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Abstract: This work presents the results of research on the thermo-chemical conversion of woody
biomass–pine wood coming from lodzkie voivodship forests and sewage sludge from the Group
Sewage Treatment Plant of the Łódź Urban Agglomeration. Laboratory scale analyses of the car-
bonization process were carried out, initially using the TGA technique (to assess activation energy
(EA)), followed by a flow reactor operating at temperature levels of 280–525 ◦C. Both the parameters
of carbonized solid biofuel and biochar as a carrier for fertilizer (proximate and ultimate analysis)
and the quality of the torgas (VOC) were analyzed. Analysis of the pine wood and sewage sludge tor-
refaction process shows clearly that the optimum process temperature would be around 325–350 ◦C
from a mass loss ratio and economical perspective. This paper shows clearly that woody biomass,
such as pine wood and sewage sludge, is a very interesting material both for biofuel production and
in further processing for biochar production, used not only as an energy carrier but also as a new
type of carbon source in fertilizer mixtures.

Keywords: torrefaction; pine wood; sewage sludge; biochar; kinetics

1. Introduction

As a part of the European Union, Poland is a powerful participant in the new Euro-
pean Green Deal which will be a revolution from the point of view of the Polish energy
sector. In the future years, new climatic and environmental legislation will provide new
obstacles. The Polish energy sector is now confronted with significant issues. The primary
issues confronting this sector include high energy consumption, insufficient infrastructure
development, production and transportation of fuels and energy, extraction of external
energy natural gas, and rising CO2 pricing. Amongst renewable energy sources, thermo-
dynamic and numerical modeling aspects of biomass torrefaction are characterized by
unflagging interest. As part of the research, a thermogravimetric analysis was performed
on the basis of which the kinetics of chemical reactions taking place during the process were
determined. Additionally, measurements of the total volatile organic compounds from the
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process were carried out and the combustion data were determined for the torrefaction
products obtained. The research was carried out as part of the BIOCARBON project, which
aims to design a torrefaction installation equipped with a rolling-bed dryer operating in
continuous air mode and a reactor using superheated steam for the torrefaction process.
Poland is at the forefront of Europe when it comes to forest area. Currently, the forest
area in Poland is over 9.3 million ha. Pine is the most common species in lowland and
upland areas. According to the Large-Area Inventory of the State of Forests, pine grows on
60% of the forest area of the state forests and approximately 54% of private and commu-
nal forests [1]. Pine’s dominance results from the way in which forest management was
conducted in the past [2–4]. The detailed percentage of pine forest area broken down by
voivodeships of Poland is presented in Figure 1.

Figure 1. The area of forests on forest land by prevailing species in the voivodship system [1].

During this process, the lignin contained in the biomass heats up under the pressure
applied and becomes soft and plastic. In this way, the material can be formed into any
shape which allows for easy processing and transportation. As a result of the process,
the moisture content of the material decreases, and the calorific value increases. The
pelletizing process gives the pine wood fuel properties [5–9]. However, in order to be able
to fully use pine wood as fuel, it must be subjected to further technological processes. An
important direction of development concerns large-scale processes aimed at the preparation
of biomass, where, in addition to drying, briquetting, baling, or pelletization, biomass is
also subjected to processes aimed at altering its physical character and changing its moisture
content. One such process is torrefaction. It can be said that torrefaction is a process of
preliminary thermo-chemical processing of biomass under an inert atmosphere [10–15]. Its
main task is to approximate the properties of biomass to the properties of average coals [16].
Sewage sludge is considered to be one of the many harmful substances produced by man.
In short, it consists of suspensions of various waste substances in water, discharged from
industrial plants and households. Unfortunately, it contains significant amounts of chemical
compounds, bacteria, and microorganisms harmful to the environment. Therefore, in order
to get rid of harmful substances, it must be treated. As certain technological (biological-
chemical) processes are carried out, along with the removal of pollutants, sewage sludge
is formed. This includes wastes that need to be treated and managed, and interestingly
enough these can be a source of additional fuel due to their properties. Torrefaction is
a thermo-chemical treatment of biomass at a temperature range of 200–300 ◦C; many
researchers have done research on woody biomass torrefaction process and its influence
on the woody biomass molecular structure [17–23]. It comprises a process that leads to
an increase in biomass energy density, mainly as a result of decomposition of the reactive
component of biomass, as in hemicellulose under anaerobic conditions [24–30]. During
this process, about 30% of the initial weight of the raw material is reduced. This is mainly
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due to the removal of moisture from the material, but also the release of volatile substances.
Due to the carbonization of biomass taking place during torrefaction, the biomass obtains
properties that make it similar to coal [31–35]. Torrefied biomass is used not only as a
renewable fuel in the energy sector [36–44]. Due to its developed specific surface and
microporosity, it can also be used in environmental protection to remove pollutants from
water and sewage [45,46]. Another sector of use concerns agriculture. The addition of
torrefied biomass to the soil improves its properties and may contribute to reducing the
use of fertilizers and plant protection products. It can also increase the effectiveness of
using natural fertilizers [47–50]. Due to its very low thermal conductivity and absorption
properties, torrefied biomass is also used in construction to produce insulation [51,52].

