values different than zero are also observed when the following conditions
occur [29–32]:

• model inaccuracies of linear nature, for example, in the sectional function of the output signal,
• interferences in the actual random measurement values.

As a result of these, it is necessary to establish a certain area of model uncertainty for
residual values around 0 [33].

A more objective mapping of the current residual value onto the state of the non-linear
object under examination can be obtained through the conversion of the residual absolute
value to the relative value δr (%) [34]:

δr =
ŷ− y

ŷ
·100 (6)

or more accurately:

δrm =

∣∣∣∣ ŷ− y
ŷ

∣∣∣∣·100 (7)

Relative residual values guarantee a more accurate assessment of the current state
regarding quality and quantity. It can be assumed that residuals are variables randomly
subject to the Gauss normal distribution P(X) [35]. This is confirmed by the curve obtained
from measurements and calculations (as shown in Figure 4), determined based on experi-
mental data from the cell load range of 0–200 Ω and its final model. The modeling error is
represented as the displacement of the bell curve peak to the left of the ideal value δr = 0.
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A residual method is then modified by introducing the dynamic determination of
alarm limits by appropriately transforming the measured values. Temporal values are trans-
formed into discrete while residual signals δrj (j—measurement number) are transformed
using the following equation [31,33,36]:

Rj =

(
1− e−(

δrj
σz )

2
)
·δrj (8)

where: Rj—residual value after the modification, σz—standard deviation estimate for
historical data about correct object operation from the δrj, which absolute values (7) were
higher than the standard deviation estimate σw calculated for all the δrj data:

σz =

√
∑m

j=1
(
δrj − δr

)2

m− 1
(9)

σw =

√
∑n

j=1
(
δrj − δr

)2

n− 1
(10)

where: δr—mean value of all δrj values, m—the number of δrj, which absolute values were
higher than the standard deviation estimate σw, n—the number of all δrj values.

As a result, the modified discrete values of Rj in the applied inference methods reduce
the impact of too large residual values obtained in the case of the correct operation of
the evaluated (diagnosed) system. The authors also use modifications similar to (8) in
their considerations concerning, e.g., diagnostics of the machine condition with the use
of artificial intelligence, e.g., in the group data processing method (in GMDH neural
networks) [31], in the preparation of data sets in fuzzy modeling [33], in fault detection
using autoregressive (ARV) models [37].

3.3. Assessing Photovoltaic Cell Wear/Defects

Residual values greater than zero after modification can indicate a defect in the object
under examination, but they can also signal other states. The processed Rj residuals are
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subject to averaging in the next stage by determining moving average values gj with the
dynamically calculated time horizon Nj for every discrete-time instant j:

gj =
∑

j
i=j−Nj

Ri

Nj
(11)

An example of using the random signal moving average to reduce the fast-changing
component of this signal, which may interfere with the application of specific methods of
studying system properties, can be found in [37,38]. In [38], the random signal was a derail-
ment coefficient used to assess the running safety of railway vehicles. In contrast, in [37], the
random signal was the degree of damage to the mechanical systems tested in a laboratory.

After empirical verification, a 2-stage range of the Nj horizon regulation was assumed.
The default Nj value is 5, but when the condition (12) is satisfied, the value is 10. The
assumption of two possible values of the time horizon aims to simplify and shorten the
process of calculations and inference about the state of the tested PV module. It has been
verified empirically that the development of this relationship to the level of e.g., a linear
function does not significantly improve the obtained results. The total number of available
data points does not affect the value of Nj in this case. Constrain (12) means that if the value
for a single relative residual δr (6) is higher than the standard deviation σw determined for
all the relative residuals given during normal operation, the time horizon in step j is 10;
otherwise, it is 5 [39].

Nj = 5 NO←
(
δrj > σw

) YES→ Nj = 10 (12)

The decisive component (12) effectively limits the consequences of temporary changes
in residual values caused by random factors, as has been empirically confirmed. Such a use
of moving average to reduce the random components of the investigated quantities before
their further analysis is often used in technical applications, such as the safety assessment
in railway vehicles [38].

