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Abstract: An inertial response emulated control strategy of doubly-fed induction generators (DFIGs)
is able to arrest their frequency decline following a severe frequency event. Nevertheless, the control
coefficient is unchanged, so as to limit the benefit potentiality of improving the inertial response
capability for various disturbances and provide less of a benefit for boosting the frequency nadir. This
paper addresses an enhanced inertial response emulated control scheme for a DFIG to improve the
maximum frequency deviation and maximum rate of change of frequency for various disturbances.
To this end, the control coefficient is coupled with the system frequency deviation so as to regulate
the control coefficient according to the system frequency deviation (i.e., sizes of the disturbance).
Results clearly indicate that the proposed inertial response emulated control strategy provides
better performance in terms of improving the maximum rate of change of frequency and maximum
frequency deviation under various sizes of disturbance and random wind speed conditions.

Keywords: wind generation; power system control; inertial response; DFIG; wind generation

1. Introduction

The wind generation has been continuously growing to reduce the issues of air pol-
lutants and energy shortages [1,2]. The most dominating type of wind power generator
is the variable-speed wind turbine generators which includes full-scale converters-based
wind turbine generators and doubly-fed induction generators (DFIGs) due to the advanced
control advantages of the power electronic devices [3,4]. Nevertheless, the interfaced
electronic devices enable the variable-speed wind turbine generators to provide no fre-
quency regulation response to the electric power grid [5,6]. Hence, the system inertia
and frequency regulation capability become worse, such that the system frequency nadir
and maximum rate of change of system frequency (df/dt, ROCOF) become severe [7,8].
These phenomena become severe with the increasing wind penetrations. Furthermore, the
maximum frequency deviation and df/dt are the important indices which can trigger the
relays of load shedding [9].

At rated wind speed condition, the available rotor rotating energy from the DFIG is
more than five times that of a traditional generator [10]. Therefore, with the increasing
wind power penetrations, DFIGs are required to actively undertake frequency regulation
so as to reduce the possibility of activations of the relays [11,12].

As studied in [13], the inertial response emulated control scheme, droop control
scheme, and fixed trajectory control scheme can be used to boost the frequency support
capability. Inertial response emulated control scheme and droop control scheme can
imitate the traditional synchronous generator’s inertial response and primary frequency
response [14,15]. The imitated inertial and primary response capabilities are strongly
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dependent on the control coefficient [15]. The capability of fixed trajectory control scheme
mainly depends on the pre-defined reference function of the power [16,17].

Since the focus of this research lies on an inertial response emulated control scheme,
the droop control scheme and fixed trajectory control scheme are not discussed. To boost
the inertial response stability, the authors of [18,19] addressed employing the df/dt and max-
imum df/dt for achieving the inertial response emulated control of the DFIG, respectively.
The unchanged control coefficient of the inertial response emulated control scheme restricts
the benefit of improving the inertial response capability. It also has a large possibility for
causing over-deceleration (stalling). In [20], the benefits of an inertial response emulated
control scheme from the DFIG are investigated with different control gains. The inertial
response emulated control scheme is dominated at the early stage of a disturbance so as to
improve the maximum df/dt, but provide less benefits of improving the frequency nadir,
especially for a severe frequency disturbance [21].

This paper addresses an enhanced inertial response emulated control scheme for a
DFIG to enhance the maximum df/dt and frequency deviation for various disturbances. To
this end, the control coefficient is coupled with the system frequency deviation so as to
regulate the control coefficient according to the system frequency deviation (sizes of the
disturbance). The benefits of the proposed inertial response emulated control scheme are
indicated with various disturbances and speed conditions.

2. Inertia and Primary Frequency Responses of Traditional Generators

Figure 1 displays frequency responses, including inertia response, primary frequency
response, and secondary frequency response, in a time sequence when a power imbalance
occurs in the power system. At first, the system frequency declines due to the power
imbalance (the process is named inertia response) [22,23]. Then, the system frequency
is arrested and stabilizes to a quasi-steady state (contributed by the primary frequency
response as shown in Figure 1). Afterwards, the system frequency deviation is removed by
the secondary frequency response, as shown in Figure 1. Contributions for the inertia are
as follows:

∆Pinertia = 2Hsys × fsys ×
d fsys

dt
(1)