The sewage sludge used in this study came from the Group Sewage Treatment Plant
of the Łódź Urban Agglomeration, which is located on the south-western border of Łódź.
The sewage network in Łódź is characterized by a large share of combined sewage, which
during heavy rainfalls and snowmelts causes troublesome irregularity in the amount of
sewage flowing to the treatment plant. The areas from which wastewater flows into the
plant are inhabited by approximately 820,000 people. The facility is a typical mechanical
and biological treatment plant with increased removal of biogenic compounds. The biolog-
ical process is periodically supported by iron coagulant and an external carbon source. The
sludge consists of a large amount of organic compounds that affect its calorific value. This
is similar to the calorific value of brown coal and can be 10–15 MJ/kg d.m.

One of the many methods of sewage sludge treatment is its thermal conversion.
Depending on the technology used, there is a significant reduction in the amount of sludge
and a reduction in the onerous impact on the environment. However, each method is
fraught with the problem of continuous waste generation, regardless of the time of year or
weather conditions. Significant developments in thermal treatment technologies have been
observed during the last decade. In addition to legal requirements, technical, economic,
and aesthetic considerations have also forced changes in this field. Thermal treatment
can also be a source of energy and a source for the recovery of various materials used in
road construction and elements such as phosphorus. The mechanism of sewage sludge
torrefaction is similar to the torrefaction of plant biomass. The main fractions that are
formed during the thermal decomposition of the sludge in an inert atmosphere are as
follows: Gaseous fraction; are non-condensing gases (NCG) containing mainly hydrogen,
methane, carbon monoxide, carbon dioxide and other gases in smaller concentrations; Solid
fraction, mainly consisting of pure carbon with some inert substances. It should be noted
that the share of individual fractions depends on the temperature, residence time in the
reactor, pressure, turbulence, as well as the properties of sewage sludge (pH, organic matter
content, dry matter content). The torrefaction process can be tested by thermogravimetry
(TG), differential scanning calorimetry (DSC) and additionally by mass spectrometry (MS)
and chromatographic techniques [19,27].

2. Materials and Methods
2.1. Thermogravimetric Analysis

Pinewood and sewage sludge were dried before the thermogravimetric tests. For this
purpose, crucibles were calcined for 3 h at 900 ◦C. Biomass was placed in the prepared
crucibles. The drying process was carried out in the Binder 9010-0082 dryer at a temperature
of 105 ◦C for 24 h [53]. Dried samples were transferred to a desiccator to cool down.
The next stage of the research was thermogravimetric analysis of biomass, which was
aimed at measuring changes in the mass of a given sample depending on the analysis
temperature and its time. Measurements were made with a NETZSCH TG 209 F3 Tarsus
thermogravimeter. The analysis consisted of heating the biomass sample weighing about
10 mg to the following temperatures; for pine wood 285, 325 and 525 ◦C and for sewage
sludge within the range of 280–520 ◦C, with a heating rate of 5, 10 and 20 K/min, with a
flow of inert gas-nitrogen at a rate of 20 mL/min. The residence time of the sample in the
thermogravimeter was set up for 5 to 10 min. The thermogravimetric analysis determines
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the mass losses as a function of temperature during the biomass torrefaction process.
Figure 2 shows a diagram of the installation for the drying process and thermogravimetric
analysis of pine wood and sewage sludge.

Figure 2. Diagram of an installation for thermogravimetric analysis of pine wood and sewage sludge.

2.2. Kinetic Analysis

Based on the findings obtained from the thermogravimetric analysis with the use of
NETZSCH Kinetics 3 software, the reaction kinetics and chemical kinetics for pinewood
and sewage sludge were determined. This software is used for thermal measurements of
chemical reactions. The analysis allowed for the determination of the speed of chemical
processes and the speed of reactions taking place during the torrefaction, and for the
determination of the mechanism of individual elementary reactions occurring during the
process.