It is assumed that the limit lj is proportional to the model inaccuracy in a given
discrete-time instance j:

lj = σh
j − Rj (13)

where: σh
j —standard deviation estimate in the given time horizon Nj—for the original

residuals δrj.
Finally, the condition revealing defect, wear, or other disturbance for the detection of

inefficiency is obtained:
Rj > lj (14)

where: Rj—estimation of the residual standard deviation caused, for example, by a defect
of the monitored object, lj—estimation of the standard deviation for residuals caused by
the inaccuracy of the model.

Finally, the modified inference based on Formulas (13) and (14) may lead to more ac-
curate models formulated with the use of multivariable function approximation, reflecting
the operation of diagnosed systems [39].

Satisfying the condition (14) does not constitute the complete diagnosis of the module’s
damage. However, it is a premise for further verifying the assessment to determine the
seriousness of the inefficiency.

The initial assessment is suggested to be verified by establishing whether the value
fits within the power range assumed for the panel’s operation.

According to the different studies on the subject [40,41], the standard practice is
to use modules mostly in the generated power range (Pmax − 10%·Pmax ÷ Pmax), and
more rarely in (Pmax − 20%·Pmax ÷ Pmax). Furthermore, while the module is in oper-
ation, in the range of high declining steepness of the I = f (U) characteristics below
(Pmax − 10%·Pmax ÷ Pmax), even a small change in the load and the random environmen-
tal conditions (e.g., temporary shading) can generate false, high-value residuals. That is
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why the verification in the broader range of power fluctuations (Pmax − 10%·Pmax ÷ Pmax)
should confirm the final assessment of the module inefficiency. Whether a given measure-
ment series falls into that range is determined by checking the condition. The condition
is checked using the mathematical model of the P power sample for the range specified
above, which is also determined using the model.

The modifications introduced a “smooth” assessment of the condition of the photo-
voltaic cell. Thus, they can help prevent temporary false alarms. Unfortunately, they also
cause an additional time delay in detecting the wear or defect state. Considering long
exploitation periods for photovoltaic modules when they reach 90% of the rated power, as
specified by the manufacturer, a slight delay in the diagnostic decision should not increase
economic losses.

In the course of the research, it turned out that the inefficiency (wear) state of a
photovoltaic module S%j at the j-th moment is directly proportional to the percentage
average of the relative residual value:(

δrsr,i ≤ 20%·
∣∣σrsr,i

∣∣)
n=10 ∧ (Ni = const.)n=10 ∧ Rj > lj

YES→ S%j =
(
δrsr,j

)
n=10 (15)

where: n = 10 means satisfaction of all the conditions and performing calculations in the
10 last discrete steps (i = j− n + 1, j− n + 2, . . . , j− 1, j).

Based on the empirical dependencies given by the histograms, it is assumed that the
average relative residual value is calculated from the n = 10 last steps providing that the
time horizon Ni does not change in those consecutive steps. Furthermore, the average
value δrsr,i (16), must be characterized with the standard deviation σrsr,i , which is no higher
than 20% of the average value module while condition (14) must be satisfied for the given
set of samples measured [34]:

δrsr,j =
j

∑
i=j−n+1

δri/n (16)

Satisfying the detection condition (15) makes it possible to minimize the influence of
individual serious errors resulting from local model inaccuracies or random faults in the
measurement samples. A value of the S%,j parameter, greater than zero, can indicate that
the cell is wearing out. Inaccuracies can cause a parameter value smaller than zero in the
measurements or by the model itself.

4. Results and Discussion
4.1. Verification of the Inefficiency Detection Method

The proposed detection method has been verified empirically on random measure-
ment samples in the actual operating conditions of the module. Parameters y (real value)
and ŷ (model value) in equation (6) have been substituted with the equivalent current
values I and Î.

