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Abstract: This paper presents a method for shaft position estimation of a synchronous motor with
permanent magnets. Zero speed and very low speed range are considered. The method uses
the analysis of high-frequency currents induced by the introduction of additional voltage in the
control path in the stationary coordinate system associated with the stator. An artificial neural
network estimates the sine and cosine values necessary in the Park’s transformation units. This
method can achieve satisfactory accuracy in the case of low asymmetry of inductance in the direct
and quadrature axes of the coordinate system associated with the rotor. The TensorFlow/Keras
package was used for artificial network calculations and the scikit-learn package for preprocessing.
Aggregating the outputs of several artificial neural networks provides an opportunity to reduce the
resultant estimation error. The use of as few as four networks has enabled the error to be reduced by
approximately 20% compared to a single example network.

Keywords: PMSM; permanent magnet motors; sensorless control; estimation; ANN; artificial neural
networks

1. Introduction

Permanent magnet synchronous motors (PMSMs) are often used in household appli-
ances and in industrial drives [1–3]. Their range of application includes both high-precision
machine tool drives (e.g., CNC machine tools) and drives with smaller requirements (e.g.,
domestic appliances). There is also growing interest in using PMSMs in electric vehi-
cles [4,5], such as drives embedded in wheels [6] or as multiphase machines [7,8]. The
main advantages of PMSM drives are high dynamics, high power density, and high effi-
ciency. This is due to the low moment of inertia, high overload torque factor, and negligible
electrical losses in the rotor. A technical feature of a typical PMSM drive, i.e., the need
to use a shaft position sensor, whose value is required in vector control for conversion
between coordinate systems and may be used for determining speed, can be considered
as a disadvantage. The elimination of the mechanical sensor for determining the shaft
position is a subject of research still being developed in various research centers [9–16]
and will allow vector control without the need for a position sensor. This will increase the
reliability of the drive, reduce its costs, and increase its compactness. It will also allow
the PMSM to be used much more widely as a simple variable speed drive. Unfortunately,
in order to be able to use the operating range of very low and zero speeds, techniques
based on the estimation of back electromotive force (BEMF) cannot be used due to the lack
or low value of the induced BEMF [17–19] and the low ratio of the signal (in this speed
range) to the noise. In this speed range, physical methods that use the nonlinearity of the
motor may be useful, e.g., based on the analysis of inductance variability as a function of
the motor shaft position [20]. Typically, in zero or a very low speed range, the position
estimation is performed by generating an additional high frequency voltage test signal
(or appropriately shaped pulses) in the stator. This forces the flow of high-frequency
currents, the instantaneous value of which depends on the instantaneous inductance. By
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analyzing the current waveforms, one can obtain information about the current position of
the shaft. Generally, two approaches to measuring inductance are used: periodic addition
of a test signal [21,22] and a continuous high-frequency signal [23]. Such methods may
be characterized by 180◦ uncertainty. An example of the first approach is the INFORM
method (Indirect Flux Detection by On-Line Reactance Measurement). This method uses
continuous measurement of phase reactance. Asymmetry resulting in reactance variation
can be caused by motor geometry or magnetic saturation phenomena. In [24], another way
of using the continuous high-frequency excitation voltage is presented in the case of either
a salient or non-salient PMSM. This method is based on the addition of a high-frequency
signal on the d-axis only—of the dq coordinate system associated with the rotor—and the
detection of the appearance of a q-axis component as the position estimation error increases.
In [25], a solution for sensorless PMSM drive was presented to reduce the percentage
of HF voltage with respect to the rated voltage to a few percent. In another, the work
in [26] presents a simulation verification of a sensorless PMSM control concept based on
inductance tracking using high-frequency injection.

