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Abstract: For autonomous driving research, using a scaled vehicle platform is a viable alternative
compared to a full-scale vehicle. However, using embedded solutions such as small robotic platforms
with differential driving or radio-controlled (RC) car-based platforms can be limiting on, for example,
sensor package restrictions or computing challenges. Furthermore, for a given controller, specialized
expertise and abilities are necessary. To address such problems, this paper proposes a feasible solution,
the Ridon vehicle, which is a spacious ride-on automobile with high-driving electric power and a
custom-designed drive-by-wire system powered by a full-scale machine-learning-ready computer.
The major objective of this paper is to provide a thorough and appropriate method for constructing a
cost-effective platform with a drive-by-wire system and sensor packages so that machine-learning-
based algorithms can be tested and deployed on a scaled vehicle. The proposed platform employs a
modular and hierarchical software architecture, with microcontroller programs handling the low-
level motor controls and a graphics processing unit (GPU)-powered laptop computer processing the
higher and more sophisticated algorithms. The Ridon vehicle platform is validated by employing
it in a deep-learning-based behavioral cloning study. The suggested platform’s affordability and
adaptability would benefit broader research and the education community.

Keywords: intelligent robots; mobile robots; robot design; robotics in intelligent vehicle and highway
systems; mechatronic systems

1. Introduction

Most automotive companies have moved their attention in recent years to the develop-
ment of electric vehicles (EV), since they may give additional capabilities that may be very
helpful in the future. Along with lowering pollution emissions, plug-in electric vehicles
provide the so-called vehicle-to-home capability, which allows the onboard storage system
to be used to supply energy at home [1]. However, the development of electric vehicles
was not the only item that drew interest. The majority of the major established automotive
businesses, as well as emerging technology players such as Tesla and Waymo, are focusing
on the development of self-driving vehicles. Aptiv conducted more than 5000 self-driving
taxi rides in Las Vegas in 2018; Autoliv aimed to commercialize driver assistance technology
by 2019; Ford acquired Argo and plans to release autonomous vehicles by 2021; and GM
Cruise Automation has been working on commercializing ride-sharing service through
autonomous Chevy Bolts, according to a report from CB-Insigths-Research [2]. Hence, it is
clear that rapid advances in technology, such as sensors and computing platforms with ar-
tificial intelligence, have made autonomous vehicles (AV) a reality, and more attention has
been paid in the research community to developing the systematic testing and evaluation
of complex perception and control algorithms.
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Nonetheless, for research laboratories, a full-scale drive-by-wire car is frequently
prohibitively expensive, and may not even be necessary. All that is necessary to under-
take research on perception and control for autonomous cars is a platform controlled by
electrical systems with sensors. This paper offers the Ridon Vehicle, a modest yet scalable
autonomous vehicle research platform. This is a viable alternative, since the suggested
platform is an electric ride-on automobile with different sensors attached to a computer
powered by a graphics processing unit (GPU). When opposed to testing and analyzing
new algorithms on a full-size vehicle, there are even advantages to utilizing a small-scale
vehicle, such as a substantially lower chance of injury. Perception and control are two
components that must be supplied in order for a research platform to be feasible. To add
the capacity of environmental awareness, sensors such as incremental encoders, a camera,
a light detector, and ranging (LiDAR) must be able to be put on the platform. Because they
are primarily intended for a human–machine interface rather than a machine–machine
interaction, most cars do not give accessible electronic controls over fundamental vehicle
operations. As a consequence, some work is required to convert a remote control ride-on
car to a drive-by-wire vehicle. To begin, each of the steering and driving gearboxes was
fitted with a motor encoder that was missing in the original remote-controlled ride-on car.
Then, to appropriately manage the driving and steering motors, a microcontroller-powered
control box was designed and constructed. This drive-by-wire functionality is controlled
by a GPU-powered laptop computer, which processes high-level sensing algorithms and
generates complicated actions using a variety of ways, including deep neural network
behavior cloning. The major objective of this study is to present a complete and appropriate
method for developing a cost-effective platform that will improve research quality for
the general public. The suggested platform would employ a modular and hierarchical
software architecture with microcontroller programs handling the lower and simpler motor
controls and a GPU-powered laptop computer handling the higher and more sophisticated
algorithms. The platform makes use of the robot operating system (ROS) [3] as middleware
to keep the perceptions and decision-making modules modular and dispersed. Due to
the capabilities and cost of the proposed platform, we expect that level three and higher
autonomous driving (AD) systems and advanced driver assistance systems (ADAS) may
be tested on and deployed to the platform with reasonable real-time system behavior.

End-to-end behavior cloning for autonomous driving has lately sparked renewed
interest as a straightforward alternative to the industry’s usual modular methodologies.
Perception and control are learned simultaneously utilizing a deep network in this ap-
proach. Sub-tasks are not explicitly specified, but they may be inferred from data. In most
cases, these sensorimotor controls are learned by imitating human actions [4].

This paper describes the design processes of transforming a ride-on-car into an au-
tonomous testing platform. Figure 1 shows the overview of the Ridon Vehicle. The
processes include adding various sensors such as cameras, LiDARs, and 3D depth cam-
eras and carrying out the modifications of the gearbox of the vehicle to add incremental
encoders. These sensors contribute to applying various autonomous intelligent algorithms
such as obstacle detection and classification, lane-keeping assist, and mapping a vehi-
cle’s environment with the capability of applying simultaneous localization and mapping
(SLAM). This paper also comprehensively discusses the configuration and setup of each of
the above-mentioned sensors along with the ROS-based software architecture. The main
contribution of this paper can be summarized as follows:

• The drive-by-wire system design for a scaled vehicle.
• Integration of sensor packages to the drive-by-wire system.
• Comprehensive descriptions on the proposed design.
• The full software stack for deep-learning-based study.
• Validations of the proposed hardware and software in behavior cloning study.