Initial tests were carried out in the laboratory, but the primary tests of the PV module
were performed outside buildings in Poznan (latitude: 52.4 ◦N, longitude: 16.95 ◦E).
Poznan is located in a temperate climate zone, transitioning from a maritime climate to
a continental climate. As a rule, the weather here is variable, with the average annual
rainfall about 507 mm, which is 30% less than the average for the whole country. The
Shell ST20 module, made of amorphous cells, was approximately three years old at the
time of the measurements, but it had been previously tested for over two years. In the
described case, the modeling and condition evaluation process was performed on the PV
module itself. The module’s characteristics were determined by measuring the current and
voltage at its terminals during manual changes in the load resistance. The tested system
was not equipped with an inverter. Moreover, the stability of the ambient temperature and
the wind speed was monitored during the measurement series under the given radiation
intensity conditions.
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Voltage and current measurements were planned to concentrate measurements in the
vicinity of the maximum power point—MPP (±10% of the value of the estimated UMPP
voltage). Concentration resulted from changing load resistance to obtain four times more
measurement samples on the performance characteristics. The examination started from
less precise measurement and determination of the characteristics (with points evenly
distributed on the curves). Current-voltage and power under given conditions, and
subsequently the location of the maximum power point, were empirically determined.
Then the characteristics with the concentration of measurements mentioned above were
measured and picked near the MPP point. In standard installations, the PV modules work
close to the MPP point, which the inverter fulfils.

Figure 5 shows the influence of random shading of the module’s working surface on
the current-voltage characteristics of its operation in the load range from 0 to 200 Ω for
irradiation 200–210 W/m2. The relation between power and voltage was obtained in the
same way (Figure 6).
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Figure 5. Sample I = f (U) characteristics of a photovoltaic module (200–210 W/m2), curves: red,
dark blue—model values for a fully operational module, orange—real values with the blind covering
30% of the module surface, light blue—real values with the blind covering 60% of the module surface.
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Figure 6. Sample P = f (U) characteristics of a photovoltaic module (200–210 W/m2), curves: red,
dark blue—model values for a fully operational module, orange—real values with the blind covering
30% of the module surface, light blue—real values with the blind covering 60% of the module surface.
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Differences between the model curves (red and dark blue in Figures 5 and 6) result
mainly from small differences in temperature during the two series of measurement. The
measurements done with 60% shading of the module working surface were performed
when the temperature was about 2 ◦C higher, although the lighting conditions were very
similar and amounted to about 200–210 W/m2.

Some interferences were modeled with the use of blinds. Shading a part of the
module’s surface simulates a failure of the part of the cell that caused by different external
factors and wear [23]. Multiple measurements repetitions for randomly shaded areas of the
module have shown that the placement of the blind on a correctly operating photovoltaic
module does not play any role in the results obtained.

For the case presented in Figures 5 and 6, the following measurement results were obtained:

• average malfunction S% levels calculated for samples from the whole power fluctua-
tion range P, without satisfying condition (15) in their selection, the results obtained
amounted to respectively: 2.716% with no blind, 34.897% with a 30% blind and 62.806%
with a 60% blind,

• analogously to the above, the average values obtained when condition (15) was
satisfied were as follows: 0% with no blind, 32.627% with a 30% blind, and 57.497%
with a 60% blind.

The results obtained confirm the usefulness of condition (15) in the precise determi-
nation of the malfunction state, as using this criterion reduces the scatter band for the
malfunction state around the expected values.

Figures 7 and 8 show the influence of shading random areas of the module’s working
surface on the current-voltage characteristics (Figure 7) and power-voltage characteristics
(Figure 8) in the load range from 0 to 200 Ω for irradiation 490–560 W/m2. There is a
noticeable and proportional increase in the current and power curves value due to the
higher level of irradiation.
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Figure 7. Sample I = f (U) characteristics of a photovoltaic module (490–560 W/m2), curves: red, dark
blue—model values for a fully operational module, orange—real values with a blind covering of 30% of
the module surface, light blue—real values with a blind covering of 60% of the module’s surface.