The main achievement presented in this paper is the development of a method for
estimating the shaft position at zero speed, using a method based on an analysis shape
of the obtained current hodograph. This shape does not have to be regular. An artificial
neural network (ANN) was used, trained by means of supervised learning. A correct
generalization of the results was obtained. The method used is characterized by the
following features:

• The current hodograph is processed as a point in a multi-dimensional space and not
as a 2D image.

• Several small, unidirectional, shallow artificial neural networks acting on common
data were used.

• The output of the ANNs are scaled.
• The results of the individual networks are aggregated to produce a final value.

The paper is organized as follows. In Section 2, a mathematical model of a PMSM is
discussed. The concept of shaft position estimation based on current hodograph analysis
and the calculation procedure using ANNs are presented in Section 3. Next, the laboratory
bench is described in Section 4. The results are presented in Section 5. Finally, in Section 6
presents the conclusions.

2. Model of a PMSM

The examined PMSM can be modeled using ordinary simplified assumptions: the
rotor has no windings; the flux produced by the rotor is constant; and eddy currents,
saturation, and temperature effects can be ignored. These assumptions are relevant to the
sensorless approach method [10,27–30]. The model of the PMSM using dq-frame rotating
with the rotor can be described as follows:

ud = Rsid + Ld
did
dt
− pωrLqiq , (1)

uq = Rsiq + Lq
diq
dt

+ pωrLdid + pωrΨm , (2)

where ud, uq means the dq axis voltages, respectively; id, iq means dq axis currents; Ld, Lq
means dq axis inductances; Rs means stator resistance; ωr means rotating speed; Ψm means
magnetic flux excited by permanent magnets placed on the rotor; and p means the number
of pole pairs. The relationship describing the electromagnetic torque can be described
as follows:

Te =
3
2
· p

[
Ψm −

(
Lq − Ld

)
id
]
· iq . (3)
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In a case of Lq = Ld this equation can be simplified into

Te =
3
2
· p ·Ψm · iq . (4)

Mechanical part can be described as follows:

Te − Tl = J
dωr

dt
, (5)

where Tl means load torque and J means the total moment of inertia. This simple model
justifies the possibility of using the control structure mentioned in the next section.

3. Position Estimation

In the presented work, a motor shaft position estimation is used for the field-oriented
control (FOC). In general, this method can be treated as the classical control method for
PMSM drives, in which the field orientation determines the spatial vectors of magnetic flux,
current, and voltage [31–33]. The use of field-oriented control makes it possible to achieve
the high dynamic performance of a PMSM-based drive, powered by a PWM inverter. The
applied control strategy uses a stator current control that determines the zero value of the
d-axis quadrature component [32,34].

3.1. The Estimation Concept

In order to estimate the shaft position directly from the hodograph, the following
can be used: with the motor shaft stationary, if the stator is supplied with a symmetrical
three-phase sinusoidal voltage, the hodograph can be drawn using the measured induced
currents. It may be approximately elliptical in shape for a salient motor or IPMSM (Interior
magnets PMSM), and using position one of the axis of the ellipse, one can determine the
position of the motor shaft. In the case of perfect magnetic symmetry of the motor, however,
the current hodograph would be a circle. Fortunately, due to the lack of perfect magnetic
and mechanical symmetry, a non-circle shape can be seen that can be correctly attributed
to the actual shaft position by an artificial neural network. A human being could not catch
this dependence but an artificial neural network could.

In the presented work, the position measurement is carried out by adding a continuous
high-frequency (HF) signal to the reference voltages (Figure 1).

PI INV PMSM

BSF

BPF

uab ref  -  carrier

iab h1 ref

iab h1

iab  -   carrier
iab 

uab ref

Figure 1. General view of the injecting carrier signal excitation scheme for sensorless PMSM as the
quasi 2-dimensional αβ control layers.

