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Abstract: This paper investigates the nexus between CO2 emissions (CO2E), GDP, energy use (ENU),
and population growth (PG) in India from 1980–2018 by comparing the “vector error correction”
model (VECM) and “auto regressive distributed lag” (ARDL). We applied the unit root test, Johansen
multi-variate cointegration, and performed a Variance decomposition analysis using the Cholesky
approach. The VECM and ARDL-bound testing approaches to cointegration suggest a long-term
equilibrium nexus between GDP, energy use, population growth and CO2E. The empirical outcomes
show the existence of a long-term equilibrium nexus between the variables. The Granger causality
results show that short-term bi-directional causality exists between GDP and ENU, while a uni-
directional causality between CO2E and GDP, CO2E and ENU, CO2E and PG, and PG and ENU.
Evidence from variance decomposition indicates that 58.4% of the future fluctuations in CO2E are
due to changes in ENU, 2.8% of the future fluctuations are due to changes in GDP, and 0.43% of the
future fluctuations are due to changes in PG. Finally, the ARDL test results indicate that a 1% increase
in PG will lead to a 1.4% increase in CO2E. Our paper addresses some important policy implications.

Keywords: CO2 emissions; energy use; GDP; variance decomposition; population growth; ARDL
bound test; India

1. Introduction

Energy use has increased exponentially in the modern era compared to earlier times.
Fossil fuel-based energy production is the main contributor to greenhouse gas or carbon
dioxide emissions. In recent years, carbon dioxide emissions have increased significantly
and are expected to rise in the coming years [1]. Due to environmental degradation,
contemporary environmental issues in emerging and developing economies have taken
the lead in debates. This raises concerns about global warming and climate change,
mostly caused by greenhouse gas emissions [2]. These changes are often associated with
environmental causes (i.e., volcanic activity, solar radiation, ocean currents, and continental
drifts) and direct and indirect human activity, affecting the composition of the global
atmosphere and variation in natural climate. However, many scholars have argued that
industrialization, global population growth, and increased human activity due to the need
to face such changes are the major causes of environmental change [3,4].
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Furthermore, deforestation for commercial purposes, agriculture, burning of fossil
fuels, and changes in land use caused by population growth contribute significantly to
greenhouse gas emissions. India is the second-largest CO2 emitter in emerging economies,
and we consider remittances to have a key relationship with CO2E in India [5]. How-
ever, such significant economic growth programs were traded off with a wide range of
environmental distress. Between 2011–2016, per capita CO2E in South Asia increased by
more than 25 percent [6], while environmental footprint (EFP) increased by almost 20 per-
cent [7]. Besides this, India, Pakistan, and Bangladesh are the world’s most carbon-polluted
countries [8].

The present empirical research focuses on India for several reasons. Firstly, a study
by the global carbon project [9] shows that India’s CO2E in 2018 continues to grow at an
average of 6.3%. India has the highest CO2E due to its use of fossil fuels, such as oil (2.9%),
gas (6.0%), and coal (7.1%). The same report states that India is the third-largest CO2-
emitting country after the United States and China. Moreover, India is the second-largest
coal producer globally and obtains coal by open cast mining [10]. This leads to health and
environmental issues. Natural gas- and oil-based power generation are 25 GW and 48 GW,
respectively [11]. Apart from that, natural gas- and oil-based Power Generation (PG) meet
6% and 19% of India’s electricity power needs. As part of the production process, limited
gas exploitation and oil reserves reduce ecological quality.

Therefore, case studies related to fossil fuel use and CO2E in India are very neces-
sary. The United Nations’ seventh Sustainable Development Goal [12] calls for a global
increase in renewable energy proportions in total energy use profiles to conserve the en-
vironment [13]. As a result, India must increase its investment in renewable energy. In
keeping with this, the government of India will have generated 175 GW of renewable en-
ergy by 2022. Further research is needed on the impact of such projects on India’s economic
development to give concrete shape to the sustainable development agenda. To conclude,
according to the IMF WEO [14], India contributes 3.36 percent of global economic growth
(at current exchange rates) and 7.98 percent of global GDP (at constant exchange rates),
with a 2.24 percent share of the global population. As a result, pollution-related problems
affect a huge portion of the population.

Modern-day production and consumption have given significant impetus to economic
development, which is mostly responsible for the economic growth of several countries.
However, climate change is the negative element of this persistent human activity. Nu-
merous studies indicate that financial development often contributes to environmental
degradation [15–17]. The EKC hypothesis proposed by [18] states that in the early stages of
a country’s economic growth, its environmental degradation increases but gradually de-
clines after reaching a certain level of industrialization. In the context of emerging countries,
policymakers need to promote a balance between economic growth and environmental
protection. Ang [19] scrutinized the causal links among Carbon dioxide emissions (CO2E),
energy consumption (EC), and GDP for France from 1960 to 2000. The empirical findings
revealed a strong long-term nexus between these variables. In terms of causality, the results
showed that real GDP causes both ENU and CO2E in the long term, while a uni-directional
causality running from energy consumption to GDP was detected in the short term.