Figure 2 shows the process of end-to-end driving. (a) A human driver drives a
vehicle as we collect driving data. (b) The driving data, including the front camera images
with synchronized control signals, are saved in storage. The collected data must have all
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necessary features that can be expected in a testing phase of the neural network. (c) The
training station where a neural network is trained with the collected data to associate input
with output. (d) The trained neural network is deployed to the AI chauffeur who drives
the vehicle using inferred steering angles, throttle, and brakes.

(a) (b)

(d)
(c)

(a)
(b)

(c)
(d)

(e)

Figure 1. Ridon-Vehicle. Left: The top view of the Ridon Vehicle. Right: The profile view. (a) is
a camera and (b) is a LIDAR for data acquisition. (c) is the motor control module. (d) is a laptop
computer. (e) is a camera to take first-person-view videos for the platform.
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Figure 2. End-to-end driving. (a) A human driver drives a vehicle as we collect driving data. (b)
The driving data including the front camera images with synchronized control signals are saved in
storage. The collected data must have all necessary features that can be expected in a testing phase of
the neural network. (c) The training station where a neural network is trained with the collected data
to associate input with output. (d) The trained neural network is deployed to the AI chauffeur who
drives the vehicle using inferred steering angles, throttle, and brakes.

The related work on drive-by-wire system development and end-to-end behavioral
cloning will be covered in the next section.

2. Related Work

Much effort has been made in the following three different approaches: (1) modifying
a real vehicle, (2) using a simulated environment, and (3) using a scaled vehicle. These
approaches are discussed in the next three subsections. The last subsection will discuss the
related work to our validation method.

2.1. Modifying a Real Vehicle

A research team at Carnegie Mellon University proposed a research platform to meet
the requirements of general autonomous driving [5]. This minimally modified platform in
its appearance improved social acceptance while demonstrating the viability of the product.
Another design of an autonomous car was introduced by Jo et al. [6,7]. They developed
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an autonomous car with distributed system architecture to efficiently process complex
algorithms and deal with the heterogeneity of the components. These designs are, however,
for a particular vehicle and are not easy to be replicated due to in-house components and no
availability of the control software. Therefore, the design and development could hardly be
used by other research groups, not to mention the prohibitive cost of building the system.

2.2. Using a Simulation Environment

In the real world, it costs a lot and is a time-consuming process to develop and test algo-
rithms for autonomous vehicles. AirSim is a visual and physical simulation for autonomous
vehicles [8]. This simulator was built on the Unreal Engine for realistic simulation. CARLA
is an urban driving simulator to support the development and validation of an autonomous
driving system [9]. These attempts to use simulators are useful, but hardware-in-the-loop
(HIL) is still necessary to test certain perception and control algorithms.

2.3. Scaled Vehicle Platforms

In the third approach, there have been efforts to develop cost-effective autonomous
vehicle research platforms. We believe that this approach is more viable and worth it for
most research groups, since these designs are replicable and affordable. The following are
recent research activities that employ this approach.

A ROS-based 1/10th scale remote control (RC) car, Cherry Autonomous Race Car, was
built using Traxxas and NVIDIA’s Jetson TX1 with a cost of USD 1800 [10]. The goal of this
project was to convert an RC car into an autonomous vehicle by implementing convolution
neural networks (CNN) on NVIDIA’s Jetson TX1. This approach prohibits us from using a
more powerful computing platform and adding more sensors, since the RC car platform
is too small to hold a bigger computer and additional sensors. In addition, Jetson TX1
was developed to give GPU-powered machine learning libraries for a small embedded
system. There is no reason to limit us to using an embedded platform if we have another
viable choice.

A go-kart-sized low-cost autonomous vehicle was created by Ollukaren and McFall [11].
In this design, the main computer was a Raspberry Pi board that is a small single-board
computer. As proof of concept, they programmed the computer to detect and follow a
sheet of red paper. It is not a reasonable choice of using the limited performance Raspberry
Pi single-board computer with a go-kart-sized platform.

A ROS-based home-made mobile robotic platform was proposed by Gómez, Clara et al. [12].
This work was focused on developing a two-wheel differential driving robotic platform.
The platform was equipped with a low-cost microcontroller to process the odometry
information, and the Radxa Rock Pro [13] was used to process a 3D depth camera and
perform a SLAM algorithm. Due to the limited size of the platform, a small single-board
computer without GPU power was used, and this limits the system from using state-of-
the-art machine learning libraries. An autonomous vehicle research platform (AVRP) was
developed and offered researchers an autonomous ground vehicle testing platform [14].
The scope of the work was to develop the operational specifications that can operate at
level four autonomy. The design specs, however, for power and communication buses
were not discussed in detail.

A low-cost ROS-based platform, RoboMuse 4.0, was introduced by Shukla et al. [15].
The aim of the project was to create an educational platform to be used by researchers. The
platform was equipped with on-wheel incremental encoders and a 3D depth camera. It used
a microcontroller to interface with a GPU-powered laptop. SLAM and object recognition
were implemented using the platform. This paper reported their implementation, but no
details of their design were provided.

The autonomous vehicle control system kit (AVCS Kit) was proposed in Dang et al. [16].
They described a control system that was able to convert a ride-on-car into an autonomous
vehicle. A lane detection algorithm was implemented to show the feasibility of the pro-
posed system. A fisheye lens camera was used to address the narrow view-angle problem to
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see side lanes. The cost of the AVCS kit was around USD 360 excluding a laptop computer
and a SICK LiDAR. The in-house control software was used and not publicly available.
Thus, we believe that there may be a scalability issue with the design.