The scheme shows part of vector control of a PMSM drive. It realizes the control of
currents in the αβ stationary coordinate system. The current controllers (unit PI) generate
the reference voltages, to which high-frequency sinusoidal voltages were added. The
measured currents are filtered. The current control path uses in a feedback the current
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signal after high-frequency component rejection by means of a band-stop filter (BSF). The
hodograph is determined from the high-frequency component of the current, which is
separated using a band-pass filter (BPF). The additional voltage introduced should be low
enough while the frequency high enough in order to minimize the amount of additional
torque generated and prevent undesirable shaft oscillation. This approach is mainly used
in motors with internal magnets (IPMSM), due to the large differences in inductance in
the d and q axes, which facilitates the determination of the main axis for an ellipse-shaped
hodograph. Another case is that of a surface placed magnets rotor (Surface magnets PMSM
(SPMSM)). As the relative permeability coefficient of permanent magnets is similar to that
of air, the difference in inductance in the direct and quadrature axes can be slight. In that
case, it was assumed that the identification of the proper position is possible, as long as
the hodograph has a different shape for different positions, even if this is small. In a real
machine, due to the presence of mechanical imperfections, it is difficult to achieve perfect
symmetry—the resulting current hodograph will not be circular.

Such types of methods work best at standstill and very low speed range, because at
medium and high speeds, applying a test signal causes visible deformation of the phase
currents, thus deteriorating the quality of torque control.

3.2. The Estimator

An artificial neural network was used as a position estimator. Due to the possibility
of parallel data processing, in the case of hardware implementation, it is characterized by
high information processing speed. The ability to define input-to-output processing for a
transition function that is not available in an explicit form, makes ANN a powerful tool. To
use ANNs to process unknown functions, a learning process using learning sets is required.
ANNs are used in electrical drives to diagnose faults, e.g., using residual evaluation system
and the object model [35], or using highly processed network input signals [36], to increase
efficiency in the drive, e.g., using ANN as current controllers [37], in order to optimal
parameters design [38], or using ANN as speed controller [39]. A probabilistic neural
network can be used for estimation the sine and cosine of the shaft position [40], or a
polynomial neural network for inductance estimation [41].

In the case under consideration, the unknown function that the ANN should learn is
the shape of the hodograph as the input, and a sine and a cosine of the shaft position as the
desired output of the network. A general view of the network structure that was used in
the study is shown in Figure 2.

OUTPUT 
LAYER

HIDDEN 
LAYER

INPUT 
LAYER

I1

I2

I40

O1

O2

Figure 2. General view of used ANN structure.
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The examined network has the following topology: 40 inputs, 3 or 6 or 12 hidden
layer neurons with sigmoid or relu activation function, and 2 output layer neurons with
linear activation function. The network output determines the sine and cosine of the
estimated position. The actual current hodograph (input vector I = [I1, I2 . . . I40]) was
given as input, and two elements vector O = [O1, O2] as output. The first element is the
reference sine and the second the cosine of the shaft position. In order to obtain the current
hodograph, an additional 500 Hz sinusoidal voltage was used in both axes α and β. A single
hodograph frame (ANN input) contains 2× 20 samples (for current axis α and current axis
β, respectively). As a result, a new dataset (new current hodograph) is provided every
2 ms. In general, the hodograph can be interpreted as a two-dimensional shape on a plane.
In the present approach, however, the hodograph is transformed into a one-dimensional
vector (shape 1× 40). The hodograph is, thus, treated as a point in a multi-dimensional
(40-dimensional) space. The obtained measurement data are pre-processed. Input frames
are filtered, scaled, and synchronized. Each data frame has a constant component removed,
and its range of changes is scaled with a common function for both components of the axes
α and β. The input data are scaled to the range ±1. Proper timing is important in the case
of a one-dimensional data vector that has its beginning and an end, and should go to the
ANN’s input in the right order. Synchronization is realized by the circular shift of both
vectors α and β of the hodograph frame. Both axes are rotated by the same unit numbers
to obtain the highest value in the β axis at the start of the data vector. This enables the
correct coordinate order of a 40-dimensional point to be maintained when the HF mode
needs to be switched on. The network training and calculations of the completed network
are performed using Python 3 language and, more specifically, the Keras and TensorFlow
packages. The algorithm of a position estimation consists of the following tasks:

• Recording of high-frequency currents.
• Centering and scaling of the current hodograph.
• Computing the ANN output (sine and cosine of estimated position).
• Scaling the ANN output.
• Improving the estimation.