∆Pprimary = −K× ( fsys − fnom) (2)

where fsys and fnom represent the system frequency and nominal frequency, respectively.
Hsys and K represent the system inertia constant and equivalent droop setting of traditional
synchronous generators, respectively. ∆Pinertial and ∆Pprimary represent output powers of
the inertia response and primary frequency response, respectively.
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3. Modeling of a DFIG

The mechanical power captured by a DFIG from the flowing air (Pm) can be expressed as:

Pm = 0.5ρSv3
wcP (3)

cP(λ, β) = 0.645
{

0.00912λ +
−5− 0.4(2.5 + β) + 116λi

e21λi

}
(4)

λi =
1

λ + 0.08(2.5 + β)
− 0.035

1 + (2.5 + β)3 (5)

λ =
ωrR
vw

(6)

where ρ, S, vw, and cp mean the air density, swept area, wind speed, and power coefficient,
respectively. ωr and R are the rotor angular velocity and blade length, respectively.

As in Figure 2, a pitch angel, rotor-side converter (RSC), and grid-side converter
(GSC) controllers compose the control system of the DFIG. The pitch controller focuses
on preventing the excessive rotor speed and enable deloaded operating according to the
reference from upper controller. RSC controller keeps the stator voltage at reference and
adjusts the active power injected into the grid, The DC-link voltage is preserved at reference
using GSC controller [24].

Energies 2021, 14, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 2. Typical configuration of a DFIG. 

As in [25], the reference expression for MPPT operation is 

2 3 3 3
, max

1 ( ) 0.512
2

r
MPPT P g r r

opt

ω RP c ρπR k ω ω
λ

= = =  (7)

where cP, max and λopt are the maximum value of cP and optimal tip-speed ratio, respectively. 

4. Proposed Adaptive Inertial Response Emulated Scheme of a DFIG 
Figure 3 illustrates the control concept of the inertial response emulated control 

scheme of the DFIG. Once the system frequency exceeds the deadband, the control mode 
of the DFIG switches from the MPPT control mode to inertial response emulated control 
mode. The active power reference for the inertial response emulated control scheme (Pref), 
which consists of the reference for the MPPT operation (top control loop, which is a cube 
function of the rotor speed) and the output of inertial response emulated control loop 
(bottom control loop, which is calculated by control coefficient and df/dt). Hence, the ben-
efit of boosting the inertial response capability of the DFIG critically depends on the con-
trol coefficient. 

Δ
×

ref MPPT inertial

MPPT

P = P + P
= P + AG df / dt

  (8)

2= DFIGAG H   (9)

where PMPPT is the output of MPPT operation. ΔPinertial is the output of the inertial response 
emulated control loop. AG is the control coefficient. 

Figure 2. Typical configuration of a DFIG.

As in [25], the reference expression for MPPT operation is

PMPPT =
1
2

cP,maxρπR2(
ωrR
λopt

)
3
= kgω3

r = 0.512ω3
r (7)

where cP, max and λopt are the maximum value of cP and optimal tip-speed ratio, respectively.

4. Proposed Adaptive Inertial Response Emulated Scheme of a DFIG

Figure 3 illustrates the control concept of the inertial response emulated control scheme
of the DFIG. Once the system frequency exceeds the deadband, the control mode of the
DFIG switches from the MPPT control mode to inertial response emulated control mode.
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The active power reference for the inertial response emulated control scheme (Pref), which
consists of the reference for the MPPT operation (top control loop, which is a cube function
of the rotor speed) and the output of inertial response emulated control loop (bottom control
loop, which is calculated by control coefficient and df/dt). Hence, the benefit of boosting the
inertial response capability of the DFIG critically depends on the control coefficient.

Pre f = PMPPT + ∆Pinertial
= PMPPT + AG× d f /dt

(8)

AG = 2HDFIG (9)

where PMPPT is the output of MPPT operation. ∆Pinertial is the output of the inertial response
emulated control loop. AG is the control coefficient.
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As in [18], the control coefficient of the traditional inertial response emulated control
scheme is unchanged, while the rotor kinetic energy of the DFIG is different so that the
benefits of improving the maximum system frequency deviation and df/dt are restricted
while the rotating kinetic energy utilized is insufficient (even though the DFIG has adequate
rotating kinetic energies). In addition, the inertial response emulated control scheme is
dominated during the beginning stage of the disturbance and provides less of a benefit for
improving the maximum frequency deviation due to the decreasing df/dt. This research
suggests an adaptive inertial response emulated control scheme of a DFIG to further reduce
the maximum system frequency deviation and df/dt effectively for various disturbances.
To this end, the control coefficient is coupled with the system frequency deviation so
as to regulate the control coefficient according to the system frequency deviation, as
represented in:

AG(∆ f ) = 2× (HDFIG + k1 × |∆ f |k2) (10)

where k1 is the inertia time constant control factor and is able to regulate the benefit of
improving the inertial response capability of the DFIG. k2 is the order of the power function
of the frequency deviation to achieve various increasing rate of the control coefficient.

