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Abstract: This paper presents an application for the monitoring of leaks in flood embankments by
reconstructing images in electrical tomography using logistic regression machine learning methods
with elastic net regularisation, PCA and wave preprocessing. The main advantage of this solution is
to obtain a more accurate spatial conductivity distribution inside the studied object. The described
method assumes a learning system consisting of multiple equations working in parallel, where each
equation creates a single point in the output image. This enables the efficient reconstruction of spatial
images. The research focused on preparing, developing, and comparing algorithms and models
for data analysis and reconstruction using a proprietary electrical tomography solution. A reliable
measurement solution with sensors and machine learning methods makes it possible to analyse
damage and leaks, leading to effective information and the eventual prevention of risks. The applied
methods enable the improved resolution of the reconstructed images and the possibility to obtain
them in real-time, which is their distinguishing feature compared to other methods. The use of
electrical tomography in combination with specific methods for image reconstruction allows for an
accurate spatial assessment of leaks and damage to dikes.

Keywords: electrical tomography; sensors; machine learning; PCA; elastic net; wave preprocessing;
image reconstruction

1. Introduction

Floods cause enormous damage, and are the cause of many tragedies. Therefore, the
monitoring of flood defences is important for the safety of people and the environment.
However, the methods used to identify cracks and seepage in dikes visually are insufficient.
A dedicated monitoring system should be able to test dikes for seepage.

There are several methods which are used to analyze flood embankments. Table 1
shows the main advantages and disadvantages of each method. Geophysical methods
are used in environmental studies to image objects [1]. They are characterized by their
non-invasive character and the possibility of rapid imaging in soil. The GPR radar method
is based on the waves passing through the object and allowing the analysis of their propa-
gation through the analysis of the reflected signal, by which changes in the structure of
the investigated medium can be observed [2]. Another method is thermography, which
uses the phenomenon of the non-contact detection of electromagnetic radiation in the
mid-infrared band. By analizing thermal images at different time intervals, changes in
flood weights can be detected [3]. Another type of method is based on the analysis of
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the propagation of the generated electric current in the studied medium. This solution
determines changes in the physical parameters of the tested object (resistivity). Finally,
electrical resistivity tomography (ERT) [4–6] is used to study shafts. The resistivity to-
mography method consists of placing the measuring electrodes along the profile line at
equal distances. Resistivity tomography is a technique which is often used for the imaging
of geological soil properties. The electrical properties of soil are strongly influenced by
such hydrological properties of rocks and soils as porosity and water saturation. Diffuse
optical sensing [7–12], where optical fibres are placed at the bottom of the embankment,
is also used for the monitoring of dikes. This use of sensors allows the reconstruction of
temperature and strain profiles. However, it should be noted that distinguishing seepage
in the obtained temperature data from terrain anomalies within earth embankments is
still a difficult task. It should also be mentioned that fibre optic sensors require physical
contact with the seepage material. Therefore, proper installation can become an invasive
and challenging issue, especially when using this technology to monitor existing levees.
However, fibre optics can be a very efficient and cost-effective solution for the monitoring
of long stretches of new embankments where fibre optics can be easily installed within the
embankment.

Table 1. Main advantages and disadvantages of the different methods used in the study of dikes.

Advantages Disadvantages

Point measurements
Simple solution.

Low costs.
Constant monitoring.

No spatial analysis of the
study site.
Invasive.

Thermography

Ability to quickly analyze
the external shaft.

Low cost.
Non-invasive.

No information on damage,
internal seepage.

Unit measurements.

Geophysical methods Large area analysis/
Non-invasive.

Low efficiency in testing for
leakage and shaft saturation.

Ground penetrating radar

Quick and easy
measurements.

Low costs.
Non-invasive.

Proper development of
radarograms is very

complicated.

Optical methods
Ability to analyze the dike

along its course.
Continuous monitoring.

No information on area
changes.

Electrical Resistance Tomography
device

Ability to analyze 2D/3D
parts of the shaft with the

ERT device.
Non-invasive.

Using only built-in
measurement and

reconstruction methods.
Unit measurements.

Distributed electrical impedance
tomography system

Area ability analyze any
portion of the levee or all of

it through a distributed
cyber-physical system.

Continuous monitoring.
Non-invasive.

High costs.

The Electrical Impedance Tomography (EIT) method enables the analysis of cracks
and seepage [13] by taking measurements reconstructing them appropriately in the form
of an image [14–17]. The monitoring of dikes, levees, dams, and floodwalls is a key process
affecting the maintenance and reliability of these structures due to catastrophic effects and
high possible damage costs [18]. The continuous and multi-level control of the technical
condition of embankments is costly. Therefore, there is a great need to replace traditional
observation methods with cyber-physical systems, in which impedance tomography (EIT)
plays a key role [18–21]. The disadvantage of the commonly used solutions is the point
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measurement [22]. The most common cause of damage to shafts is water that penetrates
through seepage and leaks. With the EIT implemented in cyber-physical monitoring
systems, it is possible to obtain a cross-sectional view of the dike interior [23,24]. The
image quality and resolution are sufficient to detect water-penetrated areas [25]. Early
information about hazards helps to prevent severe damage. Despite significant advances
in dike design and construction, unexpected events may occur. Therefore, designing an
economical and reliable device to monitor the condition of dikes or flood-control reservoirs
is crucial to prevent the devastating effects of flooding.

In tomographic systems, the image quality and its parameters—model geometry,
spatial resolution, number of sensors, discretization, and reconstruction method—are
important factors. Different deterministic and machine learning methods are used to
solve inverse problems depending on the tomographic technique used. The goal of these
methods is to obtain the expected solution quickly and with a good image reconstruction
quality. Electrical impedance tomography has a relatively low image resolution. How-
ever, in the developed methods, the resolution is sufficient for seepage analysis or shaft
condition monitoring.

