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Abstract: In an effort to identify new sources of critical raw materials (CRMs) possibility of recovering
selected CRMs from Polish coals, chars, and ashes resulting from the combustion of coals and chars
was investigated. The samples were collected from pilot fluidized bed gasification systems. The
search for CRMs in coal gasification wastes has not been widely reported before. The study used
2 bituminous coal and 1 lignite sample; the concentration of individual critical raw materials (CRMs)
was analyzed using the ICP-MS method. The obtained results were compared with Clarke values
in coal ash and in the Earth’s crust, and with the adopted cut-off grade. As shown by the analysis,
the highest concentrations of CRMs can be found in fly ash, mainly in samples from the eastern
part of the Upper Silesian Coal Basin. This applies mostly to Be, Cs, or Sb due to the fact that their
concentrations were found to be higher than the Clarke value in the Earth’s crust; the mentioned
fly ashes could be used as potential sources of critical elements if appropriate recovery technologies
are developed. In addition, the tested materials have elevated Se, Pb, Ni concentrations, but their
recovery is currently not economically viable. Compared to the currently adopted cut-off grade
levels, there are no critical elements in the analyzed coal gasification waste that could be recovered.

Keywords: coal gasification; coal ash; critical raw materials; rare elements; Clarke

1. Introduction

Because of the ever-increasing environmental degradation associated with the exploita-
tion and use of non-renewable energy resources, work is being done on the development
of environmentally friendly technologies for obtaining energy from coal. One of these
technologies is the gasification of coal. The gasification process is one of the methods
of extracting energy from coal and its processing. At the same time, coal gasification is
considered a more environmentally friendly technology compared to conventional coal
combustion [1]. The gasification process produces syngas, which is a mixture consist-
ing primarily of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), natural
gas (CH4), and water vapor (H2O). The gasification process includes surface gasification
following the exploitation of coal and underground gasification; the process is carried
out directly in the seam. The latter is not widely used due to a number of requirements
related to geological, environmental, and hydrogeological conditions of underground coal
gasification [2]. Gasification in reactors is carried out using several technologies, which
depend on the quality of the raw material being gasified. Most currently active installations
are in China, the USA, and South Africa. However, new installations are being developed
around the world. Intensive work on the introduction of clean coal technologies, such
as coal gasification, is also underway in Poland, where in April 2021, 51.41% of energy
came from bituminous coal and 26.91% from lignite [3]. Coal gasification and combustion
processes produce fly and bottom ashes, which must be properly managed in accordance
with the regulations. The current energy policy of Poland. [4] and the world is aimed at
the implementation of circular economy, i.e., the best possible use of the waste generated.
Due to the ever-increasing demand for various types of raw materials, it was decided to
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investigate whether the waste from gasification and combustion processes could be reused
for the extraction of certain critical raw materials.

In 2008, the Committee on Critical Mineral Impacts on the US Economy introduced
the term critical raw materials (CRMs). The term includes raw materials whose supply
interruption would have the most harmful consequences for the economy [5]. The COVID-
19 crisis has prompted governments to take a critical look at the way they organize their
supply chains, especially where the sources of supply of raw materials and intermediates
are highly concentrated and therefore at greater risk of supply disruption. The EU, where a
list of 14 critical raw materials was established in 2011, is heavily dependent on imported
raw materials. The 2020 European Commission report established a group of 30 critical raw
materials for strategic technologies, impacting on climate, environment, and energy, and
having a specific contribution to production chains in various industries. The critical raw
materials include antimony, beryllium, borates, chromium, cobalt, coking coal, fluorine,
gallium, germanium, indium, magnesium, natural graphite, niobium, platinum-group
metals (PGMs), phosphate rock, HREEs, LREEs, and tungsten. Such a broad list is due to
the fact that China supplies 98% of the EU’s rare earths, Turkey 98% of the EU’s borate,
and South Africa 71% of the EU’s platinum and an even higher share of the platinum
group metals—iridium, rhodium, and ruthenium. Figure 1 shows the dependence of the
European Union on different CRM suppliers. The European Commission has presented an
action plan on critical raw materials, a list of these raw materials, and forecasts for 2030 and
2050 regarding their supply and use. It proposed to diversify the supply of raw materials
and to increase the efficiency of the circular economy, i.e., to recover already used raw
materials such as ash and slag. The Commission also announced in its communication that
it will identify, together with EU countries and individual regions, mining and processing
projects that can be launched in the EU until 2025. Special emphasis is to be placed on coal
mining regions and other transition regions, with particular emphasis on expertise and
skills in mining, quarrying, and processing technologies.
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assessment [5].

