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Abstract: The Brushless Doubly Fed Reluctance Machine (BDFRM) is an emerging alternative for
variable speed drive systems, providing a significant downsizing of the power electronics converter.
This paper proposes a new view on the machine equations, allowing the reuse of the standard control
system design for conventional synchronous and asynchronous machines: a cascade control system
with an inner current control- and outer speed control loop. The assumptions and simplifications
made on the machine model allow for a simple, model-based approach to set the controller gains
in a brushless doubly fed machine drive system. The cascade control scheme is combined with an
Unscented Kalman Filter as a state observer, capable of estimating the load torque and losses. The
performance of the proposed control system design is checked in simulation and tested in real-time
on a low power BDFRM prototype.

Keywords: electrical drives; control system design; model-based control; Unscented Kalman Filter;
electrical machines; reluctance drives

1. Introduction
1.1. Literature Review

The Brushless Doubly Fed Reluctance Machine (BDFRM) is of the same machine family
as the Brushless Doubly Fed Induction Machine (BDFIM), with a reluctance rotor instead
of a wound rotor. The two possible BDFIM rotors contain sets (or poles) of short-circuited
windings, allowing induced currents to flow [1–3]. The reluctance rotor contains only
magnetic iron and has a special shape, designed to modulate the air gap flux density [4,5].
The BDFRM was first introduced in a doubly excited three phase arrangement by Liang [6],
as an alternative for the BDFIM. For both types of machines, two different three-phase
stator windings, with different pole numbers, are mounted onto the statorrotor unit. The
primary winding or grid winding, labelled with subscript g, is connected to the grid supply,
while the secondary winding or control winding, labelled with subscript c, is connected
to a (bidirectional) converter. These machines have the advantage that the active power
flow can be divided between the grid and control winding. Hence, when the machine
is operated in a limited speed range, it is possible to use a partially rated converter and
therefore to potentially lower the costs of the drive system. The BDFRM has also additional
advantages with respect to the BDFIM. The BDFRM has potentially a higher efficiency,
as there are no Ohmic losses in the rotor [7]. Moreover, the BDFRM is simpler to model
and control while it permits decoupled control of the active and reactive power [7–11].
These advantages make the BDFIM and especially the BDFRM appealing for variable
speed applications, ranging from pumps [8], wind power applications [12,13], and heating
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ventilation and air conditioning (HVAC). The BDFRM has been proposed for a variety of
power ranges, from 45 kW to 320 kW for small wind turbines and pumps [14,15], up to
1.5–2 MW machines for larger wind turbines and turbo-electric propulsion systems [12,16].

The interest in the BDFRM in combination with extensive research in the past decades
have led to the development of multiple reluctance rotor designs, as summarized in [4].
The reluctance rotor has as function to distort and modulate the field distribution in the
air gap. This modulation creates a mutual coupling between the grid and control stator
windings, which have a different spatial frequency due to the different pole pair number.
When the mutual coupling depends on the rotor position, it results in a change of co-energy
and thereby in reluctance torque generation, as reported in [4]. This mutual coupling is
only obtained under certain conditions. The modulation of the field, induced by one of
the two stator windings, generates sideband harmonics, which must coincide with the
field of the other stator winding with a different pole pair number. The rotor is especially
designed for this rotor dependent mutual coupling to happen and must comply therefore
with Equation (1), where pr is the number of poles on the rotor and pg and pc are the pole
pair numbers of the grid and control winding, respectively. For the torque to be constant in
steady state, the rotor mechanical speed Ωr must comply to Equation (2), the synchronism
equation. The sign choices in Equations (1) and (2) are design parameters to be made,
however, the same sign must be used for both equations. It is chosen to continue to work
with the “+” sign.

pr =
∣∣∣pg ± pc

∣∣∣ (1)

Ωr =
ωg ±ωc

pr
(2)

The control of the BDFRM is achieved by altering the voltages applied by the converter,
connected to the control winding of the machine. The grid winding voltage is not varied.
To control the converter, some long-time accepted control methods exist, such as Scalar
Control (SC) [17–19], Vector Control (VC) [17,20], and Direct Torque Control (DTC) [21–23].
Further improvements of these methods can be found in more recent literature containing,
among others, Model Predictive Control (MPC) [24,25], and different sensorless speed
schemes making use of state observers [26,27], or Model Reference Adaptive System
(MRAS) [28–30].

Scalar Control (SC) is a simple to implement control method, keeping a certain flux
level in the machine by altering the voltage frequency and amplitude. Therefore, it resem-
bles the V/f control used for the induction machines [22,31]. This method is unable to meet
high dynamic requirements, and it leads to a high level of oscillation in its response to a
reference step [17]. Closing the loop and employing a stabilizing PI-controller can lead to a
performance improvement and an increase in the speed range around synchronous speed
where stability is ensured.

A more capable control method is Vector Control (VC). It can handle different control
strategies, achieving faster transients and better dynamics with respect to the SC [22]. In
general, it necessitates accurate knowledge of the machine parameters, which can lead
to stability issues due to parameter inaccuracies [31]. Hence, it is a model-based control
method. The speed and the currents are usually controlled by PI-controllers, often tuned
by trial and error in an outer and inner loop, respectively [20]. The VC highly depends
on the machine variables such as the voltages, currents and flux linkages. These variables
are represented by rotating vectors in three different frames [20]: A stationary (stator)
reference frame, the αβ-frame, and two rotating frames, the dgqg-frame and dcqc-frame,
which rotate with the grid winding pulsation ωg and the control winding pulsation ωc,
respectively [32,33]. Two different orientations are commonly found in literature for the
dgqg-frame [20]: a Voltage Oriented (VO) frame, with the direct (dg-) axis aligned with
the voltage vector of the grid winding, and a Flux Oriented (FO) frame, where the direct
axis dg is aligned with the grid winding flux vector. Field Oriented Control (FOC) is most
frequently used thanks to an important advantage [9,11,15,20,25]: the FO frame results
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in decoupled equations for the active and reactive power and facilitates the independent
control of both. Furthermore, the FOC has slightly superior performances compared to
VOC [20]. A drawback of FOC with respect to Voltage Oriented Control (VOC), however,
is its dependency on the estimation accuracy of the grid flux linkage, while the voltage
vector required for VOC can be deduced directly from a usually stable signal with low
SNR, namely the grid supply voltage.