The first method used was the Kissinger method, which determines the linear depen-
dence of the activation energy and the Arrhenius pre-exponential factor on the temperature
rise rate as well as the temperature at which the decomposition rate is the highest. It refers
to the maximum rate of degradation based on the TG or DTG curves. This method has
been standardized to the ASTM E698 method, which is based on the results of differential
thermal analysis [54–56]. For the first order reaction, taking place under non-isothermal
conditions, at different rates of temperature increase, the rate of decomposition is described
by the relationship:

ln ln
(

β

T2
max

)
= − Ea

RTmax
(1)

where: β—sample heating speed (K/min); Tmax—the temperature at which the sample
mass loss rate is greatest (K); A—pre-exponential coefficient; Ea—activation energy (J/mol).

Another method was the Friedman method, which is the most general differential
method [57,58] and uses a logarithmic equation:

ln ln
(

dx
dt

)
= +ln ln f (x) (2)

The last method was the Ozawa–Flynn–Wall method, which, as the Friedman method,
allows determination of the activation energy value without the necessity of adopting a
specific kinetic model [59,60]. It is based on the integral form of the equation:
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G(x) =
∫ dx

f (x)
=

A
β

T∫
T0

exp
(

−Ea

RT

)
dt (3)

2.3. Study of the Emission of the Total Volatile Organic Compounds

The next stage of the research was to determine the emission of the total volatile
organic compounds from the pine wood and sewage sludge torrefaction process. The dried
sample, weighing about 2 g, was placed on a quartz boat, and then the prepared vessel
was placed in the PR-45/1350 M electric furnace for 1 h [61]. The tests were carried out
at temperatures of 285, 325, and 525 ◦C. The torrefaction process was carried out in the
presence of CO2, the flow rate of which was 1 L/min. Each trial was repeated 3 times to
verify the results provided. The course of the emission of total volatile organic compounds
over time was measured continuously during the heating of the sample. A stationary JUM
FID 3-500 analyzer was used to determine the emissions. Figure 3 shows a diagram of the
installation for conducting VOC total emission tests.

Figure 3. Diagram of an installation for determining the emissions of total volatile organic compounds.

Based on the results of the emission of the sum of VOCs over time and the emission
factor was calculated, which defines the amount of pollutants emitted in relation to the
amount of fuel undergoing the process.

wVOC =
QCO2 ·

1
τp

∫ t
0 c(τ)dt ·τp

m
(4)

where: QCO2 —carbon dioxide flow rate (m3/s); τp—torrefaction time (s), c—average
concentration of volatile organic compounds (mg/m3); m—sample weight (g).

2.4. Determination of the Heat of Combustion Value of the Obtained Torrefaction

The combustion heat value of the obtained torrefied pine wood and sewage sludge
was measured using the Parr 6400 calorimeter. The analysis consisted in burning a given
sample in an oxygen atmosphere. From the obtained torrefied material, samples weighing
about 1 g were weighed and then placed into a tablet. The prepared samples were placed
in crucibles and then in a calorimetric bomb to start the measurement. Figure 4 shows a
diagram of the apparatus.
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Figure 4. Installation diagram for determining the heat of combustion value.

3. Results
3.1. Thermogravimetric Analysis

An example of a thermogravimetric analysis graph for pine wood was shown at
Figure 5. The results presented relate to the process carried out at a temperature of 525 ◦C,
with a heating rate of 20 K/min and a residence time of 8 min. As can be seen in the
first stage of the process, drying, the greatest loss of mass was recorded, amounting to
approximately 96%. At a later stage of the process, during the torrefaction process, the
weight loss was about 28%.

Figure 5. TGA analysis of pine wood and maximum mass loss determination.



Energies 2021, 14, 8176 7 of 27

Figures 6 and 7 show the changes in the weight of the pine wood and sewage sludge
with respect to the temperature and duration of the torrefaction process resulting from
changes in the chemical structure, water loss, and degassing of the material. Increases
in temperature were linked to significantly higher mass loss in the sewage sludge. In
addition to parameters such as combustion temperature and residence time, the heating
rate was examined. Figure 6 shows the results of the pine wood weight loss for the
thermogravimetric analysis conducted at a heating ratio of 5–10–20 K/min.

Figure 6. Mass losses during thermogravimetric analysis of pine wood.