The longest list, with 35 entries, entitled Final List of Critical Minerals 2018 [6] was
published in the USA. This list includes, among others: arsenic, cesium, rubidium, stron-
tium, tellurium, and uranium, which are not on the EU, Australian, and Chinese lists.
Despite the fact that many critical raw materials are located in China, the National Plan for
Mineral Resources (2016–2020) [7] was also introduced there in 2016. The document lists
24 strategic raw minerals, including: nickel, iron, and molybdenum. The list of Australia’s
Critical Minerals Strategy from 2019 [8] also has 24 critical raw materials. The critical raw
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materials on the Australian list are in line with the US list. With the increasing shortages
of critical raw materials, there are ongoing efforts worldwide aimed at obtaining them
from other sources. One of these sources may be waste from energy processes such as coal
combustion or gasification [9–20]. With regard to individual critical raw materials, certain
features, on the basis of which we can talk about the profitability of their recovery and
extraction, are determined. The first step is to compare the CRM content of a given raw
material to the Clark value or its average abundance in the Earth’s crust. The Clarke values
of individual elements in coal and its ashes were determined by Ketris and Yudovich [21].
The cut off grade [22] was used to assess the effectiveness and profitability of CRM recovery.
According to Seredin and Finkelman [23], CRM recovery from coal and ash is economically
viable when their concentrations are at least 10 times higher than the corresponding aver-
ages for world coals. Already now Ge, U, V, and Se, which are extracted from coal, are used
industrially in China [24,25]. To increase the supply mix of these elements, work is also
being carried out in Poland on the recovery of critical raw materials from ash produced
during coal combustion and gasification.

The article discusses the possibility of recovery of CRMs from Polish coal. The primary
focus was on coal gasification by-products such as char and ash. Char and fly and bottom
ashes obtained during the combustion of coal and chars from three deposits (1 lignite
and 2 bituminous coal deposits) were analyzed in order to determine the potential for
management of the resulting waste. The analysis of the possibility of using waste as a
raw material for recovery of critical raw materials is important from the point of view of
circular economy and rational management of deposits. In addition, the determination of
the chemical composition makes it possible to establish the guidelines for the disposal of
toxic substances in the waste generated. The presented study on the content of CRMs in
the resulting waste and the obtained results are unique due to the ongoing work on the
application of the coal gasification process carried out in Poland. This is of great importance
due to the fact that already at the stage of the demonstration plant it is necessary to establish
the guidelines for the disposal of the resulting ash and char. Moreover, the search for CRMs
in gasification wastes is not discussed in detail in the literature. Hence, the present article
fills this gap.

2. Samples and Research Methodology

The analysis was based on coal samples from three Polish deposits: 2 samples from
the Upper Silesian Coal Basin located in southern Poland and 1 sample from the Bełchatów
field (central Poland). A channel sample was collected from the deposits in accordance
with the applicable standards. The proximate and ultimate analyses of output samples
are presented in Table 1. The analysis was performed in accordance with the applicable
standards (Table 1). The coal sample was divided into two parts. The first was gasified
and then burned; the second was subjected to combustion process. Test samples were
obtained during gasification experiments in a pilot installation at the Institute for Chemical
Processing of Coal in Zabrze, Poland. A circulating fluidized bed (CFB) reactor with CO2 as
the gasifying agent was used for the production of syngas. During the tests, the gasification
temperature was 850–1100 ◦C.

Table 1. Results of proximate and ultimate analyses of coal samples.

Parameter Symbol Norm Unit 1C 2C 3C

Moisture M ad ISO 589:2008 [26] % 5.30 3.6 50.3
Ash A db ISO 1171:2010 [27] % 13.80 8.2 23.6

Volatile matter V daf ISO 562:2010 [28] % 38.20 35.3 58.59
Gross calorific value GCV daf ISO 1928:2020 [29] MJ/kg 31.50 33.2 18.1

Carbon content Ct
daf ISO 29541:2010 [30] % 79.93 81 62.2

Hydrogen content Ht
daf ISO 29541:2010 [30] % 5.14 4.5 3.74

Nitrogen content N daf ISO 29541:2010 [30] % 1.30 1.2 0.52
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Table 1. Cont.