Another popular control method is Direct Torque Control (DTC) as a result of its
versatility and its low parameter dependency [21]. It is used for flux and torque control
in several brushless machines [21–23]. To the author’s knowledge, the DTC was first
developed for the induction machine (IM) [34], and thanks to the (limited) resemblances
between the IM and BDFRM, the DTC can be used for the BDFRM. DTC employs hysteresis
control and determines the optimal switching state of the inverter, such that the torque
and control winding flux λc stay within a hysteresis band around their reference. Each
switching state can be mapped with a certain impact on the control winding flux, both
on the amplitude and angle. This mapping is then summarized in a lookup table, which
is exploited by the hysteresis controller to select the next switching state to obtain the
required influence. No reference frame transformations are needed, so only the stationary
αβ-frame is used for DTC. The lack of frame transformations, PI-controllers and a Pulse-
Width modulation (PWM) stage allows for fast dynamics, but it lacks performance during
transient periods [35]. The main disadvantage is that DTC results in harmonics and high
ripple for torque and flux, due to the variable switching frequency of the converter.

The developed MPC scheme in [24,25] uses a model-based prediction of the future
states and by minimizing a certain cost function, suggests the optimal converter voltages
for the system. It improves the VC/FOC method by replacing the current PI controllers
with the MPC scheme.

Sensorless speed control is of interest as it allows the disposal of the shaft encoder
or resolver. Thereby, it increases the reliability of the drive while decreasing the cost. To
achieve sensorless control, DTC is a good candidate as it is inherently independent of the
speed and position of the motor shaft, Sensorless DTC has been studied in [23,26,31,36].
For the speed estimation required for speed control, a Luenberger PI observer [26], or an
extended Kalman filter in combination with a robust exact differentiator [36], can be used.
The latter was only tested in simulations.

The VC is inherently rotor position dependent. Therefore, it is more delicate to employ
a speed and position observer for sensorless VC and, consequently, it is less common.
In [27], a Luenberger observer is used and in [28–30,37], a Model Adaptive Reference
System (MRAS) as a speed observer is proposed for sensorless VC. The MRAS inherently
considers parameter variations and is therefore, according to the authors, the best option
for sensorless VC. The MRAS estimates the variable of interest by comparing an adaptive
model, dependent on the variable, with a reference model, independent of the variable.
By using an adaptive controller on the error, the adaptive model will then converge to
the reference model, which then results in an estimate of the variable of interest. Multiple
models can be used to support the MRAS scheme, e.g., a model for the reactive power [28],
one for the active power [37], or one for the control winding flux linkage [29,30].

1.2. Paper Subject and Outline

The ‘de facto’ standard control system for conventional machines consists of a cascade
control system with an inner current loop and an outer speed loop using a model-based
approach to set the controller gains.

After a thorough review of the available literature, it seems that both the speed and
current control of the BDFRM can be achieved with PI-controllers. However, no further
attention is given to the tuning of the controller gains, which suggests the tuning happens
by trial and error. This paper proposes field-oriented vector control with a comprehensive
model-based approach to tune the current PI-controllers, in combination with a P-controller
with load torque compensation for speed control. First, the dynamic model of the BDFRM



Energies 2021, 14, 8222 4 of 23

is presented in Section 2. The proposed control system design and simulation results are
presented in Section 3. To estimate the load torque, the unscented Kalman filter is laid
out and simulation results are presented in Section 4. Finally, the proposed control system
design is tested on a BDFRM prototype under load. The results are presented and discussed
in Section 4.

2. The Dynamic Model of the BDFRM

The derivation of the dynamic model of the BDFRM in a dq-frame is well documented
and derived in previously published work about the BDFRM [9,38,39]. For the grid and
control winding, the electrical equations are given by Equations (3) and (4), respectively.

→
ug,dq(t) = Rg

→
i g,dq(t) +

d
(→
λ g,dq(t)

)
dt

+ jω
→
λ g,dq (3)

→
u c,dq(t) = Rc

→
i c,dq(t) +

d
(→
λ c,dq(t)

)
dt

+ jω
→
λ c,dq (4)

Following the derivations of the theoretical inductances in [38], the flux linkages in
function of the dq-currents can be rewritten as Equation (5). Substituting Equation (5) in
Equations (3) and (4), yields then Equations (6)–(9).

λg,d
λg,q
λc,d
λc,q

 =


Lg 0 M 0
0 Lg 0 −M
M 0 Lc 0
0 −M 0 Lc




ig,d
ig,q
ic,d
ic,q

 (5)

ug,d= Rgig,d +
d
dt

(
Lgig,d+Mic,d

)
+ω

(
Mic,q−Lgig,q

)
(6)

ug,q= Rgig,q +
d
dt
(
Lgig,q−Mic,q

)
+ω(Mi c,d+Lgig,d

)
(7)

uc,d= Rcic,d +
d
dt

(
Lcic,d+Mig,d

)
+(ω r−ω)(Mi g,q−Lcic,q

)
(8)

uc,q= Rcic,q +
d
dt
(
Lcic,q−Mig,q

)
+(ω r−ω)(Mi g,d+Lcic,d

)
(9)

In the dq-frame, the torque expression is Equation (10) [38], assuming that Concordia
(power-invariant) and Park transformations are used [40].