3.3. Recording of High-Frequency Currents

During a special preliminary investigation, the magnetic circuit of motors was ex-
amined for nonlinearities and saturation impacts. An HF range from 100 Hz to 1 kHz,
and amplitude of current no more than half of the nominal current were chosen. The
investigated motor was supplied from a PWM inverter with HF voltage for each abc phase,
shifted 2

3 π. A low harmless voltage was chosen. This frequency is selected to be as high as
possible above the first harmonic for maximum machine speed for this sensorless mode
of operation, and as low as possible below the inverter carrier frequency. The amplitude
of the HF voltage was selected so that the induced HF current had a low enough value
to cause the least possible shaft vibrations, but its measurement was repeatable—with an
appropriate signal-to-noise ratio. The selected results presented below are carried with
fHF = 500 Hz, voltage amplitude equal 1.6 V, and a resulting current amplitude about 1.1 A.
The second motor acted as a motion drive and provided constant (low) rotation speed.

3.4. Centering and Scaling of the Current Hodograph

The recorded 3-phase currents abc are converted to the stationary αβ coordinate
system. Figure 3 shows a sample set of the recorded HF currents.
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Figure 3. General view of raw data used in the process. (Left): full set #1 of currents in the α-axis and
β-axis, which are used to build the hodograph after preprocessing. (Right): an enlarged fragment of
this set. HF current: f = 500 Hz. Data collected during the slow rotation of the motor shaft. Currents
related to nominal value [pu].

High frequency currents may contain a constant component, e.g., in the case of a
rotating shaft. This is shown in Figure 3 on the left (this is not a shaft position, just
the currents). The enlarged fragment of the current samples is visible on the right. The
constant component is then removed: when all 20 sets of the specified hodograph nodes
{iα j, iβ j} (j = 1, 2, ..., 20) have been collected, the data is centered numerically by shifting,
respectively, in the α and β axes by the mean of the minimum and maximum values in the
given axis. Finally, the current amplitudes are scaled to unit length—both sets α and β have
the same scaling factor.

3.5. Computing the ANN Output

A shallow network was used to create the model. The calculations were made using
the Keras and TensorFlow libraries written in Python 3. The ANN training procedure will
be covered in Section 5. The network operates on previously prepared data: the data is
centered and scaled to the range ±1. The network consists of one hidden layer with a
number of nodes neurons_1W (equal to {3, 6, 12} depending on the test) and an output
layer with two outputs (estimated sine and estimated cosine of the shaft position). This can
be written in the program as

model = Sequential()
model.add(Dense(neurons_1W, input_dim=(2*data_length),

activation=’sigmoid’))
model.add(Dense(2)) .

Using such a small network increases the chances of getting good generalization.
Various activation functions of the hidden layer were tested. These were functions sigmoid:

sigmoid(x) =
1

1 + e−x (6)

and relu:
ReLU(x) = max(x, 0). (7)

The activation function of the output layer was linear:

out(x) = x. (8)

For the sake of the quality of network generalization, the aim was to try to minimize
the number of network nodes. The variable data_length represents the number of nodes
making up the current hodograph (in this case, the number is equal to 20).

3.6. Scaling the ANN Output

The sine and cosine values of the shaft position generated by the trained ANN do
not always result in a vector of length one. Therefore, the paper proposes to modify the
network output. The concept is shown in Figure 4.
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Figure 4. Visualization of the concept of scaling the data generated by ANN.