At a heating speed of 5 K/min, the highest weight loss, 84–97%, was recorded at the
temperature of 525 ◦C. The longer the sample remains at this temperature, the smaller the
weight loss. At 285 ◦C, the weight loss was 22–26%. The longer the sample residence time
was, the greater the weight loss was recorded. At 325 ◦C, the weight loss was 55–64%.
At the heating speed of 10 K/min at the temperature of 525 ◦C, the weight losses were
significantly lower than in the case of the heating ratio of 5 K/min and amounted to 83–86%.
Lower weight losses were also noted at 325 ◦C, 51–54%. At 285 ◦C, the lowest weight losses
were observed, which amounted to 22–28%. The last heating ratio used during the tests
was 20 K/min. At 285 ◦C, the weight loss was 20–25%. At a temperature of 325 ◦C, this
value increased to 43–54%, and at a temperature of 525 ◦C from 80–84%.

Figure 7 shows the results of the weight loss of sewage sludge for the thermogravi-
metric analysis conducted at a heating ratio of 5–10–20 K/min.
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Figure 7. Mass losses during thermogravimetric analysis of sewage sludge at different temperatures.

At the maximum temperature of 520 ◦C, the mass loss was observed in a range of
47–50% with a heating rate of 5 K/min. Minimum and maximum mass losses were found
to be 16 and 55% with respect to the lower and higher working temperatures at a 10 K/min
rate. Average mass loss during the 10 K/min heating rate was found to be higher than
5 K/min. Minimum and maximum mass losses were found as 17 and 56% at 20 K/min
heating rate. In the case of sewage sludge, the lowest weight loss was achieved during the
process at a heating speed of 10 K/min, a residence time of 5 min, and a temperature of
280 ◦C. Figure 8 indicates the sewage sludge mass loss during thermogravimetric analysis
at every 10 ◦C point in the scale 250–520 ◦C.



Energies 2021, 14, 8176 9 of 27

Figure 8. Mass losses of sewage sludge at several temperatures of 250–500 ◦C, residential time and heating ratios.

A 37–41% mass loss was found at 350 ◦C and an 18–24% mass loss was observed at
350 ◦C. The results show the residence time does not have not as much effect on mass loss
as temperature. Desired mass loss, 30%, was reached at 300 ◦C and further. Over 480 ◦C,
50% mass loss was observed.

3.2. Kinetic Analysis

A kinetic study of the pine wood and sewage sludge torrefaction process was per-
formed based on the findings of thermogravimetric measurements with the use of three
different heating rates, 5–10–20 K/min. The sample weighed 10 ± 1 mg where temper-
atures ranging from 200 to 500 ◦C were used for the kinetic analysis. Figures 9 and 10
show the TG curves of the sewage sludge torrefaction process for three different rates in a
temperature range from 200 to 500 ◦C.
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Figure 9. TG curves for three heating rates for pine wood.

Figure 10. TG curves for three heating rates for sewage sludge.
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The determination of the kinetics of the reactions occurring during the torrefaction
process began with isoconversion analyses, which allowed the activation energy to be
calculated without knowing the reaction model. The first used was the Kissinger analysis
method according to ASTM E698, which is based on the assumption that the maximum of
a one-step reaction is reached with the same degree of conversion regardless of the heating
rate. The activation energy of a solid’s thermal decomposition may be estimated using this
approach. Its result is a plot of the logarithm of the sample heating speed as a function of
the reciprocal of the temperature at the moment when the mass loss rate is the highest. The
results are presented in Figures A1 and A2 in Appendix A. Then, the Friedman analysis
was performed, which consists of determining the logarithm of the conversion as a function
of the reciprocal of temperature. The results of the analysis are presented in Figures A3
and A4. The next method that was used to determine the kinetics of the reaction was the
Ozawa-Flynn-Wall method. Thanks to this method, the logarithm dx/dt was plotted as a
function of the reciprocal of temperature and, despite the lack of knowledge of the reaction
mechanisms at this stage, the activation energy and the pre-exponential coefficient were
calculated for each conversion stage. Figures 11 and 12 show the results of the analysis
both for pine wood and sewage sludge.

Figure 11. Plot of logarithm dx/dt as a function of the reciprocal of temperature for the Ozawa–Flynn–Wall method for
pine wood. Symbols are representing, heating rates, Red: 20K/min, Blue: 10 K/min and Green: 5 K/min.
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Figure 12. Plot of logarithm dx/dt as a function of the reciprocal of temperature for the Ozawa–Flynn–Wall method for
sewage sludge. Red: 20K/min, Blue: 10 K/min and Green: 5 K/min.

The analysis by the Ozawa–Flynn–Wall method allowed the value of the pre-exponential
coefficient and the activation energy as a function of the conversion degree to be presented.
The results of the analysis are presented in Figures 13 and 14.