TEM = pr

(
λg,dig,q−λg,qig,d

)
= pr

(
λc,dic,q−λc,qic,d

)
(10)

To synchronize the grid dq-frame with the grid winding phasors, one choosesω = ωg,
this subsequently synchronizes the control dq-frame with the control winding phasors as
ωc= (ω r−ωg

)
. The choice made for θ0 is such that the grid dq-frame is aligned with the

grid winding flux linkage
→
λ g,dq, therefore obtaining an FO dq-frame. Moreover, this means

λg,q= 0, which allows for decoupled control of active and reactive power. The FO-frame
choice and Equation (5) permit to write Equations (11) and (12).

ig,q =
M
Lg

ic,q (11)

ig,d =
λg,d−Mic,d

Lg
(12)
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Inserting Equation (11) in Equation (10), results in Equation (13). This torque expres-
sion shows the decoupled nature of the FO-frame, as λg depends only on the grid voltage
(when assuming negligible resistances), while ic,q is supplied by the inverter.

TEM= pr
M
Lg
λg,dic,q (13)

The electromagnetic torque generated by the BDFRM is the link between the electrical
dynamic equations and the mechanical dynamic equations. The mechanics of the BDFRM
are modelled as Equation (14), with J as the inertia of the entire drivetrain. Friction effects
are not explicitly considered in the model and, therefore, are shifted as disturbances
included in the load torque Tload. This is because friction mechanics depend strongly on
the drive train elements, e.g., the presence of oil lubrication in a gearbox will give rise to
more viscous friction. Bearing properties, operational conditions, loading and lifetime also
play an important role in determining the friction losses. To keep the subsequent control
system design as broad as possible and the model relatively simple, only the drivetrain
inertia is considered:

J
pr

dωr

dt
= J

dΩr

dt
= TEM−Tload (14)

3. Control System Design
3.1. System Description and Control Requirements

The considered BDFRM system drives a load at variable speed. A system schematic is
shown in Figure 1, the mains supply is connected to the grid winding, while the control
winding is connected to a variable frequency drive, composed of a rectifier and an inverter
coupled with a common DC-bus capacitor. The speed controller of the BDFRM must reach
speed setpoints within a 0.5 % error at maximum speed and must be capable of following a
ramp with a rate of change of at least 300 rpm/s to a new speed setpoint.

Energies 2021, 14, x FOR PEER REVIEW 5 of 25 
 

 

ig,q = 
M

Lg
ic,q (11) 

ig,d = 
λg,d-Mic,d

Lg
 (12) 

Inserting Equation (11) in Equation (10), results in Equation (13). This torque expres-

sion shows the decoupled nature of the FO-frame, as λg depends only on the grid voltage 

(when assuming negligible resistances), while ic,q is supplied by the inverter. 

TEM = p
r

M

Lg
λg,dic,q (13) 

The electromagnetic torque generated by the BDFRM is the link between the electri-

cal dynamic equations and the mechanical dynamic equations. The mechanics of the 

BDFRM are modelled as Equation (14), with J as the inertia of the entire drivetrain. Fric-

tion effects are not explicitly considered in the model and, therefore, are shifted as dis-

turbances included in the load torque Tload. This is because friction mechanics depend 

strongly on the drive train elements, e.g., the presence of oil lubrication in a gearbox will 

give rise to more viscous friction. Bearing properties, operational conditions, loading and 

lifetime also play an important role in determining the friction losses. To keep the subse-

quent control system design as broad as possible and the model relatively simple, only 

the drivetrain inertia is considered: 

J

p
r

dωr

dt
 = J

dΩr

dt
 = TEM−Tload (14) 

3. Control System Design 

3.1. System Description and Control Requirements 

The considered BDFRM system drives a load at variable speed. A system schematic 

is shown in Figure 1, the mains supply is connected to the grid winding, while the control 

winding is connected to a variable frequency drive, composed of a rectifier and an inverter 

coupled with a common DC-bus capacitor. The speed controller of the BDFRM must reach 

speed setpoints within a 0.5 % error at maximum speed and must be capable of following 

a ramp with a rate of change of at least 300 rpm/s to a new speed setpoint. 

 

Figure 1. Schematic of the BDFRM drive under consideration. 

3.2. Cascade Control 

Electrical machines are most often controlled by cascade control, containing an inner 

loop for current control and an outer loop for speed control, as depicted in Figure 2. The 

inner loop is usually composed of the PI-controllers, designed to compensate for the ma-

chine inductances, to ensure fast current and thereby torque control. On the other hand, 

the outer loop for speed control is typically a P or PI-controller, to meet the desired speed 

Figure 1. Schematic of the BDFRM drive under consideration.

3.2. Cascade Control

Electrical machines are most often controlled by cascade control, containing an inner
loop for current control and an outer loop for speed control, as depicted in Figure 2. The
inner loop is usually composed of the PI-controllers, designed to compensate for the
machine inductances, to ensure fast current and thereby torque control. On the other hand,
the outer loop for speed control is typically a P or PI-controller, to meet the desired speed
reference. For both synchronous and asynchronous machines, model-based cascade control
is the way to go in the industry. This section investigates the feasibility of this rule for
the BDFRM.
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3.2.1. Control Winding Current Control

The only controllable inputs of the BDFRM system are the control winding voltages,
via the inverter, while the grid windings are connected to the constant mains supply. There-
fore, the grid winding voltages are treated as known disturbances. However, considering
Equations (15) and (16), the use of the classic pole-zero cancellation control design method
is impeded by the presence of the derivatives of the grid winding currents.

uc,d= Rcic,d+Lc

d(i c,d

)
dt

+M
d
(

ig,d

)
dt

+(ω r−ω)(Mi g,q−Lcic,q) (15)

uc,q= Rcic,q + Lc

d(i c,d

)
dt

−M
d
(
ig,q
)

dt
+(ω r−ω)(Mi g,d+Lcic,d) (16)