The method works as follows: the ANN returns the values of ĉos(Θ) and ŝin(Θ),
which determines the point Praw described by the coordinates {ĉos(Θ), ŝin(Θ)}. It is
assumed that an angle estimated by the ANN is correct. Vector Praw is then scaled to the
unit length—to the vector Psc (sc—scaled). Based on the Psc vector, the corrected sine and
cosine values of the estimated position Θ̂ can be determined.

3.7. Improving the Estimation

The trained network operates with a certain accuracy which cannot be improved
with learning time due to the adverse effect of overfitting. In addition, due to the fact
that the measurement data may include outliers and extreme outliers, and as the network
is supposed to operate reliably on the available measurement quantities, it was decided
to improve the quality of the network operation. Due to the random selection of initial
network weights and, as a result, the different weight values obtained in the learning
process, as well as due to the different set of training data at every training session, each
trained network generates slightly different answers for the same input data. It was
assumed that based on a group of responses from different networks processing the same
data, a globally better quality of estimation can be obtained. Better quality was defined
as a reduction in the number of outliers and a reduction in the mean error. The solution
turned out to be a network of networks. Using the initial scaling treatment of the ANN
output (Section 3.6), the reference method of the estimation process is shown in Figure
5a. The recorded data (Measurement block) are centered and scaled (Input scaling block)
and then processed by the ANN. The network response, i.e., the estimated sine and cosine
of the shaft position, are scaled to a unit length in the Output scaling block (output values
̂cossc(Θ) and ̂sinsc(Θ)). In the case of the modified estimator (Figure 5b), centered and

scaled data are fed to the inputs of the network group (the same data to the inputs of
all networks). These networks were trained on the same training sets. Each network’s
response is scaled to unit length and then the total response is determined (Mean block).
In the case of the presented solution, the best results were achieved by averaging the
responses of all networks.
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(a)

(b)
Figure 5. Visualization of the concept of estimation improvement: (a) Base system using a single ANN. (b) Modification
based on using multiple ANNs. In order to get a clear picture, only three ANNs have been used here.

4. Laboratory Stand

In order to experimentally verify the proposed estimation method, a laboratory bench
was built. The setup allows double-sided operation within the desired speed and torque,
and a few types of control. Control methods could be chosen with: pure PWM for each
phase, SVM for 3-phase wiring, current control for each phase and αβ reference frame,
vector dq current control, torque control with or without a flux weakening region. For the
results presented below the authors decided to treat one motor as the object of investigation
and a second one as a low-speed driver. The setup is presented in Figure 6.

Figure 6. General view of the key components of the laboratory bench.
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It consists of a pair of surface-mounted magnet synchronous motors, supplied sepa-
rately from the three phase power MOSFET inverters. The control hardware consists of
two main parts: a set of power electronics boards and real-time MCU. Texas Instruments
Booster Packs Evaluation modules BOOSTXL-DRV8305 are used as power converters.
They are complete 3-phase key independent control converters for small voltage oper-
ation, under 45 V with high current 20 A peak, including short circuit, thermal, shoot-
through, and undervoltage protection. A Texas Instruments launchpad development kit
LAUNCHXL-F28379D was used. This LaunchPad is based on a superset dual-core, fast
real-time co-processor Control Law Accelerator: F28379D device with onboard JTAG and
USB. Control software was designed to experiment on fully independent control of both
motors. The main structure of the used software was divided into two parts suitable for
two independent motor control systems. The first unit was treated as an experimental
structure for the presented algorithm testing, and the second as a load or shaft moving
force. Few different structures were successfully implemented and tested. The presented
programming control structure made it possible to build different structures, for example: a
field-oriented motor controlled with high speed CLA current control, and a low-speed field
voltage motor with high-frequency sinusoidal injection. The developed software structure
provided any type of operation for both motors independently.