The motivation for the research was to develop a distributed system to analyze dikes
by spatially analyzing their condition in real-time. The main objective was to develop
a comprehensive solution consisting of a measurement device, measurement electrodes,
algorithms to reconstruct images from measurement data, and a cyber-physical system
to monitor the dike condition. The solution based on electrical impedance tomography
was chosen because of the possibility of the area analysis of the tested object using mea-
surements on the near-surface of the tested object, the method of data acquisition, and
the possibility of the analysis of changes in the values of electrical parameters. Besides
this, electrical impedance tomography is quite sensitive to cracks and seepage, which
undoubtedly makes it effective in shaft monitoring.

The authors’ main contribution is the development of a solution based on machine
learning algorithms that work individually for each pixel of a tomographic image. The
primary goal was to increase the resolution of the image reconstruction an-d enhance the
system’s ability to identify different kinds of anomalies within flood embankments. The
system architecture is shown in Figure 1. The data are collected from the tomographic
equipment and then sent to the analysis software system.
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The subject of the application of logistic regression with an elastic net regularisa-
tion [26], principal components analysis (PCA) [27] and wavelet preprocessing [28] in
electrical impedance tomography [29,30] has been undertaken to verify and test the extent
to which this approach can be helpful in the study of EIT dikes. For this purpose, numerical
models and real models with different variations of electrode placement were prepared.
Furthermore, the measurements from the tomograph were used to reconstruct the image of
the object’s interior by collecting and analysing the data using machine learning methods.

The paper is divided into five sections, with an introduction. The architecture of the
designed system is presented in Section 2. It also describes the measurement device, labora-
tory measurements, numerical models and machine learning algorithms. The work results
obtained by reconstructing the corresponding images for the synthetic and measurement
data are presented in Section 3. Section 4 discusses the results obtained, while Section 5
summarises the research carried out.

2. Materials and Methods

The following section presents electrical tomography’s structure and measurements,
elements, apparatus, image reconstruction models from simulated and real measurements,
and mathematical algorithms. In addition, the data collection methods and measurement
methods are presented. The data are used in the next step to solve progressive and inverse
problems. In the following subsections, several algorithms that were used in this work are
described. These are wavelet-preprocessing, elastic net, and PCA algorithms. The above
algorithms were used for tomographic imaging, and finally, they were compared. The
above methods were used to obtain rapid and efficient solutions to build models on the
reconstructed areas. The work was performed using tomographic equipment designed
and manufactured at Netrix SA Research and Development Center. Additionally, Matlab,
Python in R language and Eidors packages and tools were used [31].

2.1. Electrical Tomography

Electrical impedance tomography [32,33], generally called electrical tomography
(ET) [34,35], includes some image reconstruction techniques. The methods available in
the literature are electrical resistance tomography (ERT) [36,37], electrical capacitance
tomography (ECT) [38–41] and electrical impedance tomography. ECT is based on the
reconstruction of the electrical permeability ε, whereas EIT is based on the reconstruction of
the conductivity γ. It is worth noting that electrical tomography has a low image resolution.
This is caused by the limited number of current flow measurements through the test piece
and the low sensitivity of the measured voltages, which depends on the conductivity
change inside the test piece. In EIT, the current or voltage is introduced into an object
through a set of sensors attached to its surface. The voltage drop values are measured on
the other sensors. The properties of the test object are reconstructed by solving the inverse
problem. Using the electrical properties of the materials, the interior of the test object can
be mapped. Impedance tomography uses the conductivity of objects; by connecting a
current or voltage source, a current flow or voltage distribution is forced. The current or
voltage is observed to flow at the edge of the test area. The data collected in this way are
used to build images using reconstruction algorithms. The image thus prepared is called
a tomogram.

2.2. Measurement System

The system collects measurement data from the electrodes through a tomographic
device that allows the measurement of up to 32 channels. The entire infrastructure is
centrally managed for data collection and measurement recording. The application enables
measurement collection, data management and device monitoring.

A finite element model and a real measurement model were prepared to test the
effectiveness of different algorithms for the analysis of the procedures in tomography. In
turn, electrical impedance tomography was used for the analysis.
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The measurements were performed with a hybrid tomograph that bases its data
controller and measurement structure on two stm32 controllers from the F4 family. Thanks
to this solution, the measuring processor does not generate complex graphical interfaces;
rather, it only performs the necessary operations in the tomographic process. This further
significantly improves the solution performance. Figure 2 shows the block diagram of the
built tomograph. The device is shown in Figure 3 as measurement block, a control and
communication system, an inside view, and a measurement panel.
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The excitation signal source was built on a direct digital synthesis (DDS) signal
generator coupled with a current-generation system. The signal prepared in this way is
then sent to the inputs of the multiplexer system, where—depending on the sequence
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of current measurements—it is transmitted to the selected output. The measurement
controller performs the control of the currently measured/selected item. The measuring
block consists of a set of active filters minimising the influence of the 50 Hz components
on the measurement accuracy. The prepared signal travels to the digitally controlled gain
control system, and to the Analog-to-Digital Converter (ADC). Each correct measurement
of the matrix is sent to the control system, which, depending on the selected configuration,
performs the process of recording or sending data to the server. Thanks to the integrated
measuring circuit (capacitance/impedance), the device can be used to perform both EIT
(impedance) and ECT (capacitance) measurements. The device is designed to work with
sets of 8, 16 and 32 electrodes. The measurement takes place sequentially, depending on
the selected mode. Two modes of EIT measurement are available (polar Ground GND—
measurement against the negative electrode; polar NB—differential measurement). In the
case of ECT measurements, only one mode is available: interelectrode measurement. In
addition to mode selection, the instrument allows the user to choose the results’ averaging
level and select the gain parameters. A 2.4-inch graphic touch screen is used to operate
the instrument, select the functions and start the measurement process. The instrument
enables the storage of the data on a portable memory carrier (pen drive), and allows the
user to stream it via a serial port or the Ethernet.