In [17], a study was conducted on the best available metrics on a scaled Ackermann
vehicle platform to evaluate a popular technique for lane-keeping and static obstacle
avoidance that employs end-to-end learning. The Donkey car software platform was
investigated and found to provide a reliable and adaptable solution that can be easily
implemented on any scaled vehicle with few changes. As an alternative to full-scale
vehicle testing, the deployment was performed on a scaled F1tenth car. Using the F1tenth
vehicle, on the other hand, introduces problems associated with sensor packages and
computational capabilities.

One development platform called FEV-Driver was presented by [18] forADAS and
AD. It is an electric go-kart that was converted to represent the behavior of a full-scale
electric vehicle. The ADAS and AD algorithms are developed in both C++ and Simulink
and implemented within the ROS middleware. It has a LiDAR and stereo camera and uses
high-performance laptops as a controller. To show their system’s feasibility, lane keeping
assist (LKA) and automatic emergency braking (AEB) algorithms were also presented. The
budget of the proposed system was much higher than the previously discussed platforms.

Another platform by [19], called MuSHR, the multi-agent system for non-holonomic
racing, is a low-cost (USD 600), open-source robotic racecar platform for education and
research, developed by the Personal Robotics Lab in the Paul G. Allen School of Computer
Science and Engineering at the University of Washington. It can be built and deployed
easily, as they offer detailed, open documentation. Computations take place on an Nvidia
Jetson Nano computer, which makes the computation power limited and not a good option
for scalability.

A well-known platform was developed by [20], called Duckietown, for autonomy
education and research. It is an open low-cost platform, which has only one monocular
camera and uses Raspberry Pi 2 for processing. Although this platform is widely spread, it
is still very limited when it comes to sensor packages and computational capabilities. Thus,
it cannot be used for advanced research.

While simulation-based testing is a potential option, the generalizability of AV and
environmental modeling is sometimes limited due to a lack of appropriate realism. Full-
scale AV testing, on the other hand, has the normal time, space, and expense constraints.
As a result, this article looks into the prospect of combining experiential learning with a
scaled car-based deployment to overcome scaled vehicle restrictions, especially during
the early stages of testing autonomy algorithms. The focus of this effort was not just on
building a cost-effective platform for testing autonomous car algorithms, but also on how
to leverage ROS as the system’s middleware to increase the system’s scalability.

2.4. Behavioral Cloning Using End-to-End Approach

In the realm of autonomous vehicles (AV) and advanced driver assistance systems
(ADAS), a lot of research using vision-based techniques has been performed [21] to achieve
AV and ADAS features such as lane change detection (LCD), front collision warning (FCW),
and overtaking vehicle identification (OVI). In this paper, we chose end-to-end behavioral
cloning to show the proposed platform can be utilized, even when high-performance
parallel computing power is necessary.

Since the introduction of DAVE-2, behavior cloning utilizing an end-to-end technique
has become common [22]. An end-to-end technique employing a fully connected shal-
low neural network was able to maneuver an automobile on a road, as suggested and
demonstrated by autonomous land vehicle in a neural network (ALVINN) [23]. To create
an off-road radio control automobile, DARPA Autonomous Vehicle (DAVE) used a similar
strategy [24]. The DAVE used a convolutional neural network (CNN) to extract impor-
tant visual features from images from a front camera. This was ten years before CNNs
showed revolutionary pattern recognition performance in the IMAGENET Large Scale
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Visual Recognition Challenge (ILSVRC). The DAVE-2 system proposed PilotNet to scale up
the subscale implementation of the original DAVE.

There are notable public datasets. Berkeley DeepDrive has videos and images along
with Global Positioning System (GPS) coordinates, and the datasets are annotated by
bounding boxes, lane markings, and semantic labels [25]. PandaSet, provided by Hesai and
Scale, has images along with LiDAR datasets annotated by bounding boxes and semantic
labels [26]. Waymo also provides an open dataset where images and LiDAR sensor data
are labeled with bounding boxes and semantic segmentations. Lyft has open datasets built
with LiDAR and camera sensors [27]. The nuScenes dataset was collected using LiDAR,
radio detection, ranging (RADARs), cameras, an inertial measurement unit (IMU), and a
GPS and annotated bounding boxes [28].

Most companies who are developing autonomous vehicles try to collect driving data
as much as possible since quality datasets are crucial for the development of autonomous
driving systems. However, collecting and labeling datasets are costly due to required
human manual labor. This hinders most autonomous driving research communities,
especially in academia, from starting collecting any kind of driving data.

3. Vehicle Platform Design

Following an analysis of various ways to develop a cost-effective vehicle platform,
the following concept was created for a cost-effective research platform for autonomous
vehicle applications. (1) The computing platform must be a GPU-powered laptop capable
of running state-of-the-art machine learning libraries, rather than a single-board computer.
(2) The vehicle is large enough to accommodate different sensor packages and a GPU-
powered laptop while being tiny enough to be readily carried and pose no safety hazards
when used. (3) All software modules, with the exception of low-level device drivers
for motors, will be developed as ROS nodes, which are computational processing units.
The suggested platform’s hardware architecture was mostly influenced by Dang et al. [16]
authors’ work, but the platform’s software package was built to be hierarchical and modular,
with scalability powered by ROS.