Energies 2021, 14, 8358 10 of 18

Energies 2021, 14, 8358 10 of 19 
 

 

 
Figure 7. Sample 퐼 = 푓(푈) characteristics of a photovoltaic module (490–560 W/m2), curves: red, 
dark blue—model values for a fully operational module, orange—real values with a blind covering 
of 30% of the module surface, light blue—real values with a blind covering of 60% of the module’s 
surface. 

 
Figure 8. Sample 푃 = 푓(푈) characteristics of a photovoltaic module (490–560 W/m2), curves: red, 
dark blue—model values for a fully operational module, orange—real values with a blind covering 
of 30% of the module surface, light blue—real values with a blind covering of 60% of the module’s 
surface. 

Table 1 shows similar values of the malfunction state 푆% obtained for other levels of 
the radiation power density 퐷 . 

  

0

200

400

600

800

1000

0 4 8 12 16 20

I [
m

A
]

U [V]

0

2

4

6

8

10

12

14

0 4 8 12 16 20

P 
[W

]

U [V]

Figure 8. Sample P = f (U) characteristics of a photovoltaic module (490–560 W/m2), curves: red, dark
blue—model values for a fully operational module, orange—real values with a blind covering of 30% of
the module surface, light blue—real values with a blind covering of 60% of the module’s surface.

Table 1 shows similar values of the malfunction state S% obtained for other levels of
the radiation power density Dr.

Analysis of the results, such as presented in Table 1, made it possible to improve
the malfunction state assessment, considering the detection condition (15). It was also
revealed that malfunction state values decrease in the direction of the actual percentage
of the blind use. The results presented above pertain to the whole range of variations for
the characteristics examined, and Table 2 shows comparable results for the power range of
(Pmax − 10%·Pmax ÷ Pmax).

Table 1. Sample malfunction state values S% for different irradiance values Dr for the full range of
power variations.

Dr (W/m2) Condition (15)
Satisfied

S% (%)

No Blind 30% Blind 60% Blind

120–150
NO −0.432 31.328 58.291
YES 0 30.872 54.794

200–210
NO 2.036 41.351 68.012
YES 0 37.831 63.810

370–400
NO 13.605 56.021 71.470
YES 2.790 42.364 65.871

490–560
NO 18.302 56.017 76.713
YES 7.740 45.350 70.180

Table 2. Sample values of the malfunction state S% for different irradiance values Dr for
(Pmax − 10%·Pmax ÷ Pmax).

Dr (W/m2) Condition (15)
Satisfied

S% (%)

No Blind 30% Blind 60% Blind

120–150
NO 2.098 32.163 60.443
YES 0 28.382 58.909

200–210
NO 0.652 40.005 70.706
YES 0 33.504 65.836

200–240
NO 1.799 33.382 65.304
YES 0 29.467 61.084

370–400
NO 1.528 43.787 70.008
YES 0 34.124 62.318

490–560
NO 0.558 42.911 74.291
YES 0 35.126 70.922
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The sample data sets presented in Table 2 show that for the power range of (Pmax−
10%·Pmax ÷ Pmax), the errors in malfunction state assessment have decreased in number and
amount to zero for module operation without blinds considering the detection condition (15).

Summing up, the sets of graphs obtained and presented in Figures 5–8 do not guaran-
tee the complete assessment of the state/degree of malfunction/dirt/shade, but in combi-
nation with irradiation measurement and the methodology proposed in the paper, allow
estimating the state of tested PV module. Tables 1 and 2 calculated the estimated degrees
of failure. Table 2 narrowed the inference to the power range (Pmax − 10%·Pmax ÷ Pmax),
which allowed for more satisfactory results, especially in the absence of a curtain (“No
blind” column).