The experiments were conducted on two measurement models. The first model
(Figure 4) uses an array of 16 measurement electrodes equally spaced along the profile line,
and a measurement array with 32 electrodes evenly spaced in two rows. In contrast, the
second model consists of two multi-sensor arrays with 32 measuring electrodes (Figure 5).
The EIT’s task is to generate an electrical current with specific parameters for each pair
of sensors, read the voltage between each electrode, and send the data to the output. The
flood embankment models were designed to represent the key parameters of the existing
facility as accurately as possible.
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2.3. Algorithms and Methods

Many deterministic, statistical, or computational intelligence methods solve optimisa-
tion tasks [42–45]. In this paper, the authors concentrate on the use of machine learning. In
addition to the real models, the imaging domain had to be prepared as a composite finite-
element mesh model. In this case, a model was created for each element, representing the
relationship between the value of the signal coming from the electrodes and the conductiv-
ity. If a different conductivity comes out of the measurements than that in the background
measurements, there is a water concentration in the area. With the above information and
measured values, the location of the flooded embankment can be determined. Therefore, a
model is defined for each finite element. This allows the calculation of the probability of
conductivity that differs from the background conductivity for each finite element. Based
on this, the resolution in the imaging domain was determined, and thus, the mesh was
reconstructed. The resolution of the imaging domain closely depends on the classification
level, and it is the classification level that determines the occurrence of conductivity which
is different from the background conductivity. By performing ROC analysis [46,47], each
finite element’s classification level was determined, which should be understood here as
the limiting probability of percolating conductivity.

2.3.1. Logistic Regression

Knowing the model and the background measurement, we need to answer the ques-
tion of which finite elements in the area belong to the background and which belong
to the inclusions. If the answer to this question is already known, the reconstruction in
the EIT [48] can be created. For this purpose, a logistic regression model is defined for
each finite element. One defines the probability space as (Ω,F , P) and defines a random
variable Y with a discrete distribution for a finite element where Y : Ω→ {0, 1} . Then, it
can be concluded that, in the presented approach, while the finite element belongs to the
inclusions (increased humidity), it is assumed that the realisation of the random variable Y
is one; otherwise, it is zero. Based on the X ∈ Rm the signal from the sensors, it is deter-
mined whether the element belongs to the inclusions. For this purpose, one needs to define
a classifier f : Rm → {0, 1} ). A classifier in the present work was logistic regression.



Energies 2021, 14, 8081 8 of 35

The logistic regression model is used to estimate the binomial (or polynomial) distri-
bution of the response variable Y based on the realisations of the input variables X ∈ Rm;
that is, we determine P(Y = y|X), where y ∈ {0, 1}, when P(Y = y|X) is the probability of
success and P(Y = 0|X) is the probability of failure. We should mention the odds, which
are the ratio of success to failure, and are calculated as follows:

θ(X) =
P(Y = 1|X )

1− P(Y = 1|X )
, (1)

The main aim of logistic regression [49–51] consists in the estimation of the suc-
cess probability P(Y = 1|X ) based on the observation of vector of input variable X. Be-
cause P(Y = 1|X ) ∈ (0, 1), from Equation (1) we know that the odds θ(X) ∈ (0, ∞), but
ln θ(X) ∈ (−∞, ∞). In logistic regression, the linear relationship between the logit and the
vector of input variable X is analysed as follows:

ln θ(X) = ln
(

p(β0, β, X)

1− p(β0, β, X)

)
= β0 + XT β + ε, (2)

where ε is a random variable with normal distribution N
(
0, σ2), and β0 ∈ R and

β = (β1, β2, . . . , βm) ∈ Rm denote the model parameters. From (2) we know the suc-
cess probability:

P(Y = 1|X )
de f
= p(β0, β, X) =

eβ0+XT β

1 + eβ0+XT β
, (3)

In order to determine the unknown parameters β0 and β in (2), we use the Maximum
Likelihood Estimation (MLE) method (i.e., we estimate the parameters by the method of
maximum likelihood). Let D =

{
(X, Y) : X ∈ Rn×m, Y ∈ {0, 1}n} be a dataset:

Y =


y1
y2
...

yn

, X =


x11 x12 . . . x1m
x11 x12 . . . x1m

...
...

...
...

xn1 xn2 . . . xnm

 =


x(1)
x(2)

...
x(n)

, (4)

where yi ∈ {0, 1} and x(i) ∈ Rm denote the realisations of the response and input variables
for the i−th observation, 1 ≤ i ≤ n.

In order to estimate the parameters β0 and β in logistic regression (2), we solve the
following equation:

max
β0,β

L(β0, β, Y, X), (5)

where the objective function L(β0, β, Y, X) is a likelihood defined as

L(β0, β, Y, X) =
N

∏
i=1

(
p
(

β0, β, x(i)
)yi
(

1− p
(

β0, β, x(i)
))1−yi

)
, (6)

Instead of task (5), we solve the auxiliary task:

max
β0,β

ln L(β0, β, Y, X), (7)

where the logarithm of the objective function (7) is equal to

ln L(β0, β, Y, X) =
N

∑
i=1

(
yi

(
β0 + xT

(i)β
)
− ln

(
1 + eβ0+xT

(i)β
))

(8)

The Newton–Raphson algorithm was used to solve the auxiliary task (5) and to
estimate the parameters β0 and β.
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2.3.2. Receiver Operating Characteristic (ROC)

The viewing area consists of k ∈ N finite elements. A logistic regression model (3) is
determined for each finite element. The obtained signal X ∈ Rm from the electrodes is used
to estimate the probability of inclusion Pj(Y = 1|X) for j− finite element, 1 ≤ j ≤ k. The
reconstruction of the viewing area is defined as a sequence

{
ẑj
}

1≤j≤k, where for cutting
level l ∈ (0, 1).

For the proper recognition of the visual area, coefficients describing the quality of the
area recognition must be provided. For this purpose, it is assumed that a finite element
that does not belong to the inclusions is described as a negative case (N); observing the
problem at hand, this should be interpreted as a ground. On the other hand, if a finite
element belongs to the inclusions and is in the inclusion area, this is taken as the positive
case (P).