As shown in Figure 3, to implement the proposed scheme, an additional control loop
is employed. The input signals are frequency deviation and df/dt. The former is used to
calculate the various inertial constant; the latter focuses on calculating the additional power
with the derived various inertial constant.

Figure 4 illustrates the comparisons of the emulated inertia constant and control
coefficients of the proposed scheme when k2 = 1, k2 = 2, and k2 = 3. It is clearly indicated
that the emulated inertial time and control coefficient decrease with an increasing of the k2
due to the fact that the frequency deviation is smaller than one. In addition, the increasing
rate of the emulated inertial time and control coefficient in the case of k2 = 1 is more than in
the other cases. Thus, the incremental power for the proposed scheme is generated from
the DFIG to improve the inertia response capability.
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response are set to 5% and 0.033 Hz, respectively. No secondary frequency response is 
included in the traditional synchronous generators. The inertia time constants for 100 
MVA-SGs and 200 MVA-SGs are 4.0 s and 4.3 s, respectively [26]. 

Figure 4. Comparison of inertia constant and control coefficient for the proposed inertial response
emulated scheme (k2 = 1, k2 = 2, k2 = 3).

Figure 5 displays the comparisons of the emulated inertia constant and control coeffi-
cients of the proposed (k2 = 1) and conventional inertial response emulated control schemes.
The control gain of the conventional scheme is irrespective of the disturbance sizes (various
frequency deviations). This is the reason that the benefit of improving inertial response
capability is limited. The emulated inertia constant and control coefficient of the proposed
inertial response emulated control scheme is a function of the frequency deviation (see
(10)), which increases with the frequency deviation. In addition, the difference of them
between both inertial response emulated control schemes becomes large so as to inject
more power to the power grid to compensate for the power imbalance. As a result, the
proposed inertial response emulated scheme is adaptive to various disturbances (various
frequency deviations).
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5. Model System

To verify the efficacy of the proposed inertial response emulated control scheme, three
cases with various sizes of disturbance and wind speed conditions are carried out using
the model system illustrated in Figure 6. The model system comprises an aggregated DFIG-
based wind farm, four traditional synchronous generators, and static load. As disturbances,
SG4 is tripped out from the power grid at 40 s.
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To model an electric power system that has a low ramping capacity, each of the
traditional synchronous generators is equipped with IEEEG1 steam governor model and
IEEE X1 exciter model. The control coefficient and deadband for the primary frequency
response are set to 5% and 0.033 Hz, respectively. No secondary frequency response
is included in the traditional synchronous generators. The inertia time constants for
100 MVA-SGs and 200 MVA-SGs are 4.0 s and 4.3 s, respectively [26].

The performance of the proposed inertial response emulated control scheme with vari-
ous disturbances (80 MW for Case 1, 120 MW for Cases 2 and 3) and wind speed conditions
(fixed wind speed conditions for Cases 1 and 2, Random wind speed conditions for Case 3)
is investigated. The performance of the proposed adaptive inertial response emulated
control scheme (k2 = 1) is compared to that of MPPT operation and the inertial response
emulated control scheme with unchanged control coefficient (conventional scheme), as
in [13]. Figures 7–9 display the comparison results for all cases.
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5.1. Case1: Wind Speed of 9.0 m/s, Disturbance of 70 MW

In the conventional inertial response emulated control scheme, the frequency nadir
and maximum df/dt are 59.364 Hz and −0.377 Hz/s, respectively, which are more than
those of the MPPT operation by 0.017 Hz and −0.095 Hz/s, respectively (see Figure 7a,e).
The reason is that the conventional inertial response emulated control scheme with the
unchanged inertia constant can provide a certain amount of active power to the gird
(see Figure 7b). In the proposed adaptive inertial response emulated control scheme, the
frequency nadir and maximum df/dt are 59.415 Hz and −0.338 Hz/s, respectively (see
Figure 7a,e). They are better than those of the conventional inertial response emulated
control scheme by 0.051 Hz and 0.039 Hz/s, respectively, since more active power is injected
to the grid before the frequency nadir due to the variable inertia constant proposed in (10),
as shown in Figure 7a,b.