The grid winding voltage Equations (6) and (7) allow to eliminate the derivatives
of the grid winding currents, which make it then possible to write Equations (17) and
(18). By considering ∆uc,d, Equation (19), and ∆uc,q, Equation (20), as feedforward terms,
Equations (17) and (18) will enable the pole-zero cancellation technique to design the PI
current controllers.

uc,d = Rcic,d +
d
dt

((
Lc −

M2

Lg

)
ic,d

)
+ ∆uc,d (17)

uc,q = Rcic,q(t) +
d
dt

((
Lc −

M2

Lg

)
ic,q

)
+ ∆uc,q (18)

∆uc,d =
M
Lg

(
ug,d−Rgig,d−ω

(
Mic,q−Lgig,q

))
+ (ωr−ω)

(
Mig,q−Lcic,q

)
(19)

∆uc,q= −
M
Lg

(
ug,q−Rgig,q(t)−ω

(
Mic,d+Lgig,d

))
+ (ωr−ω)

(
Mig,d+Lcic,d

)
(20)

The first terms in ∆uc,d and ∆uc,q portray the rate of change of the amplitude of the
grid winding flux linkages. These terms, Equations (21) and (22), are therefore negligible
with respect to the other terms in ∆uc,d and ∆uc,q, particularly when the winding resistances
are negligible and the mains supply is stable.

ug,d−Rgig,d−ω
(
Mic,q−Lgig,q

)
= ug,d−Rgig,d+ωλg,q ≈ 0 (21)

ug,q−Rgig,q−ω
(

Mic,d+Lgig,d

)
= ug,q−Rgig,q−ωλg,d ≈ 0 (22)

When inserting Equations (11) and (12), resulting from the FO-frame choice, into Equa-
tion (17) to Equation (20) and by introducing the transformer coupling factor σ = M/

√
LgLc,

one obtains Equation (23) to Equation (26).

uc,d = Rcic,d + Lc

(
1− σ2

)dic,d

dt
+∆uc,d (23)

uc,q= Rcic,q+Lc

(
1− σ2

)dic,q

dt
+∆uc,q (24)
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∆uc,d= −(ωr−ω)Lc

(
1− σ2

)
ic,q (25)

∆uc,q = (ωr−ω)

(
M
Lg
λg,d+Lc

(
1− σ2

)
ic,d

)
(26)

The control winding voltage equations now have the look of the voltage equations of
a PMSM with no saliency, except for the presence of (ω r−ω) instead of ωr in the induced
voltages ∆uc,d and ∆uc,q. The equivalent circuit is depicted in Figure 3.
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Moreover, disregarding the induced voltages, the current transfer functions are char-
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τc =
Lc(1− σ 2

)
Rc

(27)

To consider the influence of the inverter and delays due to the real-time system it
is possible to model them as a first-order system with the time constant τσ, as proposed
by [40]:

τσ= Ts+TPWM+τfilt (28)

The time constant τσ is composed of the sampling time of the real-time target Ts, the
switching period TPWM, which is the time needed to convert the reference voltage signal to
a real voltage at the machine terminals, and the measurement filter time constant τfilt.

The requirements are set to design two identical PI-controllers for the currents ic,d and
ic,q with feed forward voltage compensation, so that the dominant pole produced by the

modified control winding inductance Lc

(
1− σ2

)
is compensated for. The complete system

is schematically depicted in Figure 4.
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To obtain optimal damping (ζ = 1√
2
) of the closed-loop current response, the PI-

controller parameters must be Equations (29) and (30).

τi= τc (29)

Ki =
Rcτi

2τσ
(30)
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This tuning method is well-documented and applied in conventional machines, as
detailed in [40,41]. Following [40], The second order system can be simplified as a first
order system, Equation (31), with an equivalent time constant τeq, Equation (32), and a
phase margin of 65◦:

GCL =
1

2τ2
σs2+2τσs + 1

≈ 1
τeqs + 1

(31)

τeq =
√

22τσ (32)

3.2.2. Speed Control

The inner control winding current control loop, shown in Figure 5a, and the torque
Equation (5) allow to operate the BDFRM in torque control by providing a torque/current
mapping for ic,q. On the other hand, ic,d can be selected to achieve other control require-
ments such as reactive power flow or maximum torque per inverter ampere (MPTIA). The
closed loop control winding current control can be simplified with Equations (31) and (32),
providing an equivalent plant model as in Figure 5b. The transfer function in Equation (31)
is also employed as an approximation for the open-loop response of the electromagnetic
torque reference T∗EM, which facilitates the control system design for the speed.
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In [40], a speed controller with a simple P-controller in combination with a load
torque compensation was proposed for the PMSMs. Based on mechanical Equation (6)
and the approximation of the open loop response of the electromagnetic torque reference,
Equation (31), one obtains a system as in Figure 6, with the open loop transfer function as
in Equation (33) for the speed referenceω∗rm.

GOL = Kn
1
Js

1
τeqs + 1

(33)
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To obtain optimal damping (ζ = 1√
2

) of the closed-loop speed response, the P-controller
gain becomes Equation (34):

Kn =
J

2τeq
(34)

The reader is referred to [40,41] for further details on the tuning method. A PI-
controller could also be used, at the expense of a more complicated tuning method for the
controller. Well established tuning methods for this kind of problem such as the symmetric
optimum or Kessler’s method can then be used [40–42].

Notwithstanding the acquired simplicity of the speed controller with a simple gain Kn,
the disadvantage is that a load compensation and thus a load torque estimate is required,
which includes the mechanical and iron losses. This necessitates the use of an observer,
which will be discussed in detail in Section 4.