Figure 13. Activation energy (Red color) and pre-exponential coefficient (Blue color) as a function of the degree of conversion
determined by the Ozawa—Flynn–Wall method for pine wood. Green color represents the statistical error.
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Figure 14. Activation energy (Red color) and pre-exponential coefficient (Blue color) as a function of the conversion degree:
(a) X = 0.20–0.98, (b) X = 0.20–0.90 determined by the Ozawa–Flynn–Wall method for sewage sludge. Green color represents
the statistical error.

To better illustrate the results, the above data are presented below in Tables 1 and 2
for both biomasses.
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Table 1. Activation energy and pre-exponential coefficient as a function of the degree of reaction
determined by the Ozawa–Flynn–Wall method for pine wood.

Fract. Mass Loss Activation Energy (kJ/mol) Log (A/s−1)

0.020 121.96 ± 61.15 8.85
0.050 128.18 ± 44.82 9.11
0.100 145.76 ± 42.65 10.66
0.200 161.46 ± 32.56 11.85
0.300 170.33 ± 31.30 12.46
0.400 174.80 ± 31.49 12.70
0.500 170.09 ± 34.58 12.16
0.600 162.39 ± 35.23 11.42
0.700 170.42 ± 34.12 12.05
0.800 402.87 ± 186.36 31.02

Table 2. Activation energy and pre-exponential coefficient as a function of the degree of reaction
determined by the Ozawa–Flynn–Wall method for sewage sludge.

Fract. Mass Loss Activation Energy (kJ/mol) Log (A/s−1)

0.020 542.50 ± 172.09 56.16
0.050 270.33 ± 88.04 25.58
0.100 203.17 ± 64.57 18.12
0.200 195.84 ± 53.70 16.77
0.300 205.04 ± 53.72 17.15
0.400 240.66 ± 50.48 19.89
0.500 269.49 ± 19.16 21.76
0.600 300.83 ± 48.94 23.68
0.700 312.47 ± 297.92 23.59
0.800 237.36 ± 492.84 16.48

Similarly to the Friedman method, the activation energy value shows a significant
variability from about 120 to 400 kJ/mol. This confirms that the pyrolysis of pine wood
samples consists of a series of overlapping reactions. For the case of pine wood analyzed,
it is assumed that the pyrolysis process is carried out in one stage. The kinetic equation
transforms into a thermo-kinetic equation in dynamic circumstances. Using the Kinetics
3 program, an attempt has been made to mathematically adjust one of the models of the
thermal breakdown reaction based on the TG curves acquired as a function of temperature.
After taking into account the assumed reaction model, the kinetic parameters of the reaction
were determined, meaning the constant pre-exponential coefficient, as well as the activation
energy and the matching coefficient. The most accurate fit against the experimental data
for the pine wood sample was obtained for the n-order reaction model for n = 2.9. For
such a match, the value of the correlation coefficient was 0.9945, the activation energy was
158.65 kJ/mol and the pre-exponential coefficient was 11.61. The results of the model fit
are presented in Figure 15 for pine wood. As in the case of kinetic parameters determined
by the Friedman method, their great variability is noticeable. We observe an increase in
the values of parameters determined for both low and high conversion rates. It should
be noted that for the degree of conversion above 0.9, the activation energy values and
errors in its estimation assume absurd values. This may indicate the imperfection of the
computational methodology as we approach the boundary conditions and the complexity
of changes taking place in the sewage sludge in the considered temperature range. The
best fit to the experimental data for the sewage sludge sample was obtained for the nth

order reaction model for n = 4.98. The correlation coefficient R2 was 0.9885, the activation
energy was 122.74 kJ/mol, and the pre-exponential coefficient (ln A) was 9.42. Figure 16
shows the adjustment of the equation with the calculated coefficients to the experimental
data for sewage sludge.
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Figure 15. Fitting the calculated kinetic model for pine wood to the experimental data.

Figure 16. Fitting the calculated kinetic model for sewage sludge to the experimental data.

It should be noted that the calculated triplet (n, Ea, ln A) represents just the optimal
mathematical fit of the equation to the experimental data, and in this case it has no strict
physical meaning (reaction order). This method of calculating activation energy is obvious:
it merely serves to correlate the model with experimental data and has no relevance as a
definition. The research results presented refer only to research biomass pine wood and
sewage sludge.
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3.3. Study of the Emission of the Sum of Volatile Organic Compounds

The next stage of the research was to determine the emission of the total volatile
organic compounds from the process. The analysis conducted provided data on the course
of emission of the total VOC over time, thanks to which the pollutant emission index from
the process was calculated. Figure 17 shows the course of emissions of the total VOC over
time at 285 ◦C.