Parameter Symbol Norm Unit 1C 2C 3C

Total sulfur St
db ISO 19579:2006 [31] % 1.39 0.42 0.84

Random reflectance R ISO 7404-5:1994 [32] % 0.45 0.77 0.26
Vitrinite/Huminite group V ISO 7404-3:2009 [33] % 51 60.96 81.72

Liptinite group L ISO 7404-3:2009 [33] % 8 4.83 7.02
Inertinite group I ISO 7404-3:2009 [33] % 36 28.97 3.57
Mineral Matter MM ISO 7404-3:2009 [33] % 5 5.23 7.7

ad—air dried, db—dry basis, daf—dry, ash free basis.

A detailed description of coal gasification has already been given [34,35]. The gasifica-
tion residues formed during gasification were burned. In addition, coal samples were also
burned. The combustion process was performed in a facility located at the Częstochowa
University of Technology. The coal and gasification residues were subjected to combustion
using CFB technology. The experimental installation for the combustion of coal and char
has already been discussed [36]. During the process, two types of ash were generated in the
boiler. Bottom ash, which settles at the bottom of the boiler, and fly ash particles carried by
the air current. The combustion of chars was carried out at a temperature of approximately
780–875 ◦C, with a fuel flow ranging from 2 kg/h to 3.2 kg/h and a λ from 1.09 to 1.93. Coal
(3–7 kg/h) was burned at atmospheric pressure at a temperature of 750–900 ◦C. All samples
were burned in a fluidized bed. This enabled to reduce the combustion temperature (to
800–900 ◦C), combustion chamber dimensions, and allowed the use of inferior quality
fuels (contaminated, with lower calorific value). A total 18 samples were used in the CRM
content analysis: 3 coal samples, 3 char samples, 3 fly ash samples from coal combustion, 3
bottom ash samples from coal combustion, 3 fly ash samples from char combustion, and 3
bottom ash samples from char combustion.

The sample no. 1 is bituminous coal, which, according to the nomenclature, is on
the border of low-rank and medium-rank coal in terms of the degree of coalification. The
sample no. 2 is medium-rank coal and sample no. 3 is lignite. The sample no. 1 is from
the eastern part and sample no. 2 is from the northern part of the Upper Silesian Coal
Basin (USCB).

The analysis of the chemical composition of ash and the elemental composition of
coals, chars, and ashes was performed by the accredited laboratory (The Bureau Veritas
Minerals Laboratory). The ICP-MS analysis was caried out on a sample after modified
aqua regia digestion (1:1:1 HNO3:HCl:H2O) for low to ultra-low determination of both
coal and ash.

In total, the content of 56 elements was analyzed. Table 2 gives the detection limit for
each element. In some samples, the content of some elements was below this value.

Table 2. Critical raw materials in coal, chars, and ashes.

Element
Sample Ag As Be Bi Co Cr Cs Cu Ga Ge

1C 0.1 4.6 4.0 0.3 4.7 11.3 2.1 15.1 1.9 0.2
1Ch 0.1 1.3 1.2 0.1 3.4 16.6 3.2 17.1 2.0 0.1

1CBA 0.1 9.9 4.0 0.6 6.1 24.9 7.2 25.4 7.2 0.3
1CFA 0.3 18.6 26.2 1.5 25.5 65.7 19.2 66.2 22.1 0.8

1ChBA 0.3 24.0 4.8 0.8 11.7 46.9 31.1 94.0 25.3 0.1
1ChFA 0.4 13.3 29.7 0.3 31.0 82.4 18.2 74.0 26.2 0.9

2C 0.0 0.2 0.5 0.1 1.4 1.8 0.4 5.6 0.1 0.3
2Ch 0.0 0.8 0.5 0.1 2.2 13.2 1.2 16.6 1.4 0.1

2CBA 0.1 3.0 1.6 0.3 7.0 23.6 2.9 26.6 5.2 0.4
2CFA 0.2 7.6 7.9 0.6 15.3 56.0 5.7 52.8 9.6 1.0

2ChBA 0.1 1.7 1.6 0.2 6.9 42.6 4.0 23.3 6.4 0.1
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Table 2. Cont.