Ajmi and Inglesi-Lotz [20] investigated the nexus between biomass energy consump-
tion and economic growth for twenty-six OECD countries from 1980–2013. Using the panel
VCE model, Granger causality was used to scrutinize the linkage; they discovered the
existence of a uni-directional relationship between energy consumption and economic de-
velopment in the OECD. Bouyghrissi, Berjaoui and Khanniba explained the nexus between
financial development and renewable energy consumption in Morocco from 1990–2014
by applying the Granger causality test and ARDL model approach [21]. Their findings
showed a uni-directional causation link between renewable energy consumption and
financial development in Morocco. Another study investigated the multidimensional
relationship between financial development and urbanization across different income
groups from 1991–2014 by using the Granger causality test [22]. Their findings concluded
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a uni-directional causal impact of financial development on urbanization in high and
higher-middle-income nations.

This study [23] investigates the causal nexus among energy consumption, economic
growth, financial development, trade openness, and CO2E in India; it was discovered
that energy consumption had a long-term positive impact on CO2E. Similarly, research
by [24,25] for Pakistan and [26] for India also confirmed that financial development had
long-term negative consequences for the environment. The effects of energy use, income
inequality, and financial development on CO2E in three emerging economies: India, Pak-
istan, and Bangladesh, were also investigated in [27,28]. The conceptual framework for
measuring the impact of remittances, foreign direct investment, and energy usage on CO2
emissions in Asian countries (India, Pakistan, Philippines, Bangladesh and Sri Lanka) was
developed in [29]. In their analysis for Bangladesh, [30] investigated the causal nexus
among energy consumption, GDP, and carbon emissions. The study uses annual data from
1972 to 2011. According to the study, energy consumption positively impacts economic
growth, whereas carbon emissions have a negative impact on economic growth.

In Zaidi, S., & Saidi, K; Adebayo, T. S., & Akinsola, G. D [31,32] the relationship
between renewable energy consumption, non-renewable energy and carbon emissions in
Pakistan was scrutinized. They used the ARDL bound to establish long-term association
between the variables. The outcome shows that renewable energy consumption does not
contribute to carbon emissions, and non-renewable energy contributes to carbon emissions.
In [33], important work was carried out concerning the economic growth–environment
relationship. For the first time, the study examined the asymmetric linkage between
economic growth and CO2E. The study examined the time-series dataset gathered from
China from 1980 to 2014 to detect the asymmetry between economic growth and carbon
emissions using the Nonlinear ARDL model approach. The study’s findings revealed that
a positive change in economic growth has a significant impact on CO2E compared to a
negative change.

The main objectives of this research study are to investigate the relationship between
GDP, energy use (ENU), population growth (PG), and carbon dioxide emissions (CO2E)
in India. According to several scholars, environmental degradation is caused by non-
renewable energy consumption and economic expansion in industrialized countries [34–39].
This research study will help bridge the gaps among early research by controlling the model
for GDP, ENU, PG, and CO2E. This study used the VECM and ARDL bounds testing for
long-term and short-term nexus between study variables. When the variables are stationary
at the level of first-order difference, the VECM and ARDL model can be applied, whereas
other cointegration approaches require the same order of integration. The different lags
can be used for exogenous and endogenous variables.

2. Data and Methodology
2.1. Data Description

The study used the annual time series data of carbon dioxide emissions (CO2E), energy
use (ENU), gross domestic product (GDP) and population growth (PG) over the period of
1980–2018. All the data for the variables used in this study were gathered from the World
Bank database [40]. Table 1 indicates the definitions of variables used in this study.
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Table 1. Data description.

Variables Description

CO2E Comes from burning of fossil fuels and manufacturing of cement, carbon dioxide emissions produced during the
usage of solid, liquid, and gas fuels, as well as gas flaring.

ENU
Energy use refers to the use of primary energy before transformation to other end-use fuels, which is equal to
indigenous production plus imports and stock changes, minus exports and fuels supplied to ships and aircraft

engaged in international transport.

GDP
GDP per capita is the gross domestic product divided by midyear population. GDP is the sum of gross value added
by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value

of the products. Data are in current U.S. dollars.

PG
The annual population growth rate for year t is the exponential rate of growth of the midyear population from year
t-1 to t, expressed as a percentage. The population is based on the de facto definition of population, which counts all

residents regardless of legal status or citizenship.

Sources: Authors’ derivation.

2.2. Model Specification

The main objective of this study is to examine the relationship between CO2 Emissions,
energy use, GDP, and population growth. To fulfil these objectives, our study employs
the VECM and ARDL bound testing approaches. We present the following standard
econometric specification for empirical estimations.