The confusion matrix is determined in the following way: TP (True Positive) denotes
the finite elements that correctly belong to the inclusion area, TN (True Neg-ative) denotes
the number of finite elements that are properly recognized as belonging to the background,
FP (False Positive) denotes the number of finite elements belonging to the background
that are recognized as having belonged to the inclusion area (false alarm), and FN (False
Negative) denotes the number of finite elements belonging to the inclusion area but
recognized as background (Table 2).

Table 2. Positive and negative prediction.

Positive Negative

PositivePrediction TP FP

NegativePrediction FN TN

For each finite element, from the readings X, we determine the inclusion probability
P(Y = 1|X) according to Equation (3) and assume for the level l ∈ (0, 1).

The quality of image reconstruction (finding inclusions in the field of view) based
on a classifier by logistic regression (3) is estimated by ratios [46,47]. The based ratios
(coefficients) are determined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
,

True Positive Rate = Sensivity =
TP

TP + FN
,

Speci f icity = 1− FalsePositiveRate =
TN

TN + FP
,

PositivePredictiveValue =
TP

TP + FP
,

NegativePredictiveValue =
TN

TN + FN
,

DetectionRate =
TP

TP + TN + FP + FN
,

The accuracy represents the part of the visual area that the model correctly recognises.
Note that this is only one possible measure that represents the correctness of the recognition.

2.3.3. Elastic Net

Signals derived from EIT tomography electrodes can be collinear signals. Because
such collinear variables may appear, the Elasticnet method for logistic regression was
applied [26]. A possible regularisation method is an elastic net, defined as a linear mixture
of a Selection Operator (LASSO), Least Absolute Shrinkage and ridge regression, which is
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called Tikhonov regularisation [52,53]. Instead of the solution of classical task (5), which is
connected with an estimation of unknown parameters in the logistic regression model, we
optimise the objective function (6) whilst taking the penalty into account. In order to do
this, we need to solve the following equation:

max
β

{
N

∑
i=1

(
yix(i)β− ln

(
1 + ex(i)β

))
− λPα(β)

}
(9)

where λ > 0 denotes the regularisation ratio, and 0 ≤ α ≤ 1, and Pα denotes the penalty,
as follows:

Pα(β) = α||β||L1
+

1− α

2
||β||L2

=
p

∑
j=1

(
α
∣∣β j
∣∣+ 1− α

2
β2

j

)
(10)

The penalty Pα(β) is the combination of the linear norm of the parameter β in L1
and L2 spaces. For α = 0 we have ridge regression, whereas for α = 1 we have LASSO
regularisation.

2.3.4. Principal Components Analysis

Principal Component Analysis involves identifying factors (components) present in a
dataset X, [49,54]. This contains n observations for m variables. The aim of PCA is to rotate
a coordinate solution in such a way as to maximise the variability of the first coordinate,
followed by the variability of the next coordinate, and so on. The coordinates of the new
system are called the charges of the generated principal components. In the new space,
most of the variability is explained by the initial factors. PCA is frequently applied to
reduce size of a dataset of statistics by discarding recent factors [50].

The decomposition of an X matrix is by Singular Value Decomposition. Thus, any real
matrix X may be represented as

X = UDVT + εX (11)

where U ∈ Rn×m is the left orthogonal matrix of left singular vectors, D ∈ Rm×m is the
diagonal matrix containing the singular values, and V ∈ Rm×m is the right orthogonal
vector matrix (matrix of right singular vectors). The orthogonal matrix V satisfies the
property VT = V−1. The decomposition of a given matrix X may be shown as

X = TPT + εX (12)

where T = UD denotes coordinates, and V = P denotes charges. A coordinate matrix T is
determined by the multiplication of both sides (in a new space) of the equation X = TPT

by P, obtaining
XP = TPT P = T (13)

According to the expansion (13), we find the weights that are used in the linear
combination in the column V of the matrix to form the new dimensions. This formula
expresses the variance of the coordinates in the new space:

λi =
d2

i
n− 1

(14)

where di and 0 ≤ i ≤ k are the singular values from the diagonal of matrix D. The part
of the variance explained by the i-th principal component is λi

∑m
j=1 λj

, while the amount of

variance that is explained by k principal components is
∑k

j=1 λi

∑m
j=1 λj

for 1 ≤ k ≤ m.

Note that in EIT, for each case, the electrode readout including polarisation and
projection angles x(j) ∈ Rm (according to (13)) corresponds to the value of x(j)P in the new
space. The logistic regression of the form (2) is determined for individual finite elements,
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except that we analyse the linear dependence of the chance logarithm on a value in the
new coordinates ln θ(S) = Tβ + ε.

2.3.5. Discrete Wavelet Transformation (DWT)

Another method to reduce the amount of data that is redundant is to determine the
projection of the signal {xt}1≤tleqm obtained from the electrodes to an orthogonal basis
named as the mother wavelet. By definition, Ψ(t) will be an orthogonal wavelet basis. For
j ∈ Z, the sequence is defined as

Ψjk(t) =
1

2j−1 Ψ
(

t
2j − k

)
(15)

and
{

φjk

}
k∈Z

φjk(t) =
1

2j−1 φ

(
t
2j − k

)
(16)

where φ(t) denotes the scaling function which corresponds to the parent wavelet Ψ. In this
case, the time series {xt}1≤tleqm can be represented as

xt =
∞

∑
k=−∞

cjkφjk(t) +
j

∑
i=−∞

∞

∑
k=−∞

dikΨik(t) (17)

where the value cjk is the scaling factor, but dik is the specific coefficient. Sequence
{xt}1≤tleqm can be expressed in a different form from the level of decomposition j ∈ Z
based on Equation (17).