The measurement uncertainty was minimized during the tests using 8 HT204 irra-
diation meters distributed evenly around the tested PV module. The reliability of the
measurements was verified with a photometer/radiometer Ee-Meter 202 with pyranometer
CM11. The indicated range of changes, e.g., 490–560 W/m2, refers to the extreme values
of irradiance indicated by different, mostly farthest from each other, probes of HT204 m.
The mean value of the readings from all meters was satisfactorily (error of ±1.5%) with
the value indicated by the Ee-Meter 202. The original measurement error of each HT204
is ±5%; however, it was reduced to ±1.5% in practice. For the variability range of the
irradiance of 490–560 W/m2, the average from the series of 30 measurements taken during
180 s was 522 W/m2. This value was determined with an accuracy of ±1.5%, meaning
522 ± 7.83 W/m2. For other given ranges of irradiation, the measurement errors were
respectively: ±1.25% for Dr = 120–150 W/m2, ±1.05% for Dr = 200–210 W/m2 and ±1.35%
for Dr = 370–400 W/m2.

4.2. Establishment and Analysis of Periodic Malfunctions from Diagnostic Data

In the current analysis of temporary inefficiencies, using Formula (6) and the assumption
of the stochastic nature of the recorded data, it was decided to schedule them under random
time intervals. The temporary failure S%j at the discrete time j is given by the formula:

S%j =
Îj − Ij

Îj
·100% (17)

where: Îj—measured current value after conversion, real current value (from the measure-
ment at the jth discrete moment) [mA], Îj—the current value generated by the model at the
jth discrete moment [mA]. The interval between consecutive discrete moments is regulated,
and the specific value of S%j is an estimate (as arithmetic mean) of ten consecutive S%T
values calculated with the assumed frequency of one value per second (according to the
condition (15) of modification of the residual method). Therefore, the time interval ∆TSj
between successive calculated values of S%j should meet the condition:

∆TSj = Tj−1 − Tj > 10s (18)

where: Tj−1, Tj—beginning and end of TS period for calculating the next ten S%T values.
Depending on the time interval ∆TSj the sample size of the S%j failure values collected

over a given time series can vary. The test assumes a fixed unit period of the time series
equal to TSC = 1 month. In practice, this period is the time interval between successive
values of periodic inefficiencies S%SC calculated from the set S%j and recorded in the
database. The calculation of periodic failures S%SC is preceded by the determination of the
central moment of the second order—variance D2(S%j) [%2] defined by the formula:

D2(S%j) =
nSC

∑
i=1

[
S%j −

∣∣S%j
∣∣]2 (19)
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where:
∣∣S%j

∣∣—estimate (first order of the central moment), arithmetic mean of temporary
failures S%j in the time interval TSC [%].

For further consideration, the inefficiency of the tested module was simulated by
randomly located diaphragms on the working surface of the amorphous module. The
measurements were carried out according to previous assumptions. However, temporary
failure S%j was calculated every ∆TSj = 10 min. Time interval TSC was shortened to the
first week, therefore within one period TSC 1008 designated S%j values were archived and
subjected to further mathematical analysis. Cases without fluctuations and with short-
term random fluctuations increasing the variance [24] and, consequently, the necessity of
marking and analysing the histograms were taken into account. Figure 9 presents courses
of failure S%j in consecutive discrete moments j (j = 1008 samples). In contrast Figure 10
shows histograms in two cases: a—during damage-free operation (without aperture) with
random shadows, b—when working with a randomly located aperture 24% of the working
surface of the module.
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Figure 9. S%j = f (j) characteristics: (a) D2
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Figure 10. Histograms f∆S% = f (∆S%): (a) D2
(

S%j

)
= 43.09%2; (b) D2

(
S%j

)
= 1.89%2.

For greater clarity of the results, it was decided to draw up histograms in which the
height of the bars is proportional to the relative size (percentage) of a given interval ∆S% in
relation to the entire population. Relative abundance is expressed as percentage f%.

In case a, the presence of temporal shadows was noted (for successive discrete-time
moments j = 200÷ 400 and j = 600÷ 700) with random unknown values, as confirmed
by the histogram (Figure 10a) with a clear dominance of the bar of the malfunction in the
0 ≤ ∆S% < 5% and a high value of the variance equal to 43.09%2.