3.2.3. Simulation Results

As a first step to verify that the control design meets the requirements, a Simulink
BDFRM model is constructed, and a simulation is performed. The BDFRM electrical
equations are modelled in a VO frame in the state space representation, Equation (35), with
matrix the Aλ as in Equation (36). The mechanical equations employed for the speed and
torque are Equations (37) and (10), respectively. The speed equation considers viscous
friction with the viscous friction coefficient B:

d
dt


λg,d
λg,q
λc,d
λc,q

 = Aλ


λg,d
λg,q
λc,d
λc,q

+


ug,d
ug,q
uc,d
uc,q

 (35)

Aλ =



LcRg

(M2−LcLg)
ω − MRg

(M2−LcLg)
0

−ω LcRg

(M2−LcLg)
0 MRg

(M2−LcLg)

− MRc
(M2−LcLg)

0 LgRc

(M2−LcLg)
(ωr −ω)

0 MRc
(M2−LcLg)

−(ωr −ω)
LgRc

(M2−LcLg)


(36)

J
dΩr

dt
= TEM−Tload−BΩr (37)

The mains supply is modelled as an ideal three-phase voltage source and supplies the
grid winding while the control winding is fed by the inverter, modelled as an ideal voltage
source inverter (VSI), using Sine Wave Pulse Width Modulation (SPWM).

The BDFRM under consideration is a 750 W machine at 750 rpm, the parameters are
given in Table 1.

The simulation shows in Figure 7a the successful control of the speed over a speed
range of 500–1000 RPM and a ramp-up/down of 300 RPM/s. Start-up of the machine
happens in induction mode, i.e., with the control windings short-circuited, and at no-load,
as shown in Figure 7b. The machine is loaded with a step from 40% to 100% of the rated
torque after 10 s of simulation.
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Table 1. Parameters used for the BDFRM simulations.

Parameter Value Parameter Value

pr/pg/pc 6/2/4 Ig (Arms) 5.0
Lg (mH) 73.2 Ic (Arms) 2.5
Lc (mH) 156.3 T (Nm) 9.5
M (mH) 62.6 J (kg m2) 0.034
Rg (Ω) 10.0 B (Nm s/rad) 0.008
Rc (Ω) 15.0 τi 145.8

Ugn (Vrms) 120 Kn,current 171.4
Udc (Vdc) 540 Kn,speed 13.4

fswitch (kHz) 5
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The response of the control winding current controllers during the simulation is
depicted in Figure 8a and shows satisfying performances, especially during transient
behavior, at the load step from 40% to 100%, as in Figure 8b, and during speed up/down,
as depicted in Figure 8c.

In this simulation, ideal signals are used for the load torque, shaft speed and the
grid winding flux linkage. The goal is to demonstrate the validity of the assumptions in
Equations (21) and (22), allowing the simplification of the model used for the control design.
The simulation shows good performance of the implemented cascade control, confirming
the validity of the assumptions that were made.

To bridge the gap towards the control of a real BDFRM, the load torque, shaft speed
and FO frame angle need to be estimated, which is the topic of Section 4.
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4. Kalman Filtering

The Kalman Filter (KF) is an optimal recursive data processing algorithm for linear
time invariant (LTI) systems [43]. It is called optimal because, while assuming the state
estimates and measurements are Gaussian Random Variables (GRV), it yields an estima-
tion with the smallest error covariance matrix, making it a minimum mean-square error
estimator [44]. Additionally, it benefits of all the available measurements, regardless of
their precision. It is called recursive because the Kalman filter produces the estimates
without reprocessing all available data at each iteration. It is widely used for estimation
and tracking problems thanks to its simplicity, optimality, and robustness [45]. The al-
gorithm consists of a prediction step, based on knowledge of the system, and estimates
of the previous completed step, and an update step, which utilizes the measurements to
update the prediction. The KF, however, only supports LTIs and therefore requires more
sophisticated Kalman Filters to be valuable for nonlinear systems.

The KF for nonlinear systems seems to be, above all, the extended Kalman filter (EKF),
used for a multitude of applications, including electric motors [46–49]. The EKF is based
on the same algorithm as its linear counterpart but employs a first order linearization of
the general state-transition- and observation function to obtain the mean state estimate
and covariance matrix. However, if this local linearity assumption is violated, the EKF can
have serious instability problems. Moreover, the required analytical Jacobian derivations
are heavy, prone to human errors and arduous to modify [45], especially during rapid
control prototyping. Consequently, an unscented Kalman filter (UKF) is considered as our
observer. One of the main drives to use a Kalman filter in this paper is its ability to yield
one state estimate by merging different system measurements.

4.1. The Unscented Kalman Filter

The UKF takes advantage of the Unscented Transformation (UT) and is introduced by
Julier and Uhlmann in [45]. Whereas the EKF propagates the GRV analytically through
a first order linearization of the nonlinear system, hence resulting in a ‘first order’ ap-
proximation of the optimal estimations, the UKF carefully selects a minimal set of sample
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points, called the sigma points, that capture the true mean and covariance of the GRV and
propagates these sigma points through the system nonlinear dynamics, thereby achieving
an estimation of the posterior mean and covariance accurately up to the third order [50].
The UKF overcomes the EKF approximation flaws and, consequently, results in a better
accuracy level and a better performance for a variety of applications overall [50–54], while
keeping the actual implementation more adaptable than the EKF as only the state transi-
tion and observation functions need to be altered when changing the system model. The
difference between the EKF and UKF is illustrated in Figure 9. In Figure 9b, one can see the
mean is biased and the propagation through the linearized system is inconsistent since the
actual covariance ellipse is not covered by the EKF estimation [45].
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The UKF considers a state transition function, Equation (38), and a measurement
function, Equation (39), in function of the state x, input u and process and measurement
noises w and v, respectively.

xk+1= g(xk, uk) + wk (38)

yk = h(xk, uk) + vk (39)

The KF assumes the noises to be Gaussian with zero mean and uncorrelated over
time (white), thus wk ∼ N(0, Q) and vk ∼ N(0, R), where Q and R are the covariance
matrices. These covariance matrices Q and R are supposed to be known and this is the
main difficulty for implementing a KF. The latter can be estimated based on measurements,
while the former is more difficult to determine as it contains noise introduced by the system
itself together with model inaccuracies. Although some tuning methods exist [55–57], the
tuning of Q and R adds an important layer of complexity. The good performance of a
Kalman filter strongly depends on the correct setting of these matrices.