The functions Ψjk(t) and φjk(t) take values which are different from zero on a bounded
interval. It follows that the sequence {xt}1≤t≤m can be presented as follows:

xt =
s

∑
k=0

cjkφjk(t) +
j

∑
i=0

s

∑
k=0

dikΨik(t) (18)

where s << m. According to [28], a projection operator for a time series is defined as

{xt}1≤t≤m at level j on an orthogonal basis
{

φjk(t)
}

0≤k≤s
, as follows:

Pjxt =

n
2j −1

∑
k=0

cjkφjk(t) (19)

Much information on DWT can be read in [28,55,56]. The EIT for the sequence of
scaling factors from the projection (26) was used as the input variables for the logistic
regression. There are different types of wavelet, e.g., Daubechies (‘db1’–‘db18’), Coiflets
(‘coif1’–‘coif5’), Symlets (‘sym1’–‘sym18’) and Biorthogonal (‘bior1.1’, ‘bior1.3’, ‘bior1.5’,
‘bior2.2’, ‘bior2.4’, ‘bior2.6’, ‘bior2.8’). Some results are presented in the next section.

To analyse this, we used Daubechies1 decomposition, which is also known as a Haar
wavelet. The mother wavelet is defined as follows:

Ψ(t) =


1, t ∈

[
0, 1

2

)
,

−1, t ∈
[

1
2 , 1
)

,
0, t /∈ [0, 1)

(20)

but corresponding to her, the father wavelet is defined as follows:

φ(t) =
{

1, t ∈ [0, 1),
0, t /∈ [0, 1).

(21)
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From (15) and (16), we see that the coefficients Ψjk(t) and φjk(t) have different-from-
zero values at the interval

[
2jk, 2j(k + 1)

)
.

2.3.6. Algorithm Implementation

In the classical inverse problem in EIT, we determine the conductivity of each finite
element located in the viewing area. Our approach was to determine the inclusions with
high probability areas; logistic regression was used for this purpose. The main problem
in EIT is the problem of the co-liveness of features (measurements from electrodes). It is
impossible to extract a set of stochastically independent features. In order to improve the
quality of the classifier, the following techniques were additionally applied: elastic net
regularization, principal component analysis and wavelet preprocessing. In this paper,
however, only one type of wavelet was used, analyzing the accuracy and AUC curves. This
technique is more robust to perturbations of the measurements from the electrodes. Figure
6 shows the learning process of the algorithm, while Figure 7 shows the reconstruction
process using machine learning methods.
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3. Results

This chapter presents water leakage results from dikes based on the built numerical
models and laboratory measurements. Three models of tomographic image reconstruction
systems were developed. The results of the presented solutions are presented in this chapter.
The inverse and ill-posed problems of electrical tomography are related to the insufficient
number of function arguments (measurements/inputs) compared to the required number
of outputs (image pixels).

The presented research aims to generate a spatial image of the moisture with a specific
pixel resolution from the measurements. Single models are trained with all of the measure-
ment values as the input and only a one-pixel value as the output in order to simplify the
generation of multi-pixel images. Therefore, the algorithm must generate as many models
as there are pixels in the image. When learning the predictive models, each model obtains
different coefficients and hyperparameters that determine the ways in which the input
values are transformed to the output.

In the models presented below for each finite element, we determined the model of
logistic regression. The measurements obtained from the electrodes are collinear. Thus, the
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direct application of logistic regression implies that the absolute values of the structural
parameters of regression are quite large, and the prediction is poor. Therefore, three
approaches were applied to overcome the collinearity problem of the input variables:
(1) elastic net regularisation, (2) the estimation of the principal component measurements
(PCA application) as input variables in the regression model, (3) the projection of the
measurements obtained from the electrodes based on wavelet decomposition at level 4.

3.1. Image Reconstruction for Model I

Figure 8 shows a numerical model of a dike with electrodes placed on its surface in one
row. Model I consists of 16 electrodes, 2159 nodes, 7657 finite elements and point electrodes.
Figures 9–14 summary the image reconstruction for Model I. Figures 9, 11 and 13 show
3 cases of the reconstruction of the flood embankment image for model I, with different
variants of water infiltration, divided into the methods of logistic regression with an elastic
net, logistic regression with PCA distribution, and regression logistic with wavelet distribu-
tion. Tables 3–5 show the results of the exact reconstructions shown in Figures 9, 11 and 13.
The accuracy of the statistical ROC model for model I is evaluated in Figures 10, 12 and 14.
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Figure 14. ROC analysis for model I—example 3.

The analysis of the reconstruction’s accuracy to the disturbances arising in the mea-
surement obtained from the electrodes signals using the method mentioned above will
be presented in Figure 15. For this purpose, instead, for a reconstruction based on signal
x ∈ Rm we analysed the reconstruction based on a disturbed signal x + σε, where σ ≥ 0
and ε : Ω→ Rm is a sequence of independent identically distributed random variables
with normal distribution N(0, 1). The figure below shows the relationship between the
accuracy and AUC (area under the curve) depending on the value σ (standard deviation of
disturbances).
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Table 3. The basic characteristic of reconstruction for model I—example 1.

Elasticnet PCA Wave

Sensitivity 0.9697954 0.9808379 0.9632998

Specificity 0.9984709 0.9997816 0.9912626

Pos Pred Value 0.9976612 0.9996690 0.9866933

Neg Pred Value 0.9800600 0.9872735 0.9757041

Precision 0.9976612 0.9996690 0.9866933

Recall 0.9697954 0.9808379 0.9632998

F1 0.9835310 0.9901639 0.9748562

Prevalence 0.4021157 0.4021157 0.4021157

Detection Rate 0.3899700 0.3944103 0.3873580

Detection Prevalence 0.3908842 0.3945409 0.3925820

Balanced Accuracy 0.9841332 0.9903097 0.9772812

AUC 0.9995741 0.9998988 0.9980552

Table 4. The basic characteristic of the reconstruction for model I—example 2.