Figure 17. Time course of VOC total emission at 285 ◦C.

During the process at 285 ◦C, the maximum emission was reached in 342 s and was
about 525 ppm. At the temperature of 325 ◦C, this value increased to about 1100 ppm, and
at the temperature of 525 ◦C to 8200 ppm. Based on these results, the emission factor was
calculated in accordance with formula (4). The results are shown in Figure 18.

Figure 18. Values of the determined VOC total emission factor.
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The highest value of the emission index was achieved at the highest temperature of
the process, and it was about 12 mg/g. For a temperature of 285 ◦C the value was about
5 mg/g and for 325 ◦C it was about 8 mg/g.

3.4. Determination of the Heat of Combustion Value of the Obtained Torrefaction Products

The combustion heat of the pine wood torrefacts obtained was measured using a Parr
model 6400 calorimeter. Table 3 shows the results obtained.

Table 3. Determined values of the heat of combustion of the obtained torrefaction products.

Biomass Type Moisture,
[%] Cad, [%] Nad, [%] Had, [%] Sad, [%] Cl, [%] Volatilead

[%]
Ash
[%]

Heat of Combustion,
[MJ/kg]

Pine wood 7.7 42.3 0.63 5.61 0.07 0.115 82.4 4.2 18.19

Torrefied Pine
Wood

(285 ◦C, 10 min) 6.42 51.15 0.67 6.14 0.03 0.014 72.36 4.64 21.72

(325 ◦C, 7 min) 2.83 53.24 0.23 5.62 0.03 0.013 70.13 6.97 27.48

(525 ◦C, 5 min) 1.39 57.29 0.15 3.47 0.04 0.012 37.23 10.12 31.48

Sewage Sludge 7.8 31.10 4.46 5.87 0.09 0.01 59.8 40.5 13.24

Torrefied Sewage
Sludge:

(280 ◦C, 9 min) 3.8 31.4 4.47 5.23 0.01 0.009 27.4 72.5 3.68

(320 ◦C, 6 min) 2.2 32.60 4.29 4.61 0.01 0.01 25.25 74.32 3.44

(520 ◦C, 5 min) 2.0 26.35 3.25 2.42 0.01 0.01 23.43 77.65 3.29

The Higher Heating Value (HHV) of the raw biomass was found to be 18.1898 MJ/kg
at the ambient temperature. When heat of 525 ◦C was applied, the calorific value of the
sawdust increased by 73% compared to raw biomass. Even though there was no actual
difference in calorific value between 20 and 285 ◦C, there was an obvious increase between
285 and 325 ◦C. One possible reason may be due to the high content of essential oils in the
pine wood sample, which decomposes at temperatures above 300 ◦C.

4. Discussion

This work is based on an attempt to optimize the most effective parameters for solid
biofuels production and biochar as a carrier for fertilizers in the torrefaction process.
Different residence time and heating rate results show that there are no significant changes
in mass loss for both pine wood and sewage sludge, unlike temperature. At the lowest
temperature, the mass loss of sewage sludge was found higher from pinewood. The reason
may be that lignocellulosic structure of pine wood is more thermally stable than non-
lignocellulosic biomass. When the temperature was increased to 325 ◦C, the differences
reached 20% and for 525 ◦C, the mass loss of PW reached 97%, whereas for SS it was only
55%. This can be explained by the fact that the ash content of sewage sludge is much higher
than pine wood. Nguyen et al. (2020) also mention that non-fibrous structures such as
sewage sludge have less thermal resistance, while the fibrous structure of lignocellulosic
biomass degradation requires a much longer time to reach the same percentages of mass
loss [57]. The volatile substance of PW was much higher than that of SS, while the ash
content of SS was much higher than that of PW. Nwabunwanne et al. (2021) found that
sewage sludge torrefaction temperatures should not exceed 300 ◦C because of the unwanted
high ash amount. In addition, they have proved that a thermally pretreated sewage sludge
torrefaction process leads to the achievement of more stable solid biofuel with less ash
amount [62]. While pine wood has 65–72% volatile matter, sewage sludge has around 50%
wt [63,64]. Huang et al. (2016) found very similar results in their work with leucaena and
the sewage sludge torrefaction process [65,66]. Summarizing the above results, it can be
noted that the torrefaction process is complex. The process conditions, such as temperature,
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residence time, and heating speed, should be selected in such a way as to obtain the lowest
possible loss of mass in the shortest possible time. In both cases of pine wood and sewage
sludge, the lowest weight losses were achieved during the process at a heating speed of
20 K/min, a residence time of 5 min, and a temperature of 285 ◦C.