The UKF algorithm, as described in [54], starts with an initial state estimate x0|0 and
its covariance matrix P0|0. For an arbitrary vector Xn|m, its subscripts mean: the vector X
at time instant n, determined with knowledge up to and including time instant m. The
first steps of the UKF algorithm, at time step k − 1, are Equation (40) to Equation (43). In
Equation (40), the set of (2n + 1) sigma points χi is generated, with n being the dimension
of the state vector x, while the subscript j of

(√
Pk−1|k−1

)
j
represent the jth column of the

matrix. In Equation (41) to Equation (43), η and the weights wi, corresponding to their
respective sigma points, are generated, with κ a degree of freedom to tune the UKF to
diminish prediction errors. The weights are used to average the sigma points and can take
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different shapes in the literature; therefore the weights are chosen in their most simple
form according to [45,58]. As shown by Equations (44) and (45), the sigma points capture
the true mean and covariance of the state estimate [58].
Generation of 2n + 1 sigma points:

[χ0,χ1, . . . ,χn+1, . . . ,χ2n]k−1|k−1 =

[
x̂k−1|k−1,

(
x̂k−1|k−1 + η

(√
Pk−1|k−1

)
1

)
, . . . ,

(
x̂k−1|k−1 − η

(√
Pk−1|k−1

)
n+1

)
, . . .

]
(40)

η =
√

n + κ (41)

w0 =
κ

n + κ
(42)

wi =
1

2(n + κ)
(43)

x = E[x] ≈
2n

∑
i=0

wiχi = x̂ (44)

E
[
(x − x)(x − x)T

]
≈

2n

∑
i=0

wi[χi,k|k−1 − x̂k|k−1][χi,k|k−1 − x̂k|k−1]
T (45)

Next, the prediction step is performed, where the weighted mean of the predicted
sigma points χi,k|k−1, obtained with Equation (46), yield with Equation (47) the predicted
state x̂k|k−1. The predicted covariance matrix Pk|k−1 is obtained with Equation (48). There-
after, a measurement prediction ŷk|k−1 is obtained with Equations (49) and (50).
Prediction by mapping sigma points:

χi,k|k−1 = g
(
χi,k−1|k−1, uk

)
(46)

x̂k|k−1 =
2n

∑
i=0

wiχi,k|k−1 (47)

Pk|k−1 =
2n

∑
i=0

wi[χi,k|k−1 − x̂k|k−1][χi,k|k−1 − x̂k|k−1]
T + Q (48)

Yi,k|k−1 = h
(
χi,k−1|k−1, uk

)
(49)

ŷk|k−1 =
2n

∑
i=0

wiYi,k|k−1 (50)

The latest step is the measurement update, where the measurement information is
used to obtain a better state estimate. The error ∆yk between the actual and estimated mea-
surement is determined with Equation (51). Next, the covariance matrices Sk, Equation (52),
influenced by the tuneable covariance measurement noise matrix R, and Sxy

k Equation (53)
result in the Kalman gain K Equation (54), which is the weighting matrix used to update
the state estimate and the process covariance such that one obtains x̂k|k, Equation (55),
and Pk|k, Equation (56). When more confidence is put into the measurements, R and Sk
will decrease, consequently Kk will increase and eventually more weight is given to the
measurement (with respect to the model) to update the state estimate.
Measurement update:

∆yk = yk − ŷk|k−1 (51)

Sk =
2n

∑
i=0

w(c)
i [Yi,k|k−1 − ŷk|k−1][Yi,k|k−1 − ŷk|k−1]

T + R (52)

Sxy
k =

2n

∑
i=0

w(c)
i [χi,k|k−1 − x̂k|k−1][Yi,k|k−1 − ŷk|k−1]

T (53)
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Kk = Sxy
k S−1

k (54)

x̂k|k = x̂k|k−1 + Kk∆yk (55)

Pk|k = Pk|k−1 −KkSkKT
k (56)

4.2. Model Description

The UKF relies on a model of the BDFRM to predict the state. The state vector of
this model contains for the electrical states the flux linkages in the dq-reference frame
and for the mechanical states the electrical rotor speed and position and the load torque.
The rate of change of the load torque is considered zero, as the load torque is assumed to
vary slowly relative to the UKF sampling time. The state transition function g(x, u) then
becomes Equation (57):

.
x =

d
dt



λg,d
λg,q
λcd
λc,q
ωr
θr

Tload


= g(x, u) =


Aλ


λg,d
λg,q
λc,d
λc,q

+ T


ug,α
ug,β
uc,α
uc,β


0
0
0


+



0
0
0
0

p2
r Mλg,dλc,q

J(M2−LgLc)
− pr

J Tload

ωr
0


(57)

Aλ =



LcRg

(M2−LcLg)
ω − MRg

(M2−LcLg)
0

−ω LcRg

(M2−LcLg)
0 MRg

(M2−LcLg)

− MRc
(M2−LcLg)

0 LgRc

(M2−LcLg)
(ωr −ω)

0 MRc
(M2−LcLg)

−(ωr −ω)
LgRc

(M2−LcLg)


(58)

T =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos(θr − θ) − sin(θr − θ)
0 0 sin(θr − θ) cos(θr − θ)

 (59)

The measurements available for the UKF are the phase currents of both the grid and
current windings in the stationary αβ-frame, the mechanical speed measured with an
encoder and an estimate of the rotor angle. The rotor angle estimate, Equation (60), is
extensively reported in the literature [20,27,59], and is used here to help the UKF find the
FO frame and to filter the encoder speed signal. The measurements and the rotor angle
estimate yield Equation (61) for the observation function h(x, u).