Elasticnet PCA Wave

Sensitivity 0.9746222 0.9923011 0.9751925

Specificity 0.9966265 0.9975904 0.9795181

Pos Pred Value 0.9959207 0.9971347 0.9757489

Neg Pred Value 0.9789349 0.9935205 0.9790462

Precision 0.9959207 0.9971347 0.9757489

Recall 0.9746222 0.9923011 0.9751925

F1 0.9851564 0.9947120 0.9754706

Prevalence 0.4580123 0.4580123 0.4580123

Detection Rate 0.4463889 0.4544861 0.4466501

Detection Prevalence 0.4482173 0.4557921 0.4577511

Balanced Accuracy 0.9856243 0.9949457 0.9773553

AUC 0.9994711 0.9999436 0.9983900

Table 5. The basic characteristic of the reconstruction for model I—example 3.

Elasticnet PCA Wave

Sensitivity 1.0000000 0.9989063 0.9963544

Specificity 0.8658934 0.9277574 0.8858364

Pos Pred Value 0.8062904 0.8852989 0.8296903

Neg Pred Value 1.0000000 0.9993424 0.9977080

Precision 0.8062904 0.8852989 0.8296903

Recall 1.0000000 0.9989063 0.9963544

F1 0.8927583 0.9386776 0.9054166

Prevalence 0.3582343 0.3582343 0.3582343

Detection Rate 0.3582343 0.3578425 0.3569283

Detection Prevalence 0.4442993 0.4042053 0.4301946

Balanced Accuracy 0.9329467 0.9633319 0.9410954

AUC 0.9965007 0.9984147 0.9947318
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Figure 15. Influence of disturbances of the reconstruction quality-model 
I: (a) Accuracy, (b) AUC. 
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In order to verify the performed numerical tests, a laboratory model of the flood
embankment was prepared (shown in Figure 16), which was flooded with water. The
image reconstruction results for the machine learning methods are shown in Figures 17–20.
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3.2. Image Reconstruction for Model II

Figure 21 shows a numerical model of a dike with electrodes placed on its surface in
one row. Model I consists of 32 electrodes, 2818 nodes, 9805 finite elements and point elec-
trodes. Figures 22–27 summary the image reconstruction for Model II. Figures 22, 24 and 26
show three cases of image reconstruction for flood embankments of image reconstruction
cases. The examples from model II have different variants of water infiltration divided into
logistic regression methods with an elastic net, logistic regression with PCA distribution,
and logistic regression with wavelet distribution. Tables 6–8 show the results of the exact
reconstructions, as shown in Figures 22, 24 and 26. The accuracy of the ROC statistical
model for Model II is evaluated in Figures 23, 25 and 27.
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Example 4: (a) pattern, (b) logistic regression with an elastic net, (c) logistic regression with PCA
decomposition, and (d) logistic regression with wavelet decomposition.
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area. Example 5: (a) pattern, (b) logistic regression with an elastic net, (c) logistic regression with
PCA decomposition, and (d) logistic regression with wavelet decomposition.
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Example 6: (a) pattern, (b) logistic regression with an elastic net, (c) logistic regression with PCA
decomposition, and (d) logistic regression with wavelet decomposition.
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Table 6. The basic characteristics of the reconstruction for model II—example 4.

Elasticnet PCA Wave

Sensitivity 1.0000000 1.0000000 1.0000000

Specificity 0.7619853 0.9125776 0.7507050

Pos Pred Value 0.9500828 0.9810675 0.9478405

Neg Pred Value 1.0000000 1.0000000 1.0000000

Precision 0.9500828 0.9810675 0.9478405

Recall 1.0000000 1.0000000 1.0000000

F1 0.9744025 0.9904433 0.9732219

Prevalence 0.8191739 0.8191739 0.8191739

Detection Rate 0.8191739 0.8191739 0.8191739

Detection Prevalence 0.8622132 0.8349822 0.8642529

Balanced Accuracy 0.8809927 0.9562888 0.8753525

AUC 0.9995332 0.9998610 0.9978940

Table 7. The basic characteristics of the reconstruction for model II—example 5.

Elasticnet PCA Wave

Sensitivity 0.9912896 0.9893775 0.9923518

Specificity 0.9784229 0.9856807 0.9354649

Pos Pred Value 0.9769682 0.9845666 0.9342000

Neg Pred Value 0.9918473 0.9901478 0.9925078

Precision 0.9769682 0.9845666 0.9342000

Recall 0.9912896 0.9893775 0.9923518

F1 0.9840768 0.9869662 0.9623983

Prevalence 0.4800612 0.4800612 0.4800612

Detection Rate 0.4758797 0.4749618 0.4763896

Detection Prevalence 0.4870984 0.4824069 0.5099439

Balanced Accuracy 0.9848562 0.9875291 0.9639084

AUC 0.9994805 0.9994952 0.9978997
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Table 8. The basic characteristics of the reconstruction for model II—example 6.

Elasticnet PCA Wave

Sensitivity 0.9705573 0.9826498 0.9613565

Specificity 1.0000000 0.9973338 0.9951675

Pos Pred Value 1.0000000 0.9957379 0.9921324

Neg Pred Value 0.9816784 0.9890927 0.9759765

Precision 1.0000000 0.9957379 0.9921324

Recall 0.9705573 0.9826498 0.9613565

F1 0.9850587 0.9891506 0.9765020

Prevalence 0.3879653 0.3879653 0.3879653

Detection Rate 0.3765426 0.3812341 0.3729730

Detection Prevalence 0.3765426 0.3828659 0.3759306

Balanced Accuracy 0.9852787 0.9899918 0.9782620

AUC 0.9998313 0.9998497 0.9993635

Figure 28 shows an analysis of the reconstruction accuracy of the perturbations arising
in the measurements obtained from the electrode signals. The image reconstruction results
for the machine learning methods are shown in Figures 29–32.
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3.3. Image Reconstruction for Model III

Figure 33 shows a numerical model of a dike with electrodes placed on its surface
in one row. Model I consists of 2 × 16 electrodes, 3844 nodes, 16,240 finite elements and
multi-sensors. Figures 34–39 summary the image reconstruction for Model III. Three image
reconstruction models were tested, and are shown in Figures 34, 36 and 38, with different
variations of water infiltration. The data in Tables 9–11 show the results of the exact
reconstructions shown in Figures 34, 36 and 38. The accuracy of the ROC statistical model
for Model III is evaluated in Figures 35, 37 and 39.
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Figure 36. Model III with depth sensors, with water infiltration on the right side. Example 8:
(a) pattern, (b) logistic regression with an elastic net, (c) logistic regression with PCA decomposition
(d) logistic regression with wavelet decomposition.
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Table 9. The basic characteristics of the reconstruction for model III—example 7.