The Effect of the Torrefaction Residence Time

The TGA analysis of pine wood and sewage sludges revealed that torrefaction pro-
cess temperatures over 320 ◦C resulted in lower mass yields and energy. Effects of the
torrefaction process residence time were investigated for temperatures under 525 ◦C. In
Figures 6–8 we can see correlation between the effects of the woody biomass and sewage
sludge torrefaction residential time on the physico-chemical characteristics of pine wood
and sewage sludge torrefaction. It can be observed that the effect of torrefaction residence
time on volatile matter and ash content was not as significant as the influence of biomass
torrefaction process temperature. In Figures 6–8 we can observe that when the residence
time of torrefaction increases, the mass yield decreases. Above observations can be de-
scribed by the effect of reduction in the water and volatile content of the woody biomass
and sewage sludges. In addition, at the beginning there was a significant mass loss of the
sewage sludge torrefaction process, while the change in mass yield was not as significant
with a longer torrefaction residence time. The results can be explained by the fact that more
reactive components decompose at the beginning of the torrefaction. It was also observed
that the mass yield decreases with the torrefaction residence time. It can be concluded from
Figure 8 that the mass loss increases with a longer torrefaction time. Nevertheless, in all
previous investigations, the pine wood and sewage sludges torrefaction residential time
has been presented to be less meaningful than the temperature.

5. Conclusions

This work was focused on two different biomass torrefaction processes. The first
one (which is the most common in Polish forests) concerns pine wood from the lodzkie
voivodship forests and the second sewage sludge from the Group Sewage Treatment Plant
of the Łódź Urban Agglomeration. In this article, the authors mainly investigated the
impact on the biomass of torrefaction temperature, mass loss, moisture content, HHV,
and VOC emission during the torrefaction process. In addition, the authors quantified
various parameters of the pine wood torrefaction process and sewage sludge to be used
as carbonized solid biofuels and as an additive for fertilizers. A kinetic analysis was
conducted, and the proper temperature for the carbonization process and residence time
for specific mass loss ratios were determined.

As a result of this research, it was found that from a mass loss ratio and economical
perspective, the most optimal torrefaction temperatures for pine wood and sewage sludge
to produce biochar, which can be a carrier for biofertilizers, lie between 325 and 350 ◦C.
However, the temperatures can be changeable in practice based on the type of raw material,
amount of heating ratio, and also the chemical structure of the untreated material. In a
further investigation, torgas can be utilized as a heat source for the carbonization process
due to the high quantities of volatile organic compounds in the tracks. The variability
of the activation energy value depending on the degree of conversion probably indicates
that the reactions of pine wood pyrolysis are not homogeneous but rather consist of many
overlapping and parallel thermo-chemical processes. This can also have an influence on the
bio-economy since an appropriate mass loss ratio to energy loss for diverse woody biomass
during the carbonization process has a substantial impact on the pricing of torrefied solid
biofuel and biochar as fertilizer price carriers (the use of under or over heat throughout the
process has a major influence on the final product pricing).

In the near future, further work will be concentrated on the pine wood and sewage
sludge torrefaction process. This first phase of research work shows which temperatures
for pine wood and for sewage sludges are the best to obtain mass loss in a range of
50% compared to untreated substrates and kinetics which were necessary for apparatus
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design (biomass counter-flow torrefaction reactor). From our previous studies and from
economical calculations (costs of bicarbon production at industrial scale for C additives
production for fertilizers) we know that 50% is the most reasonable mass loss to produce
still relatively cheap bio-product which can be use by companies which are producing
biofertilizers. From biomass torrefaction temperature limitations and again from our
previous collaboration with agro-engineers, and from their conducted toxicity test we know
that biomass should be thermally treated in the temperature range close to 320–350 ◦C to
neutralize toxic substances.

The major task will comprise the design and construction of an installation for a
continuous drying and superheated steam torrefaction process using kinetics data from
this article. Which includes the design of a biomass dryer run on hot air as well as a
torrefaction reactor run on dry steam (superheated steam). As the novelty of this work in
the winter of 2021, a new installation will be built including a counter-flow torrefaction
reactor with superheated steam torrefaction, and experimental research will be carried out
on the conditions of the torrefaction process of woody and agricultural biomass mix with
digested solid residues DGS to produce carbonized solid biofuels such as biocarbon as a
carrier for organic fertilizers, with data from this study [67–69].
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Appendix A

Figures A1 and A2 present data analysis for the Kissinger method (ASTM E698).
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Figure A2. Kissinger analysis (ASTM E698) for sewage sludge.