θ̂r = θg + a tan
(

ic,β

ic,α

)
− a tan

(
ı̂c,q

ı̂c,d

)
(60)

y =



ig,α
ig,β
ic,α
ic,β
Ωr
θ̂r

 = h(x, u) =


C4x4


λg,d
λg,q
λc,d
λc,q


ωr
pr
θ̂r


(61)

C4x4 =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos(θr−θ) − sin(θr−θ)
0 0 sin(θr−θ) cos(θr−θ)

 1

(M 2−LcLg

)

−Lc 0 M 0

0 −Lc 0 −M
M 0 −Lg 0
0 −M 0 −Lg

 (62)
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The estimated dq control winding current components îc,d and îc,q in Equation (60)
result from Equations (11) and (12), for which the dq grid winding current components are
obtained from a numerical integration resulting in the extraction of the FO grid angle θg,
as schematically represented in Figure 10.
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Figure 10. Estimation of the dq grid winding current components based on the numerical integration
of the grid winding flux linkage in the stationary frame.

Although this method depends strongly on the BDFRM model parameters, the subse-
quent experimental test results prove this method to be robust even for variation of the
grid winding resistance up to 30 %.

The input vector of the UKF as presented in Equation (63).

u =
[

ugα ugβ ucα ucβ ωg θg
]T (63)

In the case of a stable grid supply, one can consider the voltage frequency constant.
Otherwise, if the mean and standard deviation are fed to the UKF, the UKF can cope
with these uncertain input variables [60,61]. Additionally, it is possible to estimate the
grid supply frequency independently using different kinds of algorithms, from Kalman
Filtering [62,63] to artificial neural networks [64–66].

4.3. Simulation Results

The proper functioning of the UKF is tested with a simulation model, which includes
a VSI, implemented in MATLAB Simulink. Results of the speed control are shown in
Figure 11. The incremental encoder signal is filtered by the UKF, while the mechanical
load, including modelled viscous friction losses, yielding a satisfactory speed response
and load rejection. The discussion of the results is left for the experimental validation, the
simulations were merely to check the correct implementation of the UKF.
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The covariance matrices and PI-gains that are used for the simulation are listed in
Table 2. The speed controller gain must be reduced significantly compared to the ideal
simulation, cf. Table 1, to avoid instability due to the ripple on the filtered speed signal.

Table 2. Controller gains and UKF covariance matrices used in the simulation with shaft encoder.

Parameter Value

τi 145.8
Kn current 171.4
Kn speed 0.48
Q diag

([(
7.5× 10−1)2I1x4

(
1.0× 10−3)2 (3.5× 10−1)2 (9.0× 10−2)2

])
R diag

([(
1.0× 10−2)2I1x4, (4.7)2,

(
1.7× 10−3)2

])
5. Experimental Results

The proposed cascade control and Unscented Kalman Filter are tested on a BDFRM
prototype depicted in Figure 12. The parameters of the prototype are presented in Table 1.
When transferring the control system design to the real BDFRM setup, the UKF covariance
matrices need to be tuned again due to the difference between the model and the physical
machine. The controller gains and the covariance matrices that are used are listed in
Table 3.
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Figure 12. (a) Assembled stator and skewed rotor of the BDFRM prototype under test, (b) single flux
guide and (c) setup for testing the prototype at different speeds [4].

Table 3. Controller gains and UKF covariance matrices used for real-time control of the BDFRM
protoype.

Parameter Value

τi 128.7
Kn,current 171.4
Kn,speed 0.15

Q diag
([(

7.5× 10−1
)2

I1x4

(
1.0× 10−3

)2 (
3.5× 10−1

)2 (
9.0× 10−2

)2
])

R diag
([(

1.0× 10−2
)2

I1x4, (4.7)2,
(

1.7× 10−3
)2
])

5.1. UKF Speed Filtering

Results of the effective speed filtering capabilities of the UKF are shown in Figure 13.
For this test, the machine is first started in IM mode at 40% load by short-circuiting the
control winding phases. The control is then enabled for a speed reference of 750 RPM.
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At 17.6 s the load is increased to 100%. After the load step, the ripple on the UKF speed
estimate decreases from 2.7% (or 20 RPM peak-to-peak) to less than 1% (or 6 RPM), thanks
to the increased Signal to Noise Ratio (SNR) of the control winding current measurements,
which are determinant for the UKF speed estimation. Finally, the difference between
Figures 11 and 13 can be explained by the difference in UKF covariance matrices which
are tuned differently for the simulation and the real-time control. This is because of the
difference between the model used in simulations, which is linear and does not include
saturation and eddy current losses, and the real BDFRM prototype.
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Figure 13. Raw signal from the shaft encoder and the estimated UKF speed.

5.2. Load Rejection

When operating at constant speed, the implemented control system effectively re-
jects the sudden load variations. Load steps are applied from 40% to 100% and back,
as depicted in Figure 14a. At the peak of the speed variation, the speed estimate error
reaches around 6 RPM, less than 1 % of the nominal speed. The smoothed speed signals
in Figure 14b,c show the performance of the UKF to follow the speed variations resulting
from the load steps.
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Figure 14. (a) Measured and estimated shaft speed, with the error band of the UKF estimate, during the load rejection test
of the proposed controller at 750 RPM with a zoom on the (b) loading and (c) unloading step. The curves are smoothed
over 0.3 s.