Element
Sample Ag As Be Bi Co Cr Cs Cu Ga Ge

2ChFA 0.2 2.6 3.8 0.3 15.0 40.4 5.4 58.5 7.9 0.8
3C 0.0 0.5 0.3 0.1 0.7 7.5 0.1 4.7 1.0 0.2

3Ch 0.1 1.2 0.7 0.0 1.7 22.5 0.7 14.3 4.1 0.4
3CBA 0.1 5.6 1.9 0.8 5.5 31.8 1.6 22.0 5.2 0.5
3CFA 0.1 6.1 2.3 0.5 5.7 76.1 1.5 32.2 15.6 0.8

3ChBA 0.2 4.7 1.8 0.3 7.3 52.5 3.2 31.3 10.3 0.4
3ChFA 0.2 9.9 2.8 0.1 8.4 82.1 1.7 49.3 17.8 1.0

Low-rank coals [21] 0.1 7.6 1.2 0.8 4.2 15.0 1.0 15.0 5.5 2.0
Hard coals [21] 0.1 9.0 2.0 1.1 6.0 17.0 1.1 16.0 6.0 2.4
All coals [21] 0.1 8.3 1.6 1.0 5.1 16.0 1.0 16.0 5.8 2.2

Low-rank coal ash [21] 0.6 48.0 6.7 4.3 26.0 82.0 5.2 74.0 29.0 11.0
Hard coal ash [21] 0.6 46.0 12.0 7.5 37.0 120.0 8.0 110.0 36.0 18.0
Total; coal ash [21] 0.6 47.0 9.4 5.9 32.0 100.0 6.6 92.0 33.0 15.0

Suggested cut-off grade [37] 10 - 300 - - - 150 - 100 300
Earth’s crust 0.1 2.1 1.9 0.0 30.0 140.0 1.9 68.0 19.0 1.4

Element
Sample

Hf In Li Mn Mo Nb Ni Pb Rb Sb

1C 0.1 0.0 3.6 100 0.8 0.5 13.9 26.3 6.0 0.6
1Ch 0.1 0.0 17.8 143 1.1 0.1 11.4 22.5 13.5 0.4

1CBA 0.2 0.1 26.7 205 2.5 0.1 41.6 73.3 32.9 5.8
1CFA 0.8 0.2 86.9 240 10.1 0.3 141.4 130.8 78.0 7.0

1ChBA 0.2 0.1 72.0 712 2.9 0.0 65.2 82.1 102.8 4.0
1ChFA 1.1 0.1 96.0 483 11.2 0.7 99.6 104.5 74.4 9.6

2C 0.0 0.0 1.1 273 0.2 0.1 7.1 9.8 1.6 0.1
2Ch 0.1 0.0 9.5 357 0.6 0.1 8.0 13.0 7.6 0.4

2CBA 0.2 0.0 15.7 1143 1.6 0.1 64.9 26.5 19.4 2.0
2CFA 0.6 0.1 43.5 986 7.2 0.7 98.1 65.4 33.1 5.9

2ChBA 0.2 0.0 21.2 1259 1.6 0.1 44.9 29.4 30.4 1.2
2ChFA 0.4 0.0 52.2 1015 4.1 0.6 67.9 86.4 31.3 4.8

3C 0.1 0.0 0.5 46 0.3 0.4 3.1 3.4 0.6 0.1
3Ch 0.4 0.0 6.7 165 1.1 0.5 9.1 8.5 4.0 0.2

3CBA 0.3 0.1 10.5 183 3.3 0.4 132.3 31.8 10.6 1.8
3CFA 1.6 0.1 14.6 264 6.5 0.6 44.2 31.2 7.6 1.3

3ChBA 0.5 0.1 22.4 670 3.8 0.2 57.9 43.6 20.3 1.7
3ChFA 1.9 0.1 21.7 564 7.1 0.4 45.8 17.5 9.2 2.6

Low-rank coals [21] 1.2 0.0 10.0 100 2.2 3.3 9.0 6.6 10.0 0.8
Hard coals [21] 1.2 0.0 14.0 71 2.1 4.0 17.0 9.0 18.0 1.0
All coals [21] 1.2 0.0 12.0 86 2.2 3.7 13.0 7.8 14.0 0.9