CO2E = f(ENU, GDP, PG) (1)

where CO2E denotes the carbon dioxide emissions, ENU is the energy use, GDP is the
gross domestic product, and PG is the population growth of the country in question. By
applying the logarithm to Equation (1), the model follows a log-linear form and can be
expressed as follows in Equation (2):

LCO2Eh= β0+β1LENUh+β2LGDPh+β3LPGh+εh (2)

All study variables are transformed to their logarithmic form (L), LCO2E is the de-
pendent variable, while LGDP, LENU, and LPG are the independent variables in year h,
β1,β2, and β3 the long-term elasticity (LTE) coefficient of the study variables, and εh the
residual term.

2.3. VECM Causality Test

In this paper, we apply the vector error correction model (VECM) based on the
Granger causality test to determine the long-term and short-term causality nexus between
the variables. This method is suitable if a long-term cointegration is established. To perform
this test, we follow [41,42] by specifying the framework of VECM as follows:

∆


LCOE2h
LENUh
LGDPh
LPGh

 =


α1
α2
α3
α4

+
p

∑
k=1

∆


β11kβ12kβ13kβ14k
β21kβ22kβ23kβ24k
β31kβ32kβ33kβ34k
β41kβ42kβ43kβ44k

×


LCOE2h−k
LENUh−k
LGDPh−k
LPGh−k

+


δ1
δ2
δ3
δ4

γh−1 +


ε1h
ε2h
ε3h
ε4h

 (3)

where ∆ indicates the first difference operator, LCO2E is the dependent variable, and LGDP,
LENU, and LPG are the independent variables in year h. ECTh−1 denotes a lagged error
correction term obtained from the long-term association, and e1, e2, e3 and e4 are the
residual error terms, invariable, assumed to be zero and normally distributed. If ECTh−1 is
statistically significant, it therefore suggests a long-term causal nexus between the variables.
In addition, we applied F-statistics of the first differenced variables to test whether there is
a short-term causal nexus between the variables. Specifically, a causality relationship flows
from LCO2Eh to LPGh if β14k 6= 0∀k. Conversely, a causality flows from LPGh to LCO2Eh
if ρ14k 6= 0∀k.
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2.4. ARDL Approach

The ARDL bounds testing method which guarantees more efficiency and robustness,
especially in small sample sizes, is used to test for cointegration among LCO2E, LENU,
LGDP, and LPG. The merit of this method is the possibility of both long- and short-term
dynamics of the fitted regression with the error correction model being reported at the
same time as well as determining the case of an unknown order of integration of series as
long as the series is I(0) and I(1), not I(2). The unrestricted version of the error correction
model is specified, and its assumes that all variables are independent. The similar work
of [43,44] The ARDL bound test can be expressed as:

∆LCOE2h= α0+π1LCOE2h−1+π2LENUh−1+π3LGDPh−1+π4LPGh−1+∆( p
∑

k=1
β1jLCOE2h−i +

p
∑

i=0
β2jLENUh−i +

p
∑

i=0
β3jLGDPh−i +

p
∑

i=0
β4jLPGh−i

)
+εh

(4)

where p is lag-order; α is the intercept; ∆ denotes the first difference operator; εt is the
residual term. To test the long-term equilibrium association among LCO2E, LENU, LGDP,
and LPG, the study uses F-tests.

H1: π1 = π2 = π3 = π4 = 0. The null hypothesis (H1): the variables are not cointegrated.

H2: π1 6= π2 6= π3 6= π4 6= 0. The alternative hypothesis (H2): the variables are cointegrated.

The null hypothesis of no cointegration among variables is tested by the joint signif-
icance using F-statistics. If the F-statistics value turns out to be greater than the upper
critical value provided by Pesaran et al. (1999), the null hypothesis of no cointegration is
rejected and we conclude that there exists a long-term relationship between the variables. If
the F-statistics value is less than the lower bound, then we fail to reject the null hypothesis
of cointegration. However, if it is between the lower and upper bounds, then the decision
remains inconclusive, which can be clarified using Johansen’s test cointegration [45] or
by checking the cointegration space constancy using the cumulative sum of recursive
residuals (CUSUM) and cumulative sum of the square of recursive residuals (CUSUMsq),
respectively [46].

3. Results and Discussion

This section describes the summary of the descriptive statistics of the variables before
the logarithmic transformation was applied. The study variables after logarithmic trans-
formation are shown in Figure 1. Population growth decreases consistently, the trend of
energy use follows the trend of CO2 emissions, but there appear to be trend fluctuations
in GDP.

Table 2 displays the descriptive statistics and correlation matrix of the variables. While
the average value of CO2E is 0.9591 with a std deviation of 0.4025, the average value of
ENU is 13.828 with a std deviation of 8.2352, and the average values of GDP and PG
are 6.1539 and 1.7521(with a std deviation of 1.8877 and 0.4127), respectively. The CO2E
and ENU have a long-tail (Positive Skewness), while GDP and PG have a long left-tail
(Negative Skewness). Nevertheless, CO2E, ENU, GDP, and PG indicate a platykurtic
distribution since the residuals of the series are normally distributed, according to a Jarque-
Bera test. The correlation coefficients matrix is shown in Table 2. We observe that CO2E is
highly correlated with ENU. Moreover, we note that there is a positive correlation between
GDP and ENU. In addition, there is a negative correlation between PG and CO2E, ENU,
and GDP.