3.1. The Ridon Vehicle

Low-level motor control duties such as counting a motor encoder’s signal pulses
and transmitting motor driving Pulse Width Modulation (PWM) signals are handled by
the motor control module. The laptop performs all high-level computing services, reads
data from sensor packages through ROS nodes, and runs all algorithms developed for
platform testing. A schematic diagram of the architecture of the Ridon Vehicle platform
is shown in Figure 3. The design of this research platform is hierarchical, modular, and
scalable. The next sections analyze each component in further depth. The platform is built
using Python and ROS-compatible libraries. The ROS provides a distributed computing
environment that allows for smooth communication between system components. The
Ridon Vehicle platform allows you to create and deploy perception and control algorithms
to a vehicle model. Sensor packages are attached to a laptop computer through a USB
connector, where perception and control algorithms are run. The ROS core, which is a
meta-package that aggregates the packages necessary to utilize publish and subscribe
services, is installed on the laptop computer. A ROS node in the motor control module
receives control messages from the main computer and sends encoder information to the
laptop computer’s ROS nodes. The motor control unit is responsible for motor drive and
feedback utilizing encoders. Two DC motors are controlled by two motor controllers. The
device also has two microcontrollers for counting motor rotations. One of them is used
to run a ROS node that transmits encoder values to the laptop computer and receives
commands from it.
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Figure 3. The block diagram of the Ridon Vehicle platform. The laptop computer hosts device drivers
of the sensor packages and runs a ROS node that communicates with the microcontrollers through
the ROS serial communication. The motor control module’s only concern is the low-level motor
control and it is independent of the main unit where higher-level perception and control algorithms
are executed. The components in one module are easily replaceable without affecting other modules.

3.2. Car Platform

When choosing an automobile platform, several factors were taken into account. To
begin, the ride-on-car must be large enough to carry a GPU-enabled laptop computer
with sensors while yet being portable. Second, PWM signals must be able to regulate
steering and driving. Third, there must be adequate room for encoders to be fitted in
order to measure both the steering wheel angles and the speed of the driving motor. The
electric ride-on-car from BMW-Z4-Roadster [29] was chosen. The product dimension was
1.11 × 0.57 × 0.47 meters. The weight was 14.15 kg. The wheel’s diameter was 0.2 meters.
The maximum speed was 1.12 m/s. The maximum load was 30 kg. The driving motor was
DC 6 V, 25 Watt. The original battery was 6 V and 7 Ah. The battery was replaced with two
different batteries to offer a distinct power source for each motor: a 9 V, 2000 mAh battery
for the driving motor and a 9 V, 600 mAh battery for the steering wheel motor. The usage
of two distinct batteries is advantageous, because they are lighter and easier to recharge
than the original battery.

3.3. Mechatronics Design

The transformation process of the ride-on-car into an autonomous ROS-based platform
requires both mechanical and electrical adjustments.

3.3.1. Mechanical Design

A windshield replacement was built to hold the sensor and electrical harness in place.
Additional electric cables must be connected from the motors to the two motor drivers.
Sensors and the motor control box are mounted by strong acrylic fixtures. The laptop
computer holder is also required to keep the laptop computer in a steady posture. See
Figure 4 for more details.
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(a) (a)
(a) (b)

Figure 4. The rigid acrylic fixtures. (a) The replacement of the original windshield of the car. It holds sensors as well as the
motor control box. (b) The laptop computer holder. The original seat was removed, and a rigid acrylic board was affixed to
have a stable position for the laptop computer.

Modifications are necessary for both the driving and steering gearboxes. Each gearbox
was checked and adjusted to accurately read the motor revolutions. Each encoder shaft
was fitted with a 17-tooth spur gear. The following is the exact location of the spur gear in
the encoder shaft. The spur gear must be attached to the encoder outer casing with a 7 mm
gap for steering. For the driving encoder, the spur gear is placed with no space between it
and the case. See Figure 5 for more details.

Figure 5. The spur gear for steering and driving encoder. (Left) Steering motor encoder. The spur
gear is affixed with a 7 mm gap from the casing. The arrow indicates the gap. (Center) Driving motor
encoder. The spur gear is mounted without a gap from the casing. (Right) The dimensions of the
spur gear; 17 teeth spur gear and 7 mm bore size.

Gearbox Modification

Figure 6 depicts the changed gearboxes. The two gearboxes in the car are at distinct
locations. Due to the limited area, the teeth of the encoder gear must be carefully picked.
The details can be found in the sections below.

Because there is an adequate area around the steering wheel shaft, the steering motor
gearbox change is quite straightforward. To attach the encoder to the biggest gear in the
gearbox, a hole was drilled in the upper center of the gearbox. See Figure 7 for more details.

A support structure was required for the driving motor gearbox. There was no room
for the encoder due to the near proximity of the driving wheel and gearbox. As illustrated
in Figures 8 and 9, a support device was developed and connected to the gearbox. The
majority of the gearbox is blocked by a rear wheel attached to the hole by a shaft. In the
driving motor gearbox, there is not enough room to mount the motor encoder. Hence, a
fixture was created to retain the encoder and attach it to the gear within the gearbox.
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(c)

(c)

(a)

(b)

(a)

(b)

(d)

(a)

(a)

(b)

(b)

(c)
(c)

(d)
(d)

Figure 6. Gearboxes. (Top-Left): The steering wheel gearbox with an encoder attached. (Top-Right):
An exploded view of the modified steering gearbox. (a) The encoder. (b) The gearbox. (c) The steering
wheel shaft. (d) The steering motor. (Bottom-Left): The motor gearbox with an encoder attached.
(Bottom-Right): An exploded view of the modified driving gearbox. (a) The encoder. (b) The custom
design support fixture. (c) The driving gearbox. (d) The driving motor shaft.

(a)
(a)

(b)

(b)

Figure 7. The steering wheel gearbox. All units are in the metric system. We made a hole (a) in the
top center for the encoder. The hole in the right (b) is for the steering wheel shaft.