Low-rank coal ash [21] 7.5 0.1 49.0 550 15.0 18.0 52.0 38.0 48.0 5.0
Hard coal ash [21] 9.0 0.2 82.0 430 14.0 22.0 100.0 55.0 110.0 7.5
Total; coal ash [21] 8.3 0.2 66.0 490 14.0 20.0 76.0 47.0 79.0 6.3

Suggested cut-off grade [37] - - - - 1000 300 - - - 1000
Earth’s crust 3.3 0.2 17.0 1100 1.1 17.0 90.0 10.0 60.0 0.2

Element
Sample

Sc Se Sn Sr V W Y Zn Zr REE

1C 2.1 1.0 0.7 27.7 23 0.4 4.9 100.2 2.2 25.8
1Ch 1.4 0.5 0.5 31.3 13 0.2 2.2 67.4 1.7 32.0

1CBA 3.9 0.3 3.7 42.6 34 0.4 6.8 99.2 8.0 98.7
1CFA 15.1 2.8 4.9 163.5 151 2.3 33.4 162.1 33.8 225.3

1ChBA 7.2 0.2 7.7 120.8 58 0.3 12.6 117.2 7.1 227.7
1ChFA 20.0 4.7 3.4 293.9 201 3.1 44.4 208.7 42.7 259.4

2C 0.4 0.8 0.1 24.8 2 0.1 0.8 12.8 0.5 5.9
2Ch 1.0 0.8 0.4 28.7 6 0.1 1.3 29.8 1.3 23.0
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Table 2. Cont.

Element
Sample

Sc Se Sn Sr V W Y Zn Zr REE

2CBA 3.3 0.3 1.5 75.0 24 0.2 4.7 66.7 6.2 62.0
2CFA 7.7 12.1 2.3 279.8 69 1.2 17.5 102.2 21.2 118.8

2ChBA 4.1 0.5 1.5 80.3 29 0.2 4.5 76.7 5.4 68.9
2ChFA 5.5 9.7 1.7 295.2 50 0.6 10.0 147.6 12.5 91.2

3C 1.5 1.5 0.3 247.2 9 0.1 2.2 13.2 1.5 17.9
3Ch 3.9 4.3 1.0 653.6 24 0.2 5.9 36.8 10.8 60.1

3CBA 3.2 0.3 2.2 192.9 23 0.5 6.7 91.2 11.6 59.9
3CFA 12.5 16.1 3.5 1874.6 88 0.9 22.1 51.9 61.6 197.3

3ChBA 7.1 1.0 2.3 448.8 51 0.4 10.1 113.4 18.0 112.4
3ChFA 16.0 20.7 4.9 >2000.0 115 1.1 28.2 92.8 78.2 241.7

Low-rank coals [21] 4.1 1.0 0.8 120.0 22 1.2 8.6 18.0 35.0 78.7
Hard coals [21] 3.7 1.6 1.4 100.0 28 1.0 8.2 28.0 36.0 82.5
All coals [21] 3.9 1.3 1.1 110.0 25 1.1 8.4 23.0 36.0 82.6

Low-rank coal ash [21] 23.0 7.6 4.7 740.0 140 6.0 44.0 110.0 190.0 429.0
Hard coal ash [21] 24.0 10.0 8.0 730.0 170 7.8 57.0 170.0 230.0 537.0
Total coal ash [21] 23.0 8.8 6.4 740.0 155 6.9 51.0 140.0 210.0 485.0

Suggested cut-off grade [37] - 100 500 - - 1000 1000 300 - 2000
Earth’s crust 26.0 0.1 2.2 360.0 190 1.1 79.0 160.0 144.3

The concentration of selected critical raw materials in the above-mentioned 18 samples
was compared with their abundance in the Earth’s crust, the Clarke value in coal and ashes,
and with the cut-off grade.

3. Results and Discussion

Of the 56 elements analyzed, the critical raw materials whose concentrations in the
analyzed samples were above the minimum detection limit were selected (Supplemen-
tary Materials).

As a consequence, the data for Au, Ta, Pt, and Pd were rejected, as their concentration
in the tested samples was below the detection limit (Table 2). Subsequently, the detailed
description of the critical raw materials for which no Clarke value has been calculated, even
though they are present in large amounts in coal and its ashes, is omitted. Therefore, the
concentrations of Al, Fe, K, Mg, and Ti were only mentioned in Supplementary Materials
without further comment. The presented graphs are own work based on the obtained
research results and literature data on Clarke values in coal and ash and the content in the
Earth’s crust.