As shown in Figure 7b,d, due to the control coefficient of the proposed inertial response
emulated control scheme, which is coupled with the frequency deviation, the auxiliary
active power is more than that of the conventional inertial response emulated control
scheme well as the output power. This is the reason that the inertial response capability of
the proposed inertial response emulated control scheme is better than conventional inertial
response emulated control scheme.
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5.2. Case 2: Wind Speed of 9.0 m/s, Disturbance of 110 MW

In this case, a severe disturbance is employed to investigate the benefit of the proposed
inertial response emulated control scheme.

In the proposed adaptive inertial response emulated control scheme, the frequency
nadir and maximum df/dt are 59.080 Hz and −0.532 Hz/s, respectively (see Figure 8a,e).
They are better than those of the conventional inertial response emulated control scheme
by 0.113 Hz and −0.073 Hz/s, respectively since more active power is injected to the grid
before the frequency nadir due to the variable inertia constant proposed in (10), as shown
in Figure 8b.

In addition, due to the severe disturbance, the maximum frequency deviation and
maximum df/dt for all control schemes are less than those of Case 1. The improvements of
the maximum frequency deviation and maximum df/dt of the proposed inertial response
emulated control scheme are better than Case 1. This is due to more active power injection
from the DFIG caused by the increasing df/dt. As shown in Figures 7c and 8c, since the large
control coefficient is calculated and the frequency deviation is increasing, the reduction of
this case is more than that of Case 1.

5.3. Case 3: Random Wind Condition, Disturbance of 110 MW

To investigate the benefit of the proposed inertial response emulated scheme with a
random wind speed condition, the random wind condition is employed (see Figure 9a)
while the disturbance is same as Case 2. In the proposed adaptive inertial response
emulated control scheme, the frequency nadir and maximum df/dt are 59.074 Hz and
−0.533 Hz/s, respectively (see Figure 9b,e). They are better than those of the conventional
inertial response emulated control scheme by 0.119 Hz and 0.074 Hz/s, respectively, due to
the more power injection (see Figure 9b,c).

In addition, due to random wind speed conditions, the maximum frequency deviation
and maximum df/dt for all control schemes are slightly less than those of Case 2. This is due
to slightly decreasing wind speed, as shown in Figure 9a. Table 1 shows the comparison
indices including frequency nadirs and maximum ROCOFs for all cases.

Table 1. Comparison indices including frequency nadirs and maximum ROCOFs for all cases.

Title Schemes Case 1 Case 2 Case 3

Frequency nadir (Hz)
Proposed 59.415 59.080 59.074

Conventional 59.364 58.967 58.955
MPPT 59.347 58.939 58.925

Maximum ROCOF (Hz/s)
Proposed −0.338 −0.532 −0.533

Conventional −0.377 −0.605 −0.607
MPPT −0.402 −0.645 −0.646

Simulation results of above three cases clearly indicate that the proposed inertial
response emulated control scheme can reduce the maximum df/dt and heighten the fre-
quency nadir effectively under various disturbances and wind speed conditions. As the
increasing sizes of disturbance, the df/dt and frequency deviation become large so that the
contribution for improving the inertial response capability. Thus, the proposed inertial
response emulated control scheme is adaptive to the sizes of disturbance.

6. Conclusions

In this paper, an adaptive inertial response emulated control strategy is proposed to
improve the maximum frequency deviation and df/dt. To address this, the control coefficient
is coupled with the system frequency deviation so as to regulate the control coefficient
according to the variation of the system frequency deviation. The performances of the
proposed inertial response emulated control strategy were verified with various sizes of
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disturbance and wind speed conditions using EMTP-RV, and the contributions of this
strategy are as follows:

(1) The proposed inertia constant is coupled with the system frequency deviation. Thus,
the proposed inertia control scheme can provide various inertial response capability
during disturbance according to the frequency deviation.

(2) Under different disturbances, the DFIG implemented with proposed scheme can
generate more power to support the system to improve the inertial response capability.

Simulation results clearly indicate that the proposed inertial response emulated strat-
egy shows better performances, especially in a serve frequency event and random wind
speed conditions.
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