(a)

Figure 8. The driving motor gearbox modification. All units are in the metric system. (a) The
custom-designed support fixture for the driving motor encoder.
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Figure 9. The dimensions of the driving gearbox support fixture. All units are in the metric system

3.3.2. Electrical Design
Encoders

The ride-on-car is equipped with two electrical brushed motors. One motor is attached
to the steering wheel controls the direction of the vehicle (Figure 10) , and the other
attached to the rear-left wheel and controls vehicle speed (Figure 11). To read the current
speed and the direction of the car, two incremental encoders are attached to each of the
motors. An incremental rotary encoder was used with a 6 mm shaft that has 600 pulses per
revolution [30]. The size of the encoder is 38 × 35.5 mm, and its shaft size is 6 × 13 mm.
The size is small enough to be located in the gearbox of the driving motor, and the shaft
length is long enough to reach the gears in the original gearbox. A quadrature decoder was
implemented to convert the encoder signals into the direction and count.

(a)

(b)

(c)

Figure 10. The encoder attachment for the driving motor. The picture is the region (a) from the inset
picture. (b) is the encoder, and (c) is the gearbox in which the encoder is affixed.

Microcontroller

Instead of using a high-performance microcontroller, two Arduino Unos were used
due to their large user base and ease of use. Because each microcontroller only has
two interrupt pins that read Phase A and B signals from one incremental encoder, each
microcontroller is responsible for reading pulses from the incremental encoder. These two
microcontrollers are coupled via an inter-integrated circuit (I2C), in which the master/slave
configuration is used. The encoder for the driving motor is read by one I2C slave, while
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the encoder for the steering wheel motor is read by the other I2C master, which also sends
PWM signals to control the motors’ speed and direction. For more details, see Figure 12.

(a)

(b)

(c)

Figure 11. The encoder attachment for the steering motor. The picture is the region (a) from the inset
picture. (b) is the encoder, and (c) is the gearbox in which the encoder is affixed.

Motors and Motor Controllers

This ride-on-car is equipped with two DC brushed motors (DC 6 V 25 W); one specified
for controlling the platform steering angle and the other for controlling the speed of the
platform. Two H-bridge motor controllers (MegaMoto Shield ) are used to deliver a
continuous current (13 A). This motor controller is selected for its desirable characteristics
of the linear relationship between PWM signals and the output DC voltage. This linearity
makes it easier to control the motors.

Power and Wiring

The original vehicle has a control board to actuate motors. The wires from the motors
must be connected to the Ridon Vehicle’s motor control unit. The electric wiring diagram
of motors and batteries is shown in Figure 12.

(e)

(b)

(d)

(c)

(a)

(f)(f)(g)
Figure 12. The wiring diagram of motors and batteries. Both motor controllers are set as the Meg-
aMoto H-bridge mode to drive DC brushed motors both forward and reverse. (a) The motor controller
(b) The steering motor. (c) 9 V rechargeable battery. (d) The driving motor. (e) 9.6 V rechargeable
battery. (f) The microcontroller board (g) The USB port to connect to the main laptop computer.

Two MegaMoto H-bridge motor controllers are used to drive the DC brushed motors
in both forward and reverse motions. A 9 V rechargeable battery is used for the steering
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motor and a 9.6 V (2 Ah) rechargeable battery for the driving motor. Each of the motor
controllers is responsible for a specific motor. The jumpers on each board must be properly
set. The details of the jumper settings are shown in Figure 13. Two motor encoders
are used to read the driving motor speed and steering motor angle based on the motor
revolution. One microcontroller is used to handle the signals of one motor encoder. So, two
microcontrollers are used and connected to each other through the I2C interface to handle
the two encoders. See Figure 14 for the details. The USB connector communicates with the
laptop computer to send and receive data.

Figure 13. The jumper settings for the motor controllers. Left: The steering motor controller. ENABLE
(D8), SENSOR (A0), PWMA (D6), and PWMB (D5). Right: The driving motor controller. ENABLE
(D12), SENSOR (A1), PWMA (D9), and PWMB (D10).

(a)
(b) (c)

(d)

(e)

5V 

5V 

Figure 14. The wiring diagram for motor encoders. (a) The driving motor encoder. (b) The I2C master.
(c) The I2C slave is connected to the main laptop computer. The motor controllers are connected to
this microcontroller. (d) The steering motor encoder. (e) The USB connector communicates with the
laptop computer.

3.4. Sensor Suite Design

Two different RGB cameras and one RGBD camera were tested for vision sensors.
Two options of LiDAR sensors were analyzed, and one was tested with the platform. All
sensors tested were integrated with the ROS.

3.4.1. Camera Sensor

Two USB cameras were used for the evaluation purpose of the proposed system. More
cameras can be attached to have rear views and/or side views. Our choice for a front
view camera was Logitech C922X pro [31]. This camera has a high frame rate (60 fps in
720p) and wide horizontal and vertical field of view (FOV) (70.42 degrees and 43.3 degrees,
respectively). The primary purpose of this front camera was to detect lane markings and
other floor markings so that the proposed platform can be used to train a deep artificial
neural network to clone a driver’s behavior. The second camera is Logitech C310 [32]. This
camera was used to take videos from the car’s first-person perspective camera view.
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3.4.2. RGBD Camera

RGB with depth (RGBD) cameras can be a viable option. The following cameras were
shortlisted: RealSense depth cameras [33], D415 and D435. The major difference between
the two is related to their specifications of the FOV and resolution. The D415 has a FOV or
degrees with 1920 × 1080 pixels resolution, while the D435 has a FOV of 90 degrees with
1280 × 800 pixels resolution.

3.4.3. LiDAR

LiDAR is one popular way to detect obstacles for ADAS and autonomous driving.
The use of the Neato XV series laser distance sensor is proposed in this research. There is
no official vendor to sell this product, but this small 2D laser scanner is popular due to its
affordability and ROS community support compared to other small-scale LiDAR products.
The Neato XV laser can give five Hz in scanning with a range of five meters. Another viable
option is to use YDLIDAR X4 [34]. This gives the proposed platform enough scanning
speed and range, since it is used in an indoor environment at low driving speed. YDLIDAR
can scan in 6–12 Hz with up to around a 10 meter range.