The unit root test results of the ADF [47] and PP [48] are reported in Table 3. All the
series used in this study are non-stationary at their level. The test results show that the
null hypothesis of the unit root for each variable is not rejected at the 5% significance level.
Therefore, the test results from the first difference presented in Table 3 show that the test
statistics of the ADF and PP are statistically significant as the corresponding p-value for
each test statistic is less than 0.05. Thus, all the series used in this study are I(1).



Energies 2021, 14, 8333 6 of 17

Figure 1. Plots of study variables.

Table 2. Descriptive statistics and correlation matrix.

Variable CO2E ENU GDP PG

Mean 0.9591 13.828 6.1539 1.7521

Std.dev. 0.4025 8.2352 1.8877 0.4127

Min 0.44926 3.753 1.0568 1.0378

Max 1.7998 31.348 9.6277 2.3286

Skewness 0.6807 0.65063 −0.4658 −0.2377

Kurtosis 2.2243 2.1607 2.7341 1.8385

Jarque-Bera 3.8962 1.5254 3.9901 2.5593

Probability 0.1425 0.4664 0.136 0.2781

Observations 39 39 39 39

Correlation matrix

CO2E 1 - - -

ENU 0.99 1 - -

GDP 0.32 0.33 1 -

PG −0.48 −0.35 −0.32 1
Note: Authors’ calculation.
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Table 3. Results of ADF and PP unit root test.

Variables
ADF-Test PP-Test

Level I(0) Level I(1) Level I(0) Level I(1)

CO2E −0.22120 −6.26999 *** −1.109255 −6.29012 ***

ENU 2.76467 −4.24687 * 0.570389 −6.14954 **

GDP −1.00309 −5.25254 * −0.40863 −6.05831 *

PG −1.77219 −5.02727 * −0.109255 −5.45130 *
Note: * 1% statistical significance level, ** 5% statistical significance level, and *** 10% statistical significance levels.

3.1. Lag Selection for VECM

Following the unit root testing, the next step is to identify the optimal lag for the
vector error correction model (VECM). VAR lag order selection criteria are used to select
the optimal lag to the test of co-integration in the research analysis. Table 4 indicates VAR
lag order selection criteria. The four lags are employed in this multi-variate model because
the sequential modified likelihood ratio test statistic (LR), final prediction error (FRE),
Akaike information criterion (AIC), Schwarz information criterion (SIC), and Hannan-
Quinn information criterion (HQ) select 4 as the optimal lag shown by “*” in Table 4.

Table 4. Results of lag length selection criteria.

Lag-Order Log _L LRT FPE AIC SIC HQI

0 −65.8523 - 0.000 3.9915 4.1693 4.0529

1 138.0719 349.5844 0.000 −6.7469 −5.8581 −6.4401

2 177.4233 58.4649 0.000 −8.0813 −6.4815 −7.5290

3 210.3585 21.9202 0.000 −9.0490 −6.3382 −8.2513

4 231.6699 41.4042 * 0.000 * −9.3525 * −6.7307 * −8.3094 *
Notes: * indicates lag-order selected by the criteria; Log_L: Log Likelihood; LRT: sequential modified Likelihood
Ratio-test statistics (each test at 5% level); FPE: Final Prediction Error; SIC: Schwarz Information Criteria; AIC:
Akaike Information Criteria; HQI: Hannan-Quinn Information Criteria.

3.2. Johansen Cointegration Test and VEC Model

This subsection focuses on using the Johansen cointegration test [45] using the max—
eigenvalue and trace methods. The results for unrestricted cointegration rank tests are
presented in Table 5. Using cointegration test specifications, information criteria such as
Log_L, AIC, and SIC select linear intercept and trend for the trace and max—eigenvalue
tests. The trace and max—eigenvalue tests show two cointegration equations at a 5%
significant level, which rejects the null hypothesis of no cointegration among LCO2E, LGDP,
LENU, and LPG. Table 6 shows the long-term and short-term multi-variate causalities of
the error correction model. Table 6 reveals that the coefficient of the lagged error correction
term (ce1 = −0.87) was found to be statistically significant with a negative sign, which
shows evidence of long-term equilibrium association running from LENU, LGDP, and LPG
to LCO2E. In addition, there is evidence of short-term equilibrium association running
LENU to LCO2E, LPG to LCO2E, and LGDP to LCO2E, which is statistically significant at a
5% level.
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Table 5. Results of Johansen cointegrated test by max-eigenvalue and Trace methods.

No. of CE(s) Eigenvalue Trace-Statistics Critical Value Sign. Value

None 0.6458 89.4841 47.8561 0.000 a

At most 1 0.5503 51.0816 29.7970 0.000 a

At most 2 0.4330 21.5079 15.4947 0.005 a

At most 3 0.0137 0.5139 3.8414 0.473

Max-Eigen statistic

None 0.6458 38.4025 27.5843 0.001 a

At most 1 0.5503 29.5736 21.1316 0.002 a

At most 2 0.4330 20.9940 14.2646 0.003 a

At most 3 0.0137 0.5139 3.8414 0.4734
Note: a indicates rejection of the hypothesis at the 0.05 significance level.