As a result, 29 critical raw materials + REE were included in the analysis (Table 2).
The lowest (of the ppb order) concentrations of the analyzed critical raw materials

were observed for silver (Ag) and indium (In). Indium is an important raw material for
the production of semiconductors and is used in the electronics industry, particularly in
the production of LCD displays and solar panels. Therefore, this material is one of the
most sought after. In coal its Clarke value is 0.031 ppm, and in ashes it is 0.16 ppm. Its
concentration is similar to its concentration in the Earth’s crust. The indium content in
the tested samples is the highest in the fly ash from sample 1. However, it is well below
the Clarke value in ash (Figure 2, Table 2). For comparison, in Bulgarian deposits, these
concentrations are higher and range from 0.002 to 0.167 ppm in coal and from 0.005 to
0.57 ppm in the ash [38]. While the cut-off grade for In is not determined in the literature,
it can be stated that the above-mentioned Indium concentrations in coal and ash are
unsatisfactory from an economic point of view. Similar conclusions were also reached by
Dai and Finkelman [37], who concluded that the recovery of In from coal or coal ash is not
economically viable.

In addition, the Ag concentration in the tested samples is low and does not have
economic potential (Figure 2, Table 2). However, in other deposits and ashes, it may be
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highly-promising for utilization, as extraction technologies are currently on laboratory
scale or are currently being optimized for further development towards pilot scale [37].
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Figure 2. The Ag and In content of coal, char, and ashes and their Clarke values [21].

For example, such elements as bismuth (Bi), chromium (Cr), cuprum (Cu), germanium
(Ge), hafnium (Hf), niobium (Nb) tungsten (W), and yttrium (Y) are some of the most
sought-after raw materials, as they are widely used in modern technologies. Germanium
is one of those elements that can be concentrated in coal deposits [39–41] and in ashes
from gasification processes [42,43]. It is also recovered from the high-Ge coal deposits in
Inner Mongolia [44] and residues from gasification processes. [45,46]. In recent years it
has been shown that world-class Ge deposits result from the interaction of hydrothermal
fluids with organic matter in coal seams [41]. Unfortunately, in the tested samples, the Ge
concentrations are below the Clarke value for coal and the Earth’s crust (Figure 3). The
concentrations of Bi, Hf (Figure 3), W, Zr (Figure 4), Nb (Figure 5), Cr, and Cu (Figure 6) are
at similarly low level. As can be seen from literature data and the calculated Clarke values
for coal and its ashes [47], the W [41], Zr [48,49], Hf [50,51], Nb [37,52], and Cr [53,54]
concentrations in coal may be sufficiently high to justify their recovery. When it comes to
Bi, Cu, and Y concentrations in the ash from the combustion of sample 1, they were shown
to be above their average Clarke values but at the same time well below the designated
Clarke value for coal ash.

Molybdenum (Mo) is also used in the aerospace and defense industries, and its average
abundance in the Earth’s crust is 1 ppm. The molybdenum content in ash is higher than
its average abundance in the Earth’s crust. In bituminous coal (samples 1 and 2) and
lignite (sample 3) ashes, the concentrations are lower than the Clarke value (Figure 5). As
demonstrated by Dai and Finkelman [37], Mo can be recovered from some ashes and coal
deposits, provided that it is highly concentrated.

According to [37], antimony (Sb) is promising for utilization due to the fact that highly-
elevated concentration elements in coal and coal ash have been found and are comparable
to, or even higher than, those found in conventional ores; however, the extraction technolo-
gies have not been evaluated. Antimony is very important as it is used in the doping of
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semiconductors—for example, InSb (indium antimonide) forms n-type semiconductors.
The abundance of antimony in the Earth’s crust 0.2 ppm, but the Clarke value for coal and
ashes is higher. According to some studies, it can be recovered from ash coal combustion
in power plants [55,56]. In the tested samples, the highest Sb concentrations, up to 10 ppm,
were measured in fly ash (Figure 5, Table 2).
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Figure 6. The Cr, Cu, and Li content of coal, char, ashes and their Clarke values [21].