In case b with the shutter in Figure 9b, the uniformity of the inefficiencies, as observed
over time, is confirmed by the very low variance value at the level of 1.89%2.

To minimize the impact of randomly changing working conditions on the value of peri-
odic failure S%SC, it was proposed to introduce a failure stability criterion in the TSC period.

Empiria confirmed that a variance not exceeding 5% proves a sufficiently stable course
of the instantaneous values S%j and entitles the periodic inefficiency S%SC to be calculated
as estimates (arithmetic mean) of all S%j in time interval TSC without considering the



Energies 2021, 14, 8358 14 of 18

histogram. A variance value higher than 5% obliges to proceed according to the scheme
described by the formula:

S%SC(TSC) = ∑
∆S%

[∣∣S%j
∣∣
∆S%

w∆S%

]
(20)

where: w∆S% —probabilistic weighting factor depending on the relative size (percentage) of
the failure interval f∆S% and variance values D2(S%j) [%].

It comes down to determining the S%SC as the expected value, using the histogram
(Figure 10) and the weighting factors w∆S% depending on the relative size (percentage) of
the failure interval f∆S% and the variance value D2(S%j) according to the formula:

∧
D2>5%2

w∆S% =


f∆S% + 1

n f
∑

∆S%( f∆S%
<| f∆S%

|)
f∆S% ·D

2(S%j
)

f or ∆S%
(

f∆S% >
∣∣ f∆S%

∣∣)
f∆S% − f∆S% ·D

2(S%j
)

f or ∆S%
(

f∆S% <
∣∣ f∆S%

∣∣) (21)

where: n f —the number of bars lower than the average height
∣∣ f∆S%

∣∣ in the histogram.
The value of the weighting factor w∆S% is determined for each interval ∆S% separately.
However, their sum over all intervals must be equal to 100%. The first case (Formula 20)
concerns the weighting factors for histogram bars higher than the average of all bars

∣∣ f∆S%

∣∣,
and the second case concerns the coefficients for the remaining bars lower than the mean
value. A similar use of weighting factors depending on the random quantities that exceed
their limit values at some discrete moments has been applied in the statistical analysis
of the track irregularities that temporarily reduce the running safety and ride comfort of
railway vehicles [38].

Figure 11 shows a comparison of the original histograms (from Figure 10a) with those
modified according to the Formula (21), where the new values of f∆S% are equal to the
determined weighting factors w∆S% .
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Table 3 confirms the validity of the application of the criterion of the disability stability,
in the period TSC when determining the periodic failure S%SC.
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Table 3. Comparison of the results of determining periodic failure of S%SC using the estimation and
weighting method.

Diaphragm
[%] D2(S%j) [%2]

S%SC = Estimate—|S%j|
(Arithmetic Average) [%]

S%SC = Weight Method
(according to Formulas (19)

and (20)) [%]

0 43.09 6.10 0.90

24 1.89 24.02 24.01

Due to the possibility of the fluctuations mentioned above, attention should be paid
to their influence in the monitoring process, especially concerning seasonal changes or
long-term accidental fluctuations. In such a case, applying the methodology described
above does not give measurable effects, even in the case of increasing the considered time
windows, because in the longer horizon, there are too many random factors of different
duration that can be omitted by the method.

The investigations of the PV module presented in this work are a substantial contribu-
tion to assessing their reliability and can be helpful in their maintenance. These two issues
and efficient energy use are vital aspects in many engineering applications.

5. Conclusions

The argumentation and verification results presented above (Tables 1 and 2) confirm
the usefulness of assessing the malfunction’s state, as developed by the authors. It is useful
when assessing the condition (malfunction state) of amorphous modules characterized by
the most significant random changes of operation parameters. For this reason, the method
was developed and confirmed through tests using the Shell ST20 amorphous module. The
usefulness of the method has been demonstrated particularly during the verification of the
mathematical model.