Table 6. VECM Granger causality test results.

Dependent Variable Coef. Std_E t-Statistics Sign. Value

Long-term ∆LCO2E L1.ce1 −0.873 0.194 −4.367 0.001 *

L1.ce2 0.746 0.368 2.431 0.009 *

_trend 0.001 0.007 −1.054 0.659

_cons −0.001 0.000 −0.195 0.348

∆LENU L1.ce1 −0.071 0.243 −1.654 0.051

L1.ce2 −0.433 −0.024 −0.957 0.073

_trend 0.042 0.0093 −1.2467 0.5471

_cons 0.093 0.0456 5.5467 0.0576

∆LGDP L1.ce1 −0.004 0.0132 −0.1345 0.8130

L1.ce2 −0.204 0.0047 −2.1202 0.0342 *

_trend 0.080 0.0067 4.3209 0.0001 *

_cons −0.130 0.0015 −3.7865 0.0012 *

∆LPG L1.ce1 −0.060 0.0566 0.3206 0.9531

L1.ce2 −0.365 0.0001 −2.6922 0.0021 *

_trend −0.000 0.0078 −1.8710 0.3421

_cons −0.008 0.0543 20.2172 0.0015 *

Short-term ∆LENU F(2, 28) 7.90 Prob > F 0.0031 *

∆LGDP F(3, 28) 8.33 Prob > F 0.0032 *

∆LPG F(2, 28) 25.40 Prob > F 0.0000 *

R2 0.3808 Adj.R2 0.1664
Note: * Significant at 5% level.

The Johansen cointegration method reveals the existence of causality between vari-
ables but fails to indicate the direction of the causal relationship. It is realistic to ascertain
the causal linkage among LCO2E, LENU, LGDP, and LPG using the Granger causality
test [49,50]. Table 7 shows the results of the pairwise Granger causality test using VECM.
The null hypotheses that LCO2E does not Granger cause LENU, LCO2E does not Granger
cause LGDP, LCO2E does not Granger cause LPG, LGDP does not Granger cause LENU,
and LPG does not Granger cause LENU are rejected at a 5% level of significance. In other
words, there is bidirectional causality running from LENU to LGDP, and unidirectional
causality running from LCO2E to LENU, LCO2E to LGDP, LCO2E to LPG and LPG to
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LENU. Evidence from joint causality running shows a unidirectional causality from LCO2E
to a joint causality of LENU, LPG, and LGDP; LENU to a joint causality of LCO2E, LGDP,
and LPG; and LGDP to a joint causality of LCO2E, LENU, and LPG, respectively.

Table 7. Results of Pairwise Granger Causality Test.

Dependent Independent F-Statistics Df Sign. Value Existence of Causality

LCO2E LENU 8.4227 1 0.0013 * Yes

LCO2E LGDP 6.3412 1 0.0031 * Yes

LCO2E LPG 9.8606 1 0.0006 * Yes

LCO2E All 35.6623 3 0.001 * Yes

LENU LCO2E 0.2550 1 0.3290 No

LENU LGDP 3.5546 1 0.0192 * Yes

LENU LPG 4.1596 1 0.0689 No

LENU All 5.6852 3 0.0720 No

LGDP LCO2E 0.0332 1 0.9673 No

LGDP LENU 3.4730 1 0.0398 * Yes

LGDP LPG 0.6423 1 0.7311 No

LGDP All 17.6190 3 0.0021 * Yes

LPG LCO2E 1.1436 1 0.3943 No

LPG LENU 4.2270 1 0.0156 * Yes

LPG LGDP 3.8929 1 0.0695 No

LPG All 16.7161 3 0.0016 * Yes
Notes * indicates rejection of the hypothesis at 5%.

3.3. ARDL Cointegration Test

This study presents the ARDL-bound test cointegration proposed by Pesaran et al.
(2001). The ARDL-bound test cointegration is summarised in Table 8. The bound F-test is
performed to establish a cointegration linkage among LCO2E, LGDP, LENU, and LPG. The
outcomes from Table 8 indicate that the F-statistic lies above the 10%, 5%, 2.5%, and 1%
critical values of the upper bound, meaning that the null hypothesis of no cointegration
nexus between LCO2E, LGDP, LENU, and LPG is rejected at 10%, 5%, 2.5%, and 1%
significance levels.

Table 8. ARDL bound test results for estimated models.

Test Statistic Value K*

F-statistics 2.60513 3

Critical value

Significance level I(0)-LB I(1)-UB

10% 2.37 3.2

5% 2.79 3.67

2.5% 3.15 4.08

1% 3.65 4.66
Note: statistically, 5% significance level is denoted by K*; LB and UB represent Lower and upper bound separately.