Elasticnet PCA Wave

Sensitivity 0.9993290 1.0000000 0.9793659

Specificity 0.9878393 0.9936764 0.9857963

Pos Pred Value 0.9794476 0.9892134 0.9756016

Neg Pred Value 0.9996062 1.0000000 0.9880070

Precision 0.9794476 0.9892134 0.9756016

Recall 0.9993290 1.0000000 0.9793659

F1 0.9892884 0.9945775 0.9774801

Prevalence 0.3670567 0.3670567 0.3670567

Detection Rate 0.3668103 0.3670567 0.3594828

Detection Prevalence 0.3745074 0.3710591 0.3684729

Balanced Accuracy 0.9935841 0.9968382 0.9825811

AUC 0.9998543 0.9999899 0.9992118

Table 10. The basic characteristics of the reconstruction for model III—example 8.

Elasticnet PCA Wave

Sensitivity 0.9673838 0.9871617 0.9906315

Specificity 0.9870179 0.9842497 0.9722222

Pos Pred Value 0.9761905 0.9718190 0.9515081

Neg Pred Value 0.9821429 0.9928743 0.9947260

Precision 0.9761905 0.9718190 0.9515081

Recall 0.9673838 0.9871617 0.9906315

F1 0.9717672 0.9794302 0.9706757

Prevalence 0.3549261 0.3549261 0.3549261

Detection Rate 0.3433498 0.3503695 0.3516010

Detection Prevalence 0.3517241 0.3605296 0.3695197

Balanced Accuracy 0.9772009 0.9857057 0.9814269

AUC 0.9989309 0.9994747 0.9992595
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Table 11. The basic characteristics of the reconstruction for model III—example 9.

Elasticnet PCA Wave

Sensitivity 0.9981336 0.9960237 0.9982959

Specificity 0.8562676 0.9793209 0.8593311

Pos Pred Value 0.9562311 0.9934439 0.9571306

Neg Pred Value 0.9931892 0.9873874 0.9937998

Precision 0.9562311 0.9934439 0.9571306

Recall 0.9981336 0.9960237 0.9982959

F1 0.9767331 0.9947322 0.9772799

Prevalence 0.7588054 0.7588054 0.7588054

Detection Rate 0.7573892 0.7557882 0.7575123

Detection Prevalence 0.7920567 0.7607759 0.7914409

Balanced Accuracy 0.9272006 0.9876723 0.9288135

AUC 0.9981009 0.9995930 0.9978249

The analysis of the accuracy of the reconstruction of the disturbances arising in the
measurement obtained from the signals of the depth sensors is shown in Figure 38.

In order to verify the numerical studies performed, a laboratory model with depth
sensors was constructed (Figure 39). Then, the object was flooded with water. The image
reconstruction results for machine learning methods are shown in Figure 40. Laboratory
model with depth sensors for 32 measuring electrodes and the reconstruction based on real
measurements were presented in Figures 41 and 42.
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4. Discussion

This paper presented a monitoring system for flood embankments, and measurement
models for water leakage were prepared. The designed models were equipped with dif-
ferent variants of sensors. In the first two models, point electrodes were used, while in
the third model, multi-sensor electrodes were prepared. This solution directly measures
specific electrical quantities and their corresponding analysis in the monitoring and dam-
aging of flood embankments. Furthermore, machine learning algorithms were used and
appropriately implemented for image reconstruction. Moreover, this is a novel approach in
the application of machine learning algorithms, as other methods cannot estimate seepage
in the entire volume of the object.

In this study, three flood embankment models with point and multi-sensor electrodes
were implemented. The different sensors were evenly distributed along the edge of the ob-
ject and inside it, depending on the model tested and the number of electrodes applied. The
image reconstruction results show the great potential of the proposed solution for leakage
analysis. Logistic regression with an elastic net, logistic regression with PCA, and wavelet
decomposition methods solved the inverse problem. Furthermore, the solution presented
works very quickly (reconstruction takes fractions of a second) and with high accuracy.

The main objectives of the research were to improve the resolution of the reconstructed
image and increase the sensitivity of the monitoring system to changes occurring inside
the floodbank. Thus, knowing the voltage values, the conductivity of the soil between the
electrodes can be calculated. A separate algorithm generates each point of the output image.
Due to the volume of data and equations to learn, the implementation of the assumptions
required cloud computing. It is worth noting that the primary goal of EIT tomography
is not to perfectly estimate the conductivity of the finite elements defined on the section
mesh. The real goal is a faithful and accurate representation of the interior of the test object.
Thus, it does not matter if the colours in the drawing correspond to the actual conductivity
of the finite elements hidden inside the dike. However, it is important that the inclusions
can be identified, regardless of their number, shape, and location.

By analysing Tables 3–11, it can be observed that the images obtained represent the
models and examples studied with high accuracy. From the tables, one can read the error
values of the reconstructed images relative to their models. It can be noticed that the
majority of the pixels on the mesh do not include any errors. The comparative analysis of
the three studied methods in the image reconstruction shows the high accuracy of each
algorithm. Depending on the model and example studied, each method proves more or
less accurate.