The load estimate, depicted in Figure 15, has a performant dynamic response, leading
to relatively small speed variations, as shown in Figure 14. Moreover, as the speed control
relies only on a P-controller, the feed forward of the load estimate lies at the base of the
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almost complete rejection of a potential steady-state error. Consequently, the overestimate
of the measured torque indicates the presence of all sorts of losses not included in the model.
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Finally, both control winding currents follow the imposed current references well, as
even the ripples on the reference are followed by the controller of ic,q, this is shown in
Figure 16. This proves the performance of the implemented current control.
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Figure 16. Control winding current controller response during the load rejection test. The curves are
smoothed over 0.1 s. Current amplitudes are expressed in a power invariant dq-reference frame.

5.3. Variable Speed Operation

The variable speed performance of the proposed control method remains to be tested.
To achieve this, the machine is nominally loaded at 9.5 Nm and a certain reference speed
profile in the 500–1000 RPM speed range is applied, as this is the intended speed range
for the intended application. The results, depicted in Figure 17, show that the steady-state
error between the reference and the measured speed is approximately 0.35 % at 750 RPM
and 1000 RPM, while it is approximately 0.7% at 500 RPM. Besides this, the steady-state
error of the UKF speed estimation is below 0.3%.

The load estimate during the test is depicted in Figure 18 and it visibly drifts upward.
This is due to the machine heating up, resulting in a winding resistance and, consequently,
copper losses increase. Despite this, the control performance stays intact, meaning the UKF
manages to correctly estimate the increasing losses. The grid winding phase resistance
happened to be 32% higher than the initial one, indicating a rough temperature rise of at
least 80 K during the test inside the machine. The temperature rise therefore also indicates
a level of robustness of the presented control against a change in parameters.
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Figure 18. Estimated and measured torque during the speed profile test.

5.4. Tuning of the UKF

The difficulty when implementing a Kalman filter is the correct allocation of the
covariance matrices Q and R, a difficulty encountered by multiple reported works on
Kalman filtering [40,67]. Even though some tuning methods exist [55–57], these add an
additional layer of complexity. The matrix Q consists of the process noise (co)variances,
these introduce the noise generated by the stochastic nature of the dynamic system and
more importantly they contain the modelling errors. The modelling errors arise from all
the assumptions made to construct the UKF BDFRM model, assumptions which are for
example, the neglected iron losses, mechanical friction losses and the harmonic content in
the airgap flux density.

Matrix R is the noise covariance matrix and can be estimated by studying the mea-
surement errors, but simply using these estimates is usually not sufficient for the UKF to
converge. The UKF covariance matrices Q and R, therefore, require some tuning effort,
which implies setting the covariance elements such that satisfactory estimation perfor-
mances are obtained.

In this paper, a certain tuning approach is introduced. First, the covariance matrices are
considered as diagonal matrices, assuming the noises are uncorrelated and thus considering
the covariances to be zero, thereby reducing the number of elements to tune. The tuning
of variance depends on the nature of the related state variable and the level of ‘trust’ or
‘distrust’ that is allocated to a certain measurement or estimate. This approach proved to
make the UKF converge and relatively accurately estimate the state variables. An important
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disclaimer is however that it remains a heuristic method and no evidence is to be found
on the systematic performance of this tuning approach. Additionally, the variances of the
same kind are kept equal, i.e., the four flux linkages share the same variance, same goes for
the current measurements etc. Moreover, the tuning happens by setting a factor in front of
the nominal chosen value of the standard deviation, the resulting diagonal matrices are
given by Equations (64) and (65).

Q = diag
([

(kλσλ)
2I1x4 (kωrσωr)

2 (kθrσθr)
2 (kTloadσTload

)2
])

(64)

R = diag
([

(kiσi)
2I1x4, (kiσi)

2, (kencσenc)
2,
(

kθ̂r
σθ̂r

)2
])

(65)

5.5. Encoderless Speed Estimation

Encoderless or sensorless speed control is attainable for the BDFRM as reported
in [23,27–29,31,37]. The UKF proposed previously can be made encoderless by removing
the speed measurement from the observation function h(x,u). The tuning of the covariance
matrices is consequently much more difficult, as there is one measurement less available to
assess and update the model predictions with. This results in more fragile stability of the
implementation. Investigating the exact reasons behind these issues and their solutions
could be considered for future work.

6. Conclusions

This paper proposes a new view on the machine model of the brushless doubly-fed
reluctance machine (BDFRM), allowing the reuse of the existing model-based control
system designs to operate the machine for variable speed applications. This is realized
with a cascade control system in combination with an unscented Kalman filter (UKF) as
state observer.

Based on the dynamic model in the grid winding field oriented (FO) frame, a cascade
model-based control system was developed with an outer speed control loop and an inner
current control loop. This cascaded control method is employed for a broad spectrum of
different machines, such as the conventional synchronous and asynchronous machines.
For the BDFRM, however, the proposed model-based control system was not developed
and reported. Reasonable assumptions allowed simplifying the BDFRM model to become
a model similar to the non-salient PMSM, with the grid winding flux linkage acting as
PM flux. The model-based control system is approved for variable speed operation in
simulation, assuming the use of ideal sensors.

To determine the load torque based on the model knowledge and to cope with the
noisy measurements in a real BDFRM test-setup, a UKF is adopted as a state observer.
Kalman filters can produce relatively accurate estimates of the state variables by fusing
different kinds of clean and noisy signals. The UKF was chosen as the best KF option
thanks to its ability to handle non-linear models with superior performance compared to
the popular extended KF, while it also allows higher implementation flexibility.

The UKF implementation was first validated in simulation, followed by a successful
implementation in real-time. The control system in combination with the UKF showed
satisfactory performances, both in terms of accuracy and dynamic response, and the control
requirements were successfully met. The proposed control system design is therefore
validated experimentally. The UKF also proved capable of capturing an increase in losses
due to a temperature rise in the windings. At this stage, future work could investigate
sensorlsess speed control with the UKF, and on-line monitoring of phase resistances and
other machine parameters.
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