The next step is to select an optimal model for long-term equilibrium nexus estimation
using the Akaike information criterion (AIC). The ARDL regression estimation is shown
in Table 9. The error correction term (L_CO2E = −0.70) value is negative and significant
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at a 5% level, indicating a long-term equilibrium linkage between GDP, ENU, and PG
to CO2E. The long-term (LT) elasticity estimation in Table 9 shows that the 1% increase
in PG in India will increase CO2E by 1.4%. Though not statistically significant, a 1%
rise in GDP in India will raise CO2E by 0.30%, and a 1% increase in ENU in India will
raise CO2E by 0.63%. The study analyses the joint influence of the explanatory variables
(LENU, LGDP, LPG) on CO2E using a linear test parameter estimate using the individual
coefficient. The joint-linear test in Table 10 demonstrates a short-term (ST) equilibrium
linkage between ENU and CO2E, as well as GDP and CO2E. The empirical evidence shows
that the ENU in India contributes more to CO2E than GDP in the short-term. According
to [51,52], as of August 2021, 388,134 GW of the total capacity for power generation in
India came from thermal generation with only 234 GM coming from renewable sources.
Nevertheless, the energy crisis in India, as an outcome of changes in weather patterns, has
led to lower returns from the generation of hydropower, which has become dependent on
India’s generation of thermal power (diesel and natural gas). This has led to an increase in
CO2E. Furthermore, 63% of India’s ENU comes from biomass consumption of firewood
and charcoal [51], implying that overexploitation of forests increases CO2 emissions.

Table 9. ARDL regression.

Variables D_LCO2E Coef. Std_E t-Statistic Sign. Value

ECT L_CO2E(L1.) −0.7060 0.1458 −6.8420 0.0000 *

LTE L_ENU 0.6326 0.1616 3.6660 0.0001 *

L_GDP 0.3021 0.1855 1.2934 0.3409

L_PG 1.3976 0.78891 9.6448 0.1877

ST L_ENU(D1.) −0.4271 0.0228 −2.9328 0.1731

L_D. 1.4906 0.5701 4.3226 0.0192 *

L_GDP(D1.) −1.1311 0.8812 −2.3301 0.0216 *

L_D. −0.7403 0.7087 −1.1302 0.5221

L_2D. −3.92363 0.7852 −4.0193 0.0031 *

L_PG(D1.) 0.17403 0.1116 1.5581 0.1366

Cons −0.7240 0.2094 −1.0380 0.7336

Join ST
D_LENU F(2,28) 7.8802 P > F 0.0000 *

D_LGDP F(3,28) 7.5310 P > F 0.0023 *

D_LPG F(1,28) 3.3410 P > F 0.2411

Sources ss df ms P > F 0.0000 *

Residual 0.2648 28 0.0038 R2 0.9856

Total 0.4670 39 0.0153 Adjusted-R2 0.9753

Root MSE 0.0766
Note: * 5% level of significant.
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Table 10. Diagnostics test of VECM.

LM-Test

Lag-order χ2-Value Df Sign. Value

1 0.05765 1 0.8102

2 0.01410 1 0.9055

3 0.04677 1 0.8288

4 0.00523 1 0.9423

JB-Test

Equation χ2-Value df Sign. Value

D_CO2E 0.06312 2 0.9689

D_ENU 0.15987 2 0.9232

D_.GDP 0.39726 2 0.8199

D_PG 0.29725 2 0.8619

Joint 0.91751 8 0.9987
Authors own completion.

3.4. Diagnostics Test: ARDL and VEC Models

This subsection presents the diagnostics test for ARDL and VEC models. Table 10
indicates a VECM diagnostic test. The VEC residual normality was tested using the Jarque-
Bera [53] test, based on the null hypothesis that residuals are normally distributed. The
test results reveal that the null hypothesis cannot be rejected at a 5% level of significance,
meaning that the residuals are normally distributed. The VEC residual serial correlation
was tested using the LM test, based on the null hypothesis that no serial correlation exists
at lag order h. The results reveal that the null hypothesis cannot be rejected at a 5% level of
significance, meaning that no serial correlation exists.

A diagnostic test of the ARDL model is shown in Table 11. In some ways, the ARDL
model was also subjected to several diagnostic tests. The Lagrange multiplier-test for
ARCH, Breusch-Pagan-Godfrey LM test for autocorrelation, and Harvey LM test for auto-
correlation utilizing powers of the fitted values of D_CO2E are used in the ARDL diagnostic.
Table 11 demonstrates that the ARCH-test’s null hypothesis of no ARCH effects cannot be
rejected at a 5% significant level, meaning that there are no ARCH effects. The Breusch-
Pagan-Godfrey LM test for autocorrelation cannot reject the null hypothesis of no serial
correlation at the 5% significance level, meaning that the no serial correlation exists at lag
order h. The Harvey LM test cannot reject the null hypothesis of constant variance at a 5%
significance level, meaning that the residuals of the ARDL model have a constant variance.

Table 11. ARDL model diagnostic tests.