3.5. Software Design

This section will discuss the software design of the Ridon vehicle. The following
topics are discussed, each in a separate subsection; environment, 3D vehicle model, micro-
controller, laptop computer, communication, and ROS setup.

3.5.1. Environment

Ubuntu 18.04 LTS is used, since the ROS Melodic officially supports only Ubuntu
18.04 LTS. The ROS is not an operating system, even if the name implies it. It is middleware
on top of an operating system (Ubuntu 18.04 LTS). The ROS provides device drivers,
libraries, message-passing, and package management, so that developers can create robot
applications easily. Autonomous vehicles are basically intelligent robots that happen to
have four wheels and steering.

3.5.2. 3D Vehicle Model

A unified robot description format (URDF) [35] model of the vehicle and sensor
packages was created. This allows us to use the Ridon vehicle platform in a simulated
environment. Figure 15 shows that the Ridon vehicle is placed in a simulated environment.

Figure 15. A URDF model of the vehicle. The car model is deployed into a 3D simulated city.
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3.5.3. Microcontroller

The control unit employs two microcontrollers. Each microcontroller can support
up to two interrupt pins, which is required to read two channels from a single encoder.
One reads the driving motor encoder, while the other reads the steering motor encoder as
well as running a ROS node to communicate with the laptop. The I2C interface connects
these two microcontrollers. The ROS node is shown as serial_node that publishes the
encoder_pulse topic and subscribes to the vehicle_control topic. The joy2vehicle node
translates joystick control commands to the vehicle_control topic that actuates the physi-
cal platform. The source code can be found at the arduino_driver folder at Kwon [36].

3.5.4. Laptop Computer

In addition to ROS core, complex perception and control algorithms based on deep
learning libraries are executed on a GPU-powered laptop computer. In terms of speed and
GPU memory capacity, it is recommended to use the GTX 1060 6 GB GDDR5 or above.

Remote Control

A 2.4 GHz wireless controller is used to send joystick commands that are translated to
the vehicle control signals. A ROS node named joy2vehicle was implemented, which can
be found at the src/joy_control folder at Kwon [36].

Data acquisition

To develop autonomous vehicle applications, the vehicle platform must allow users to
collect data from sensors and the information from actuators. The Ridon Vehicle platform
offers the data_acquisition package, by which the users can collect images from cameras,
distance measurements from a LiDAR, and the speed and steering angles of the vehicle
from motor encoders. The collected data location can be configured through rosparam.
A YAML configuration file can be found at the src/data_acquisition/launch/ folder at
Kwon [36].

3.5.5. Communication

The motor control unit communicates with the laptop through rosserial[37], which
is for interfacing with various microcontrollers through serial communication. Note that
the ROS node inside the microcontroller is shown as /serial_node. The ROS Master,
which is a computing platform that runs the ROS core, is located in the laptop computer
that hosts all other ROS nodes. Because ROS uses a distributed computing architecture, no
assumptions about where nodes are located or how they communicate with one another
are made.

3.5.6. Set up ROS on the Ridon Vehicle

Figure 16 shows the data acquisition node tree. Joystick commands are sent through
the /joy topic to the joy2vehicle node. Then, the joy2vehicle node translates the
joystick commands to the Ridon Vehicle’s control commands as a ROS topic named
vehicle_control. The /serial_node subscribes to the /vehicle_control topic and pub-
lishes the encoder_pulse topic. With the ROS graph (rqt_graph), visualization of how the
nodes are communicating through ROS topics can be provided.

Researchers can develop modular apps using ROS-based packages. Through the
ROS framework, which provides a distributed computing environment, each ROS node
(computation unit) may easily connect with others. The controllers generate orders that
are converted into PWM signals for the actuators based on sensor data. The Ridon vehicle
platform includes configuration files that can load all the required submodules for remote
vehicle control with active sensor packages. In addition, the suggested research platform
includes a data-gathering package for collecting sensor data such as steering wheel angle
and driving motor speed. For behavior cloning methods and sensor fusions for autonomous
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vehicle applications, the datasets obtained during the acquisition package are critical. All
code for this paper is available at Kwon [36].

/usb_cam /neato_laser_publisher

/scan

/lidar_to_image

/joy_node

/joy

/joy2vehicle

/serial_node

/stacked_image_acquisition

/vehicle_control

/encoder_pulse

/lidar_image

usb_cam

/usb_cam/image_raw

/cam_lidar_acquisition

Figure 16. ROS node graph for data acquisition. The ellipses are ROS nodes, and the rectangles are
ROS topics. /cam_lidar_acquisition and /stacked_image_acquisition are examples of data acquisition
nodes. The dotted red boxes are added when the data acquisition starts.

4. Validation on Behavior Cloning

To validate whether the proposed system can be properly used in deep-learning-
based research, an autonomous driving system in an indoor corridor was designed and
implemented. To build a behavior cloning system in an end-to-end way, front-facing images
must be collected and stored with steering angles and throttle values synchronized with
the images. One camera sensor and a 2D low-cost LiDAR sensor are utilized to perceive
the environment. The proposed drive-by-wire system was remotely controlled by a human
driver’s steering and throttle actions. The system was tested in three different shape paths:
straight, left, and right turn.

4.1. High-Level Architecture

The high-level system architecture utilized to achieve end-to-end learning for vehicle
control is shown in Figure 17. A human driver physically drove the vehicle through the ECE
department’s corridor collecting LiDAR and image sensor data as well as encoder readings
from the steering wheel during the data gathering stage. Two neural network models,
one for camera images and one for projected 2D LiDAR images, were designed. The data
collected was then fed into the neural network models to train them. After successfully
training the neural networks, the neural networks were deployed to the vehicle’s control
system. Then, the Ridon autonomously drove the vehicle in different shape paths.