The mechanical part of the laboratory setup consist of twin low-voltage synchronous 3-
phase PMSMs, inflexible coupling clip together with an aluminum frame. A Teknic M-2310P-
LN-04K industrial grade NEMA 23 pair of motors characterized by fully sintered power
materials, high-temperature Neodymium-Iron-Boron magnets, and an FEA (Finite Element
Analysis) optimized stator is used. These properties provide natural PMSM characteristics
under low voltage supply. Several special innovations were combined to provide more
continuous motor performance. Oversize bearing reduced shaft friction influence. The
both motors are also equipped with a 4000-pulses-per-revolution incremental encoders.

Catalogue of motor data:
Rs = 0.72 Ω
Ls = 0.40 mH
Ψ = 0.0443 V · s/rad
poles = 8
Vmax = 40 V
ωn = 628 rad/s
Tn = 0.274 Nm
In = 7.1 A .

5. Results

As part of this study, the following experiments were carried out. The values of HF
currents for shaft rotations in several independent sequences were recorded. At the same
time, the position of the shaft (a sine and a cosine of the position) was recorded in order to
validate the results. This was carried out with pauses between the individual data recording
sequences with the purpose of diversifying the initial conditions of data recording, e.g.,
for different values of machine temperature, different initial shaft positions etc. Then,
network training studies were carried out in various configurations, including changes in
the training set, the number of neurons in hidden layers, and activation functions. Finally,
using a trained network, position estimation tests were carried out on data for which the
network was not trained. The illustrations shown in this section are experimental results
based on laboratory bench measurements.

5.1. Input Data

The example sets of recorded and pre-processed data for the examined SPMSM are
shown in Figure 7. The data is already processed, which consists in removing the constant
component and scaling.
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(a) (b)
Figure 7. Experiment: the current hodograph for the examined machine. (a) Three frames every 120 degrees, normalized
current. (b) 3D hodograph for data recorded in the laboratory. Full data record, some of which are shown in Figure 7a.

To keep the image clear, only three frames are drawn (Figure 7a). It can be seen that
for three such different shaft positions (rotated every 120 degrees), it is difficult to see the
relationship between the shape of the hodograph and the position of the shaft. The path is
not closed but has a beginning and an end. This is due to data synchronization of the input
vector for ANN processing. The 3D visualization of recorded current hodographs is shown
in Figure 7b. In the vertical axis, the angle changes in the range of one full revolution of the
motor shaft (electrical angle).

5.2. ANN Calculation

The ANN training was carried out using the Python 3 language. Due to the nature
of this task, i.e., optimization, use of a SPMD (Single Program, Multiple Data) approach
enables easy parallelization of calculations using the multiprocessing package. This pack-
age allows one to commission many independent optimization tasks at one time. The key
instruction, e.g.,

multiprocessing.Pool

distributes the tasks to available processors. In order to carry out the network training
process and verify its performance, ten datasets were prepared. Each one includes at least
one complete electrical revolution of the motor shaft. These data were combined into a
series of training samples in several combinations, e.g.,

big_set#1 = set#1 + set#2 + ,..., + set#10
big_set#2 = set#10 + set#9 + ,..., + set#1

and other randomly mixed sets. In order to determine roughly the network training param-
eters, such as the number of learning epochs, the selection of the best training data vector
sequence (big_set# vectors), and the determination of the batch_size and learning_rate pa-
rameters, several hundred trial training series were carried out. Repeatedly performed
tests showed that the number of positively qualified training results does not depend
significantly on the training set. It may be proof of correctly performed data registration,
without a large amount of outliers (input outliers were not rejected/modified in the data
preparation process). Then, each big_set was divided into two parts: training and testing
(Figure 8).
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Figure 8. Division of data into training, validation, and testing.