LM Test for ARCH

Value Df Sign. Value

χ2-test 1.02 1 0.7556

Breusch-Pagan-Godfrey LM Test for Autocorrelation

F-statistic 1.869 (31,5) 0.1115

Harvey LM Test for Autocorrelation

F-statistic 1.54715 (7,29) 0.1911
Authors’ own completion.

3.5. Stability Check: VECM and ARDL

Figure 2 indicates the inverse roots of the characteristic polynomial. The roots charac-
teristic polynomial is used to check the stability of the VECM. The vector error correction
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specifications impose one unit-root outside the unit circle (Eigen statistics of the respective
matrix is exactly one or less); hence, the model satisfies the vector auto-regressive (VAR)
stability conditions, and the VECM is acceptable in a statistical sense to make inferences.

Figure 2. Showing the stability condition of VAR.

The CUSUM and CUSUMsq test for instability of parameters from the ARDL model
is shown in Figure 3. The CUSUM and CUSUMsq tests are used to ascertain the parameter
instability of the equation employed in the autoregressive distributed lag model. The
equation parameter is stable enough to estimate the long- and short-term causalities in
the ARDL model because the plots in CUSUM and CUSUMsq tests are within the critical
bound at the 5% level of significance.

Figure 3. Plot of CUSUM and CUSUMsq tests for the parameter stability.

3.6. Variance Decomposition Analysis

The estimated results of the variance decomposition analysis method are presented
in Table 12. The estimated results demonstrated that approximately 58.4% of the future
fluctuations in LCO2E are due to changes in LENU, 2.8% of the future fluctuations in
LCO2E are due to changes in LGDP, and 0.43% of the future fluctuations in LCO2E are due
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to changes in LPG. Moreover, Table 12 indicates that approximately 3.37% of the future
fluctuations in LENU are due to changes in LGDP, 9.6% of the future fluctuations in LENU
are due to changes in LCO2E, and 0.96% of the future fluctuations in LENU are due to
changes in LPG. In addition, evidence from Table 12 shows that approximately 19.9% of the
future fluctuations in LGDP are due to changes in LCO2E, 4.95% of the future fluctuations
in LGDP are due to changes in LENU, and 3.08% of the future fluctuations in LGDP are
due to changes in LPG. Finally, the evidence from Table 12 shows that approximately
13.67% of the future fluctuations in LPG are due to changes in LCO2E, 49.81% of the future
fluctuations in LPG are due to changes in LENU, and 3.01% of the future fluctuations in
LPG are due to changes in LGDP.

Table 12. Variance Decomposition of Cholesky ordering, CO2E, ENU, GDP, PG.

Variance Decomposition of LCO2E

PERIOD S.E. LCO2E LENU LGDP LPG

1 0.0297 100.00 0.0000 0.0000 0.0000

2 0.0399 95.1113 4.32803 0.0880 0.4725

3 0.0535 86.0290 12.0430 1.1393 0.7885

4 0.0677 76.1935 31.0071 0.9965 0.9714

5 0.0839 67.1935 31.0071 0.9965 0.8027

6 0.1008 59.7080 38.6221 1.0943 0.5754

7 0.1186 53.0662 44.9805 1.5282 0.4249

8 0.1368 47.3089 50.3303 1.9836 0.3770

9 0.1554 42.3763 54.7890 2.4390 0.3955

10 0.1741 38.2628 58.4905 2.8105 0.4360

Variance Decomposition of energy use

1 0.3361 51.13904 48.8609 0.0000 0.0000

2 0.5215 39.8865 59.9877 0.1115 0.0140

3 0.8061 30.1926 68.7380 0.9433 0.1260

4 1.0815 23.9279 74.4465 1.3556 0.2698

5 1.4095 19.2367 78.3408 1.9940 0.4283

6 1.7386 16.1486 81.0207 2.2355 0.5950

7 2.0929 13.8367 82.8151 2.6036 0.7445

8 2.4498 12.0967 84.1454 2.8963 0.8614

9 2.8206 10.7237 85.1587 3.1874 0.9301

10 3.1945 9.65864 86.0046 3.3765 0.9601

Variance Decomposition of GDP

1 1.8036 0.7467 2.5201 96.7331 0.0000

2 1.9037 1.0028 5.8013 90.2223 2.9735

3 1.9954 4.7707 5.3044 86.1778 3.7469

4 2.1137 11.6048 4.7553 80.1219 3.5183

5 2.1616 13.5756 4.9742 78.0812 3.3688

6 2.1888 14.7979 4.8545 77.0602 3.2872

7 2.2026 15.7765 4.8090 76.1603 3.2540

8 2.2256 17.4091 4.7140 74.6847 3.1920

9 2.2469 18.7530 4.8419 73.2731 3.1318

10 2.2670 19.8827 4.9584 72.0764 3.0824
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Table 12. Cont.