4.2. Data Acquisition

The primary task of the data acquisition process was to collect data for training the
models. The Ridon vehicle was driven around the corridor of the ECE department to collect
images, LiDAR data, and encoder readings. Since the corridor has many straight stretches
with very few corners, four rounds were made to collect images for straight stretches, and
the vehicle was driven eight to ten times at each corner to collect more images for better
lateral measurements, which are important to achieve good results. The output of the
model depends on the quality of the data. The vehicle is driven close to the center of the
corridor during the collection of thousands of camera images and LiDAR data.

Figure 18 shows a sample of RGB images collected with the Logitech webcam.
Figure 19 shows a sample of the data collected by converting a LiDAR scan into an RGB
image. It was undertaken by converting the polar coordinates present in the LiDAR scan
message into a Cartesian point and plotting those converted points into a plane assuming
the LiDAR scanner to be located at the center of the plane.
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Figure 17. The high-level system architecture of end-to-end behavioral cloning. (a) Data acquisition
system: (a-1) human driver. (a-2) vehicle platform. (a-3) collected data (images, LIDAR data, steering,
and throttle). (b) Neural network training: (b-1) input data. (b-2) steering angle prediction. (b-3)
errors are fed to the neural network. (c) Testing the trained neural network: (c-1) trained neural
network deployed. (c-2) vehicle platform. (c-3) steering angle predictions from the neural network
are fed to the vehicle platform. This figure has been designed using resources from Flaticon.com and
Noun Project.

Figure 18. Examples of images collected from the camera.

Figure 19. Examples of images collected from the LiDAR. Point clouds are projected into a bird-eye
view 2D plane.
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4.3. Training Neural Networks

The two neural networks for camera input and LiDAR’s projected image input were
built using Keras. The parallel computing platform was built with CUDA 9.0 and the
cuDNN 7.0 library tools.

It is crucial to pre-process the data following the data acquisition process. The quality
of the trained network depends on the quality of data. Even with a small amount of bad
data, the weights in the network may not be updated to optimized values. This results
in large differences between predicted values and actual values, increasing the value of
the cost function. Mean squared error (MSE) was used as the cost function to calculate
the cost of the network model. The output of the trained model depends on the quality
of data. Therefore, the data with bad quality needs to be filtered. Owing to the narrow
nature of a few sections of the corridor that the vehicle traveled through, occasionally,
the vehicle crashed against the wall. Such data with vehicle crashes was removed at the
pre-processing stage.

The encoder readings were in the range between −99 to 99. The network used mean
squared error as a cost function. If those readings were not mapped from −1 to 1, the
update of the weights after each iteration will not be proper. Therefore, the readings were
mapped to the range −1 to 1. 70% of the data was used for training and 30% for validation.

4.3.1. Neural Network Architecture for Camera Data

Table 1 shows the architecture of the network for the camera model. The same
architecture of Sharma [38] was used for the model, which only runs with the help of
a camera. The number of images used for training this network was 180,000. The first
layer is the batch normalization layer followed by the 2D convolution layer and fully
connected layers.

Table 1. Network architecture for camera model.

Layer (Type) Output Shape Parameters

Lambda_1 (None, 70, 160, 3) 0
Conv2D_1 (None, 70, 160, 24 ) 1824

Maxpooling2D_1 (None, 69, 159, 24) 0
Conv2D_2 (None, 69, 159, 36) 21,636

Maxpooling2D_2 (None, 34, 79, 36) 0
Conv2D_3 (None, 34, 79, 48) 43,248

Maxpooling2D_3 (None, 17, 39, 48) 0
Conv2D_4 (None, 17, 39, 64) 76,864

Maxpooling2D_4 (None, 8, 19, 64) 0
Conv2D_5 (None, 8, 19, 64) 102,464

Maxpooling2D_5 (None, 4, 9, 64) 0
Flatten_1 (None, 2304) 0

Dropout_1 (None, 2304) 0
Dense_1 (None, 256) 590,080

Dropout_2 (None, 256) 0
Dense_2 (None, 128) 32,896

Dropout_3 (None, 128) 0
Dense_3 (None, 64) 8256

4.3.2. Neural Network Architecture for LiDAR Data

Table 2 shows the architecture of the network used for the LiDAR model. The layers
used were the same as the ones in the camera model such as Lambda, 2D CNN, 2D
Maxpooling, Flatten, Dropout, and Dense. The filter sizes were reduced to (3, 3) as
compared to the camera model because there were not as many features to learn from
the 2D LiDAR projected image. It can be observed from Figure 19 that the scan from
the LiDAR reflects approximately as lanes. The inspiration for this model was obtained
from [39]. It has a total of seven 2D CNN layers, three max-pooling layers, and three dense
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layers. The total number of weights was 659,000. Many other configurations were tried
before attaining this topology. The number of images used to train the network was 18,000.
Every topology created was tested on training data and compared the MSE values of each
topology configuration. The final topology attained with the least MSE value is one shown
in Table 2.

Table 2. Network architecture for LiDAR model.

Layer (Type) Output Shape Parameters

Lambda_1 (None, 70, 160, 3) 0
Conv2D_1 (None, 68, 158, 24) 672

Maxpooling2D_1 (None, 34, 79, 24) 0
Conv2D_2 (None, 32, 77, 36) 7812
Conv2D_3 (None, 30, 75, 36) 11,700

Maxpooling2D_2 (None, 15, 37, 36) 0
Conv2D_4 (None, 13, 35, 48) 15,600
Conv2D_5 (None, 11, 33, 48) 20,784

Maxpooling2D_3 (None,5, 16, 48) 0
Conv2D_6 (None, 3, 14, 64) 27,712
Conv2D_7 (None, 1, 12, 64) 36,928
Flatten_1 (None, 768) 0
Dense_1 (None, 512) 393,728

Dropout_1 (None, 512) 0
Dense_2 (None, 256) 131,328
Dense_3 (None, 50) 12,850

4.4. Testing the Trained Neural Networks

After the neural networks have been trained, they will be tested in an environment
with right turn paths, left turn paths, and straight paths, as seen in Figure 20. The testing
architecture is shown in Figure 17c. The neural networks will drive the vehicle; then, the
result will be compared to the human driving data.