At the end of the 20th century, lithium (Li) became one of the most important elements,
which is used in lithium-ion batteries due to its low standard potential. There has also
been a significant increase in interest in obtaining lithium from various sources due to the
increasing demand for batteries. Therefore, research into the possibility of extracting it from
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coal and its ashes is being carried out all over the world. Based on several publications by
Chinese scientists, it is possible to recover lithium from coal and ashes [57–60]. The lithium
content of the analyzed samples is very diverse. In samples 1 and 2 (bituminous coal), the
lithium content of fly ash exceeds its Clarke value. In addition, lithium concentrations in the
ash from sample 1 and 2 are higher than in the Earth’s crust. However, these concentrations
are not high enough to make their recovery economically viable using current technology.

The beryllium (Be), cesium (Cs), and selenium (Se) concentrations and the possibility
of their recovery from the tested ashes deserve special attention. In the tested samples,
high Be and Cs concentrations were found in the fly ash sample no. 1, while elevated Se
concentrations were recorded for the fly ash sample no. 3. Their concentrations are higher
than their Clarke values in coal ashes and in the Earth’s crust (Figure 7).
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Figure 7. The Be, Cs, and Se content of coal, char, and ashes and their Clarke values [21].

Beryllium has a very wide range of applications, mainly in nuclear and radiation
technology and in the production of rocket fuel. Its average abundance in the Earth’s
crust is 1.9 ppm. The maximum Be concentration (30 ppm) was measured in a fly ash
sample from the combustion of coal char 1 (Figure 7). Extensive research is currently being
conducted on the recovery of this element from coal waste [37,61]. In addition, cesium can
be recovered from coal and its ashes and is highly promising for utilization [37]. Cesium
is mainly used in photoelectric cells due to its strong photoelectric effect. This metal is
also used in infrared radiation sensors. In organic synthesis, it is used as a catalyst in the
hydration process. The isotope 137Cs (a source of gamma radiation) is used in medicine
to fight cancer. It should be noted here that cesium is also dangerous for humans and
the environment due to its radiation [62]. The highest concentrations of Ce in the tested
samples were determined in fly ash and bottom ash from the combustion of char (31 ppm)
(Figure 7). Cesium is taken up by all plants and it enters them very easily, using the same
channels as potassium. Therefore, higher concentrations of Cs in coal, which is formed
from plant debris, are expected.

Selenium is used in photovoltaic cells and as a semiconductor. Currently, Se is recov-
ered [63–65] from coal ashes. The maximum Se content (21 ppm) was measured in fly ash
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from the combustion of lignite char. Selenium is a very coalphile element: it has strong
affinity to coal matter—both organic and inorganic, but is certainly authigenic [66]. Given
the fact that the tested lignite is sulphated, its concentrations should be related to pyrite
compounds [66].

Fly ash from the combustion of sample no. 1 also had higher vanadium (V) and zinc
(Zn) concentrations than the Clarke in coal ash (Figure 8). Vanadium is a heavy metal
that is widely used in industrial applications. It is mainly used in the production of non-
ferrous alloys, highly resistant carbon steels, and in the chemical, glass, ceramic, dyeing,
and photographic industries. Vanadium can be associated with and obtained from coal
deposits [11]. In China, about 87% of vanadium is obtained from stone coal [25,67,68]. At
the same time, work is also being carried out on the recovery of vanadium from gasification
waste [69–71]. However, it must be stated that the concentrations present in the samples
are not high and their recovery is not cost-effective.
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Figure 8. The V, Zn, and REE content of char ashes and their Clarke values [21].

The zinc (Figure 8) and rubidium (Rb) (Figure 9) concentrations in some of the ashes
are higher than the Clarke in the Earth’s crust; however, the Zn concentration exceeded
the Clarke for ash in only one fly ash sample (1ChFA). Therefore, one should not hope to
recover Zn and Rb from coal waste. A similar conclusion was also reached by Dai and
Finkelman [37].