Thanks to the use of the above-mentioned method, the activation energy value of the
pine wood pyrolysis process was obtained, which was 115 kJ/mol. However, attention
should be paid to the very high relative error of this method, which is about 35 kJ/mol,
about 30% of the activation energy value. The obtained value of the activation energy of
the sewage sludge torrefaction process was approximately 169 kJ/mol with an error of
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4.04 kJ/mol. Figure A3 and A4 represents Friedman method for both biomass pine wood
and sewage sludge for 3 different heating rate. Red line represents 20 K/min, blue line is
10 K/min and green line is 5 K/min.

Figure A3. Plot of logarithm dx/dt as a function of reciprocal of temperature by Friedman method for pine wood. Red line
represents 20 K/min, blue line is 10 K/min and green line is 5 K/min.

Figure A4. Plot of logarithm dx/dt as a function of reciprocal of temperature by Friedman method for sewage sludge. Red
line represents 20 K/min, blue line is 10 K/min and green line is 5 K/min.

Thanks to the Friedman method, it is also possible to present the values of the activa-
tion energy and the pre-exponential coefficient as a function of the degree of conversion, as
shown in Figures A5 and A6.
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Figure A5. Activation energy (Red color) and pre-exponential coefficient (Blue color) as a function of the degree of reaction
determined by the Friedman method for pine wood. Green color represents the statistical error.
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Figure A6. Activation energy (Red color) and pre-exponential coefficient (Blue color) as a function of the conversion degree:
(a) X = 0.20–0.98, (b) X = 0.20–0.90 determined by the Friedman method for sewage sludge. Green color represents the
statistical error.

On the basis of Figures A5 and A6, it can be concluded that the activation energy for
the pine wood and sewage sludge samples varies depending on the degree of conversion.
The variability of the activation energy value as a function of the degree of reaction
may indicate the fact that the pyrolysis reaction of pine wood is not homogeneous and
consists of many overlapping and parallel processes of thermal decomposition of individual
biomass components. The exact values of the determined activation energy are presented
in Tables A1 and A2.

Table A1. Activation energy and pre-exponential coefficient as a function of the degree of reaction
determined by the Friedman method for pine wood.

Fract. Mass Loss Activation Energy (kJ/mol) Log (A/s−1)

0.020 113.71 ± 57.16 7.79
0.050 134.47 ± 43.26 9.56
0.100 154.97 ± 36.97 11.25
0.200 169.96 ± 27.86 12.33
0.300 178.59 ± 31.70 12.89
0.400 179.87 ± 39.00 12.82
0.500 150.14 ± 42.32 10.22
0.600 154.05 ± 40.74 10.57
0.700 224.25 ± 15.23 16.32
0.800 799.80 ± 798.45 62.31
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Table A2. Activation energy and pre-exponential coefficient as a function of the degree of reaction
determined by the Friedman method for sewage sludge.

Fract. Mass Loss Activation Energy (kJ/mol) Log (A/s−1)

0.020 378.99 ± 216.09 37.70
0.050 208.04 ± 83.17 18.76
0.100 188.15 ± 60.14 16.18
0.200 195.43 ± 53.66 16.23
0.300 221.23 ± 53.10 18.07
0.400 254.79 ± 42.46 20.40
0.500 277.71 ± 4.05 21.62
0.600 325.90 ± 97.57 24.87
0.700 349.52 ± 407.02 25.55
0.800 272.76 ± 507.67 18.33

An analysis of Figure A6 and the data in Table A2 shows that the variability of
the determined kinetic parameters (E and A) depending on the degree of reaction is
noticeable. Very high variability and accompanying errors are observed when approaching
the boundary conditions, that is for low and high values of the conversion degree (X < 0.1
and X > 0.9). These fluctuations result in part from the methodology of determining kinetic
parameters. On the other hand, they are a consequence of the complex course of the
torrefaction process for material such as sewage sludge.
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46. Ławińska, K.; Szufa, S.; Obraniak, A.; Olejnik, T.; Siuda, R.; Kwiatek, J.; Ogrodowczyk, D. Disc Granulation Process of Carbonation
Lime Mud as a Method of Post-Production Waste Management. Energies 2020, 13, 3419. [CrossRef]
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