Variance Decomposition of LCO2E

PERIOD S.E. LCO2E LENU LGDP LPG

Variance Decomposition of population growth

1 0.0023 0.2286 1.8278 2.6730 95.2704

2 0.0064 0.1110 5.3148 3.3273 91.2467

3 0.0121 1.6274 8.6706 4.6169 85.0849

4 0.0188 4.2747 12.9098 6.0204 76.7949

5 0.0258 7.2980 17.7646 6.5832 68.3540

6 0.0327 10.0534 23.4960 6.2863 60.1642

7 0.0390 12.1286 29.9636 5.4795 52.4280

8 0.0449 13.3712 36.8366 4.5351 45.2569

9 0.0505 13.8273 43.5946 3.6819 38.8959

10 0.0558 13.6762 49.8190 3.01609 33.4887
Authors own completion.

4. Conclusion and Policy Recommendations

The study has investigated the causal nexus between carbon dioxide emissions (CO2E),
GDP, energy use (ENU), and population growth (PG) in India over the period 1981 to 2018
by comparing VECM and ARDL models. For stationarity analysis of selected variables,
we used unit root tests. The ADF and PP unit root tests showed that all the time series
variables are stationarity at the first difference I(1). We applied VECM-based Granger
causality to analyse the study variable for causal relationships. Furthermore, the study
performed variance decomposition (VDC) analysis using the Cholesky method, stability,
and diagnostic tests.

The VECM and ARDL models evidence shows that CO2E, ENU, GDP, and PG are
cointegrated. There was evidence of bi-directional causality running from ENU to GDP
and a uni-directional causality running from ENU, GDP, and PG to CO2E and PG to ENU.
Evidence from joint-Granger causality shows a unidirectional causality running from CO2E
to a joint of ENU, GDP, and PG; ENU to a joint of CO2E, GDP, and PG; GDP to a joint of
CO2E, ENU, and PG, respectively. Moreover, the long-term (LT) elasticities indicate that
the 1% increase in PG in India will increase CO2E by 1.4%, a 1% increase in GDP in India
will increase CO2E by 0.30%, and a 1% increase in ENU in India will increase CO2E by
0.63%. There was also evidence of a short-term (ST) equilibrium association between ENU
and CO2E as well as GDP and CO2E.

The ARDL-bound test cointegration outcomes yield evidence of a long-term equilib-
rium between CO2E, ENU, GDP, and PG in India. According to the variance decomposition
analysis, 58.4% of the future fluctuations in CO2E are due to changes in ENU, 2.8% of the
future fluctuations in CO2E are due to changes in GDP, and 0.43% of the future fluctuations
in CO2E due to changes in PG. Furthermore, 3.37% of the future fluctuations in ENU are
due to changes in GDP, 9.6% of the future fluctuations in ENU are due to changes in CO2E,
and 0.96% of the future fluctuations in ENU are due to changes in PG. In addition, 19.9% of
the future fluctuations in GDP are due to changes in CO2E, 4.95% of the future fluctuations
in GDP are due to changes in ENU, and 3.08% of the future fluctuations in GDP are due
to PG. In addition, 3.67% of the future fluctuations in PG are due to changes in CO2E,
49.81% of the future fluctuations in PG are due to changes in ENU, and 3.01% of the future
fluctuations in PG are due to changes in GDP.

Based on our study’s findings, this experimental study also proposes the following policy
recommendations for the country of India: It is worth noting that India’s ENU has a long-term
effect on CO2E. India is one of the top 10 countries most severely affected by CO2E.; hence,
atmospheric threats need to be addressed seriously. Specifically, the Indian government must
stimulate CO2E reducing activities through increasing alternative energy resources such as
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solar, wind, geothermal sources, biodiesel fuel, and environmentally sensitive technologies
that can be effectively supported. It is suggested that the Indian government teach local
people in order to motivate them to plant trees with the forest department to enhance the
proportion of forest in India and control environmental degradation.

Furthermore, the estimated results show that environmental degradation is the main
reason for economic growth. Hence, it is advised that India’s economic growth policies be
revised to address environmental degradation. To avoid CO2 emissions, population growth,
natural resources, and the ecological system must be balanced to lower CO2 emissions.
These resources might otherwise be affected by CO2 emissions. Finally, enhancing energy
effectiveness and introducing energy management options nationally by making clean
energy accessible will help decrease CO2E. To control long-term environmental degradation,
policymakers are advised to follow policies that encourage the use of environmentally
friendly equipment, vehicles, machinery, and utilities to reduce environmental degradation.
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Acronyms
Log_L Log likelihood
χ2 Chi-square
df Degrees of freedom
_cons Constant
Coef. Coefficient
Std_E Standard error
L1_ce Error correction term
Abbreviations
ARDL Autoregressive distributed lag
VAR Vector autoregressive
VECM Vector error correction model
ECT Error correction term
LTE Long term elasticities
ST Short term
VDC Variance decomposition
AIC Akaike information criteria
SIC Schwarz information criteria
HQI Hannan-Quinn Information criteria
LRT Sequential likelihood ratio test
sign. value Significant value
ENU Energy use
CO2E Carbon dioxide emissions
GDP Grass domestic product
PG Population growth
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