With the development of modern technologies, the demand for REE (rare-earth el-
ements), 17 chemical elements, which include two elements from the scandium group
(scandium and yttrium) and all lanthanides, has also increased. Currently, intensive work
is being carried out on the recovery of REE from coal deposits and coal ash [72–75]. In some
coal deposits, mainly in China [76–80], REE concentrations are higher than their Clarke
values. However, much higher concentrations are observed in ashes [25,81–83]. Similar
results were also obtained during the analysis of waste. REEs were found to concentrate
mainly in fly ash, but the measured volumes in some samples were only higher than the
REE abundance in the Earth’s crust and lower than the Clarke in the ash (Figure 8). For
this reason, the tested materials cannot be used as raw materials for REE production.
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Figure 9. The Ni, Pb, and Rb content of coal, char, and ashes and their Clarke values [21].

Among other metals, nickel (Ni) stands out for its versatility of applications. It is
valued for its heat resistance, ferromagnetic properties, and corrosion resistance. It is used
as an important additive to ferrous and non-ferrous alloys. Nickel and nickel alloys play
an extremely important role in today’s industry due to their performance under adverse
conditions. About 70% Nickel is used as an additive in alloy steels, mainly stainless steel.
Nickel alloys consume about 13% of the nickel production; a further 10% is used in plating.
In its pure form, the metal is used in electronics and electrical engineering, the food industry,
in research equipment and in the aviation and aerospace industries. In the tested samples,
nickel is concentrated mainly in ashes (Figure 9), similar to what was shown by [84,85].
There are currently ongoing studies on recovering Ni from the ashes. However, to date,
these studies have not produced satisfactory results [86,87].

In all tested fly ashes, the lead (Pb) concentration was found to be higher than the
Clarke value in the Earth’s crust (Figure 9). The highest Pb concentration (131 ppm) was
found in the fly ash from coal combustion (sample 1). Lead concentrations in samples
1 and 2 are also higher than the Clarke value in coal ash. Lead has a wide range of
applications in metallurgy, construction, and the military industry. It is used to create
structural elements—sheets, plates, and claddings. It is commonly added to brass and
bronze. It is used in noise barriers and radiation shielding. It is used as a coolant and as
a component of lead-acid batteries. However, it is also a toxic element. The lead content
in coal and ash was usually tested in terms of its environmental impact [53,88]. It is not
economically viable to recover lead from coal waste due to its low concentrations and the
fact it is obtained from other sources.

Based on the obtained results, it can be stated that the content of selected CRMs is
highly dependent on the mineral matter content of the starting material. The coal affinity
indexes [89] confirm that the fly ashes from combustion of raw coal and chars contain
the highest amounts of elements that can be recovered. This is related to the volatility of
the elements, i.e., their release with the volatile products of the process. In the examined
samples, this relationship is particularly evident in the case of selenium, high levels of
which are observed in fly ash samples.
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4. Conclusions

The main objective of this study was to examine the possibility of recovery of selected
critical raw materials from waste generated during coal gasification. The foremost findings
of this work can be summarized as follows:

As shown by the analysis of the literature and data from various companies, it is
possible to recover critical raw materials from coal and its ashes. Already at this point Ge,
Se, and V are recovered.

Several gallium facilities are in the demonstration stage. However, for the most part,
these projects are carried out in China, from where a large proportion of the critical elements
are sourced.

It has been found that the tested coal does not contain the selected critical raw materials
as in the case of coal from Inner Mongolia deposits (China).

The most prospective material for obtaining CRMs is ash, mainly fly ash. With the use
of appropriate enrichment technology and metallurgical methods, it would be possible to
recover Be, Cs, or Sb from bituminous coal ashes.

Regarding the possibility of recovering Se from lignite, additional studies need to be
carried out.

Taking into account the adopted cut-off grade levels for individual critical raw materi-
als, it is not economically viable to recover Pb and Ni from the ashes despite the fact that
they show enrichment factors in relation to the content in the Earth’s crust.

In order to truly assess the potential for recovery, in addition to chemical testing,
petrographic analysis, a micro-area analysis is also required to determine the forms of
occurrence of the discussed elements

With regard to the adopted cut-off grades and the trend in the exploration of CRMs in
Polish coals and gasification waste, it should be stated that the concentrations of critical
raw materials are too low for their recovery to be economically feasible.

Analysis of the occurrence and consequently the potential recovery of raw materials
from gasification wastes will allow a comprehensive use of the extracted raw material for
power generation and as a source of CRMs.

The analyses conducted allow us to extend the CRMs resource base in the future.
The search for CRMs in gasification waste can help to move toward a circular economy.
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