For the model shown in Figure 43, the correlation between the 96 features was deter-
mined (the signal contains 96 measurements between the electrodes). As we look at the
heat map for these 96 features, we see that they are correlated.
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On the other hand, by performing a PCA analysis (see Figure 44 and Table 12), we can
see that five principal components explain 95% of the variation in the traits, and 10 principal
components explain 98.6% of the variation in the traits.
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Table 12. Contributions of the components in explaining the variability of the features.

Percentage of Variance Cumulative Percentage of Variance

comp 1 75.88 75.88

comp 2 10.48 86.37

comp 3 4.87 91.24

comp 4 3.26 94.50

comp 5 1.30 95.80

comp 6 1.19 96.99

comp 7 0.60 97.58

comp 8 0.50 98.09

comp 9 0.30 98.39

comp 10 0.25 98.64

In Figure 44, we see an exponential relationship between the contribution to the
explanation of feature variance and the principal component number. The use of an
elastic net shows that the finite element conductivity is best explained by measurements
read from the electrodes closest to the finite element. Reconstructions obtained using
logistic regression with an elastic net, PCA decomposition, and wavelet preprocessing
were compared with results obtained using deterministic methods involving the variance
reduction of regression models, such as total variation and Tikhonov regularization. The
values obtained by logistic regression are in the interval [0, 1], so additionally, a linear
transformation was performed where the value “0” corresponds to the reference value of
the conductivity, while the value “1” corresponds to the inclusion conductivity. Figure 45
shows the pattern and reconstruction results.
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Figure 45. Pattern and reconstruction results obtained by the machine learning and deterministic methods for the model
with depth electrodes.

The following measures were used to compare the reconstruction results with the
standard: the total sum of squares (TSS), mean squared error (MSE), mean absolute error
(MAE) and mean absolute percentage error (MAPE). The results of the comparisons are
presented in the table below (Table 13).
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Table 13. Matrix of the prediction accuracy measures.

Methods TSS MSE MAE MAPE

Logistic regression with Elasticnet 788.349 0.049 0.083 4.201

Logistic regression with PCA 425.786 0.026 0.028 1.705

Logistic regression with wavelet 611.791 0.038 0.049 3.453

Tikhonov regularization 23,993.577 1.477 0.689 28.752

Total variation 7051.689 0.434 0.379 24.462

For the model presented here, the use of logistic regression techniques improved the
quality of the reconstruction. By comparing the results from the table, we can see that
for the logistic regression models, the mean square error (MSE) for each finite element
does not exceed 0.05, while in the case of the use of Tikhonov regularization alone, this
error is almost 30 times higher, and in the case of the total variation technique it is almost
eight times higher. By comparing the MAE and MAPE (mean absolute error and mean
percentage error), we can see that they are several times smaller than for the Tikhonov
regularization and the total variation for logistic regression. The results of the comparisons
are shown in the table below (Figure 46).
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Figure 46. Pattern and reconstruction results obtained by machine learning and deterministic methods-model with
surface electrodes.

For the shaft model (where the electrodes are placed only on one side of the viewing
objection), by comparing the results from the table, we can see that the quality of recon-
structions obtained by logistic regression with PCA and wavelet, and by total variation are
quite good. In contrast, the reconstructions by logistic regression with an elastic net and by
Tikhonov regularization are slightly worse. Furthermore, for the case of logistic regression
with PCA, the mean absolute error (MAE) is even lower than for total variation, while
the mean squared error (MSE) and mean percentage error (MAPE) for the total variation
technique is smaller than that for logistic regression with PCA (Table 14).
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Table 14. Matrix of the prediction accuracy measures.

Methods TSS MSE MAE MAPE

Logistic regression with Elasticnet 3848.001 0.392 0.288 19.663

Logistic regression with PCA 2255.186 0.230 0.140 10.586

Logistic regression with wavelet 4683.420 0.478 0.262 11.266

Tikhonov regularization 6118.022 0.624 0.353 17.557

Total variation 1852.541 0.189 0.158 9.344

Logistic regression with wavelet preprocessing is the most robust to noise, while
logistic regression with PCA decomposition is the most sensitive to the real model.

5. Conclusions

The main purpose of the work was to develop image reconstruction algorithms for
leakage analysis in various flood embankment models. The presented solution enables
a fairly accurate assessment of the properties of the tested objects, and gives promising
results. Algorithms based on logistic regression machine learning methods with an elastic
net regularisation, PCA and wave preprocessing were used to calculate the leakage in
order to obtain more accurate and stable image reconstruction, leading to a solution of the
inverse problem in EIT. A measurement system and three models for the reconstruction
of tomographic images with point and depth electrodes were developed in a laboratory
study. Using a system of multiple separate algorithms running simultaneously to image
the cross-section of a flood barrier allows the generation of accurate representations of
specific patterns. The quality of this data is adequate to identify leakage over time correctly.

Furthermore, given the ability to take measurements at fixed time intervals, it is
easy to determine the velocity of the leakage propagation. This information enables an
accurate diagnosis to help determine the reliability of the dam. With this information, the
tomographic system can plan appropriate actions before dam failure.

The approach presented was used to identify areas of high-probability inclusions, so
logistic regression was used for this purpose. The main problem in EIT is the problem of
the collinearity of features (measurements from the electrodes). In order to improve the
quality of the classifier, additional methods were applied. Using deterministic methods, the
conductivity distribution was determined and compared with the machine learning meth-
ods. The use of logistic regression for each finite element makes it possible to determine
(extract) the inclusion regions. In the case of signals from electrodes without interference,
the analysis of the reconstruction results using logistic regression with an elastic net and
PCA is slightly better than logistic regression with wavelet preprocessing. However, when
additional disturbances are introduced to the electrodes, recognising the inclusion in the
visual area is better for logistic regression with wavelet preprocessing.

The study shows that the wavelet technique is a competitive approach compared to
PCA and elastic net. Additionally, the reconstructions are more robust to perturbations
arising during measurements. Many wavelets are known in the literature. Further studies
will investigate the quality of reconstructions using different wavelets.
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