The verification process allowed to determine periodic inefficiencies of the tested
PV module. Based on the residual method described in the paper and modified by the
authors, a variance was used to prepare histograms determining the percentage belonging
to the designated intervals. The methodology of creating histograms was also modified
by applying a probabilistic weighting factor. The factor allows short-term fluctuations
(changes in tested signal) affecting the final state (malfunction) assessment to be eliminated.
As seen in Section 3.2, implementing the histograms using the variance allows even better
approximation of the value of the estimated failure of the PV module to the real value. It
is visible as an increase in the value of the histogram ∆S% = 0–5 in Figure 11 by almost
13%. Applying this additional inference method in the presented case of lack of shading
(0%) decreased the estimated inefficiency S%SC from 6.1% to 0.9% (Table 3), i.e., it came
closer to the real value. The presented methodology was verified in assessing the state of
failure of PV modules, which mathematical models were previously derived from model
measurement data in the approximation process [24]. The results confirm the effectiveness
of the adopted concept of dealing with the stochastic nature of working conditions, dy-
namically changing over relatively short periods. With random, unpredictable long-term
changes (e.g., seasonal), the proposed modification strategy of the methods described does
not allow more accurate state results to be estimated due to the failure of the PV module
tested. This is due to the influence of too many randomly changing factors of varying
duration, occurring at varying time intervals.

Further research will take into account the influence of the inverter Maximum Power
Point Tracker, temperature changes, and the influence of wind speed. In addition, the
proposed methodology will be enriched with an algorithm recognizing long-term, slow-
varying shading of predictable origin (e.g., from structural elements of the building, other
PV modules, trees). This will allow predicting (estimating) the geometry and, at the same
time, the scope of the occurring shading and, thus, recognizing its potential sources.
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Nomenclature

PV Photovoltaic
R0 Load resistance
Iph Current in the cell exposed to solar radiation
ID Current in the diode with large surface area
I Load current
U Voltage decrease in the R0 receiver
I0 Current of the diode field-free
q Elementary charge
kB Boltzmann constant
T Temperature
IW Shunt resistance current
RS Series resistance
RW Shunt resistance
T(t) Stochastic process
y Result of measurements in the simplest residual assessment method
ŷ Signal generated by the model
r Residual
δr Relative value of residual
P(X) Gauss normal distribution

Rj
Residual value after the modification, estimation of the residual standard deviation caused,
for example, by a defect of the monitored object

σz Standard deviation estimate for historical data about correct object operation from the δrj
σw Standard deviation estimate calculated for all the δrj data
gj Determining moving average values
Nj Dynamically calculated time horizon for every j
j Discrete-time instant
lj Estimation of the standard deviation for residuals caused by the inaccuracy of the model
σh

j Standard deviation estimate in the given time horizon Nj for the original residuals δrj

S%j
Inefficiency (wear) state of a photovoltaic module at the j-th moment, the estimate
(as arithmetic mean) of ten consecutive S%T values

n Number of last discrete steps
σrsr,i Standard deviation characterizing the average value δrsr,i
MPP Maximum power point
Dr Radiation power density
S% Malfunction state value
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Îj The current value generated by the model at the jth discrete moment
Ij Real current value (from the measurement at the jth discrete moment)

S%r
Values of inefficiency calculated with the assumed frequency of one value per second
(according to the condition (15) of modification of the residual method)

∆TSj Time interval between successive calculated values of S%j
Tj−1, Tj Beginning and end of TS period for calculating the next ten S%T values
S%SC Values of periodic inefficiencies calculated from the set S%j and recorded in the database
D2(S%j) Central moment of the second order—variance∣∣∣S%j

∣∣∣ Estimate (first order of the central moment), arithmetic mean of temporary failures S%j
in the time interval TSC

w∆S%

Probabilistic weighting factor depending on the relative size (percentage) of the failure
interval f∆S% and variance values D2(S%j)

f∆S% Relative size (percentage) of the failure interval
nf Number of bars lower than the average height

∣∣ f∆S%

∣∣ in the histogram
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