Thus, 510 sets of samples (every sample is understood as a current hodograph) were
used as a training set. It was then divided into two halves with randomly selected samples:
a training and a validation set. The remaining 510 samples were not used in the training
and validation process. They were only used in the finished ANN tests (part of Figure 8
marked as testing). Although Figure 8 shows the data of the training sets, the results of the
trained network are also shown. The meaning of these quantities will be explained in more
detail in the following figures. The ANN tests performed showed that the best results were
obtained when using the sigmoid activation function. Dropout rate was tested in the range
0–0.5; however, for the presented task, the network worked best without the dropout layer.
The most effective network contained six neurons in the hidden layer, although there were
well-functioning networks for three neurons in the hidden layer. The worst quality indexes
were obtained for 12 neurons in the hidden layer. Figure 9 shows the results that confirm
the correct operation of the ANN in the case of a single rotation of the motor shaft.

The results of the operation of a single network (selected ANN#1—one of the com-
ponents of the multiple ANN) and the results of multiple ANNs, the superior network
operation, are presented. A complete dataset over a single test cycle contains 102 samples.
One complete revolution equals 80 samples (80 current hodographs)—meaning that more
than one rotation is stored. It is organized in this way due to memory usage of the hardware.
The five datasets were used to train the network, while the following five were used for
testing. The sine and cosine values marked with meas are training and measurement data.
The values marked with est are the ANN’s output—estimated position. It is visible that the
vector determined by the estimated values of the position’s trigonometric functions is not
of unit length. Only after processing these quantities—scaling—do the values of estimated
sines and cosines become values lying on a unit circle. Those values are marked as scaled.
In the case of multiple ANNs, a scaled_mean denotes the ANN’s output, after scaling and
averaging. It can be seen that the extreme outliers, although visible in the responses of the
component networks, are clearly smaller in the response of the multiple ANN (Figure 9).
This phenomenon is more visible in Figure 10 showing the error values. These figures
show the error that is computed as the larger value of the sine or cosine estimation errors.
The waveforms in Figure 10 correspond to those in Figure 9. It can be seen that the extreme
outlier (sample #20) from Figure 10a is reduced (Figure 10b). Furthermore, other outliers
(e.g., samples #52, #63) are significantly reduced. This applies in principle to the rest of the
samples. The presented data was described with the value of the quality index. This index
is determined as the sum of squared values of the error for the position estimation for all
n samples:

Q =
n

∑
i=1

(
sin(Θ)i − ̂sinsc(Θ)i

)2
+

(
cos(Θ)i − ̂cossc(Θ)i

)2
(9)

where sin(Θ) and cos(Θ) are the sine and cosine of the real (measured) position, ̂sinsc(Θ)

and ̂cossc(Θ) are estimated and scaled (Figure 4) values of the position’s sine and cosine.
There is a clear reduction in the quality index: Q = 1.15 vs Q = 0.81, approximately 30%.
The analysis was then repeated for all available samples for the untrained data (in the
dataset for the combined data from several shaft revolutions). Now, a complete dataset
over a few test cycles contains 510 samples. Figure 11 shows the results that confirm the
correct operation of the ANN in the case of multiple shaft rotations of the motor shaft.
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Figure 9. Single shaft rotation (electric angle), sine, and cosine of shaft position. (a) Using a single ANN. (b) Using multiple
ANNs. Visible (not labeled) scaled responses of all used ANNs.
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Figure 10. Single shaft rotation (electric angle), sine, and cosine estimation error. (a) Using a single ANN. (b) Using
multiple ANNs.

The description of signals in Figure 11 corresponds to those in Figure 9. For a larger
range of recorded current hodographs, it is clear that in the presence of extreme outliers,
the multi-network enables the reduction of the position estimation error. Figure 11 shows
how in some datasets containing extreme outliers, the unscaled responses of networks
may contain errors, which can nevertheless be significantly reduced. This is achieved by
scaling and using multiple networks that process the same input. Figure 12 shows the error
values. The waveforms in Figure 12 correspond to those in Figure 11. One can observe
extreme outlier reduction for multiple networks. At this stage of the research, the reduction
of (ANN) input outliers was not an issue. Furthermore, the quality index was significantly
reduced, from Q = 18.14 to Q = 14.21, i.e., by nearly 22%. Summarizing the research
carried out, the distribution of obtained data (estimator outputs) was displayed. Figure 13
shows the spread and centers of the obtained datasets using boxplot.
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Figure 11. Multiple shaft rotations (electric angle), sine, and cosine of shaft position. (a) Using a single ANN. (b) Using
multiple ANNs. It can be seen that in this case the estimated points lie closer to the corresponding measured values.

0 100 200 300 400 500
Q= 18.14  Samples [-]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a)

0 100 200 300 400 500
Q= 14.21  Samples [-]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b)
Figure 12. Multiple shaft rotations (electric angle), sine, and cosine estimation error. (a) Using a single ANN. (b) Using
multiple ANNs.

The results obtained for a selected (single) ANN and a set of cooperating networks
(Multiple ANN) are presented. Figure 13a shows a direct comparison of Single ANN
vs. Multiple ANN in the case of a single shaft rotation, with reference to the data corre-
sponding to those in Figure 9. Figure 13b shows a direct comparison of Single ANN vs.
Multiple ANN for all available shaft rotation data, with reference to the data corresponding
to those in Figure 11. Figure 13c shows the enlarged area in Figure 13b. In all cases, one
can notice a reduction in outliers for the Multiple ANN estimator.
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Figure 13. Experimental results—open-loop system verification, boxplot view of estimation error.
(a) In case of a single rotation. (b) In case of multiple rotations. (c) Enlarged view from Figure 13b.

Table 1 presents a summary of the quality index values for individual component
ANNs and for the operation of the entire Multiple ANN.

Table 1. Sample results for the presented set of trained networks.

ANN#1 ANN#2 ANN#3 ANN#4 Multi-ANN

Quality index 18.1 19.2 17.2 18.8 14.2
Max. error 2 1.05 1.78 1.44 1.52

The Quality index is defined by Formula (9). The Max. error indicates extreme outliers
(Figure 12). All the errors are recorded as the greater error value from both the sine and
cosine estimations for the specified position. The resulting data can be interpreted as the
synergy result of a sample set of four trained networks, analyzed for all available data, for



Energies 2021, 14, 8134 15 of 17

which the network was not trained. It can be seen that the quality index for cooperating
networks has a value significantly lower (Q = 14.2) than the lowest quality index value
for networks operating individually (Q = 17.2). It is worth noticing that to achieve such a
good effect, the network response errors should be canceled out. This requires checking
the various combinations of the ANN sets obtained during the training.

6. Conclusions

This paper provides a method for estimating the shaft position for SPMSM drive
in the case of a standstill or very low speed operation. The proposed method includes
using ANNs to estimate the position of the motor shaft through high-frequency currents
induced by an additional test voltage. Despite the assumed magnetically symmetrical
structure of the machine, due to mechanical imperfections, the ANN has the ability to
recognize the shape of the current hodograph and associate it with the position of the shaft.
Such a system can also work with a salient motor. The main advantage of such a physical
position estimation method is the ability to get the response almost immediately without a
transients, as is for example the case with position estimation using observers, who reach a
steady state after a certain amount of time.

In terms of linking the shape of the current hodograph with the values of the sine and
cosine of the shaft position, the most effective network contained six neurons in the hidden
layer, with sigmoid activation function and no dropout.

A set of ANNs that perform calculations on the basis of the same input data was
used as an estimator. Since each network has been trained independently, they generate
slightly different responses for the same input signals. Proper processing of the set of these
responses (in this case, scaling and mean) enables the quality of the position estimation to
be improved. Using such an estimator, an improvement in the quality index was achieved
approximately 22% in the group of all test data.

The amplitude and frequency of the additional HF voltage should be appropriately
selected so as not to induce excessive currents and not to excite vibrations of the motor shaft.
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