Figure 20. Testing Paths. (a) Left turn. (b) Right turn. (c) Straight. dL; is the distance from the center
of the car to the left wall. dR; is the distance from the center of the car to the right wall.

5. Results

Experiments were designed to show that successful operations of the vehicle using a
remote controller on collecting images from a camera and distance measurements from a
LiDAR are possible for the proposed system’s assessment. Figure 21, illustrates how the
Ridon Vehicle platform accepts orders from the joystick while presenting sensor data using
the 3D visualization tool (RViz).
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(b)

(a)

(a)

(b)

Figure 21. Rviz screen with multiple ROS nodes to use sensor packages. (Left): Remote control. (a) A
screenshot of the ROS Visualization and our remote control ROS node. (b) A remote controller in
action. Video: https://youtu.be/Vuj5jBDjNVs (accessed on 18 November 2021) . (Right): (a) An
object. (b) ROS topic viewers from the LIDAR and the front camera. Video: https://youtu.be/
vomTh7FF7K8. (accessed on 18 November 2021)

Behavioral Cloning Results

The environment was split into three segments for validation reasons, as indicated at
the beginning of the preceding section: left turn, right turn, and straight pathways. The
vehicle’s autonomous driving characteristics were compared to the manual mode. The
two control models described in the preceding section were used to evaluate the vehicle’s
performance in each of the three sections of the trip.

The driving performance of the vehicle is depicted in Figures 22–24, for each of
the control models for the vehicle executing a left turn, right turn, and straight drives,
respectively. The x axis is time. The positive y axis is for the right wall distance from the
vehicle center, while the negative y axis is for the left wall distances from the vehicle center.
The graph is divided into two parts: the upper half relates to the distance between the
vehicle center and the right-side wall, while the bottom piece corresponds to the distance
between the center of the vehicle and the left-side wall. To obtain the statistical average
and standard deviation of the performance data, five rounds of testing were performed.
The standard deviation of all five rounds is shown as error bars at predefined intervals. In
this study, error bars are utilized to show the uncertainty or error, which corresponds to
the variation of the result from the average value for each model’s driving data. Figure 25
shows the Ridon vehicle driving autonomously heading to a right turn path.

Manual driving by a human operator is considered to be the ground truth. To measure
the performance of the trained neural network, cosine similarity and structural similarity
of driving paths between manual driving and autonomous driving were used.

Cosine similarity values and structural similarity indices were generated to investigate
the nature of the curves and their resemblance to the manual control. The cosine similarity
values for each model curve were calculated and reported in Table 3 against the manual
curve (which is regarded to be the ideal outcome). Cosine similarity is defined as the
inner product of two vectors divided by the product of their lengths [40]. It calculates the
cosine of the two curves’ angular closeness. The y axis values of the two curves under
comparison are represented by the vectors in the specification. One is the maximum cosine
similarity that may be attained. Values that are close to one imply that the two vectors
are comparable.

https://youtu.be/Vuj5jBDjNVs
https://youtu.be/vomTh7FF7K8
https://youtu.be/vomTh7FF7K8
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(b)

(a) (c)

(d)

Figure 22. Left turn path performance test curves with error bars. Green error bars are related to
the distance between the right wall and the center of the vehicle. Red error bars are related to the
distance between the left wall and the center of the vehicle. (a) Left turn path. (b) Driving by a
human operator. (c) Driving by the neural network trained with camera images. (d) Driving by the
neural network trained with LiDAR.

(b)

(a) (c)

(d)dR
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t

t

t
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dR
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Figure 23. Right turn path performance test curves with error bars. Green error bars are related
to the distance between the right wall and the center of the vehicle. Red error bars are related to
the distance between the left wall and the center of the vehicle. (a) Left turn path. (b) Driving by a
human operator. (c) Driving by the neural network trained with camera images. (d) Driving by the
neural network trained with LiDAR.
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Figure 24. Straight path performance test curves with error bars. Green error bars are related to
the distance between the right wall and the center of the vehicle. Red error bars are related to the
distance between the left wall and the center of the vehicle. (a) Straight path. (b) Driving by a human
operator. (c) Driving by the neural network trained with camera images. (d) Driving by the neural
network trained with LiDAR.

(a) (b)

Figure 25. Ridon vehicle entering a right turn path while driving autonomously. (a) Using camera
model. Video: https://youtu.be/yDkAi2VFYX0 (accessed on 18 November 2021). (b) using LiDAR
model. Video: https://youtu.be/KYO76NHjP44 (accessed on 18 November 2021) . Note: Although
the LiDAR model is used in (b), the re-projected LiDAR points are not shown on the image.

Table 3. Cosine similarity between the manual and model curves.

Model
Type

Path
Type

Cosine Similarity
Values Performance

Camera

LiDAR
Left Turn

0.9723

0.9867

Good

Better

Camera

LiDAR
Right Turn

0.9814

0.9581

Better

Good

Camera

LiDAR
Straight

0.9865

0.9983

Good

Better

https://youtu.be/yDkAi2VFYX0
https://youtu.be/KYO76NHjP44
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It is seen in Table 3 that both camera and LiDAR models performed well in general. In
comparison, the LiDAR model had better performance for the left turn and straight path
types, while the camera model performed better for the right turn path.

The structural similarity (SSIM) index, which is commonly used in digital signals and
image processing, is a method used to measure the perceived changes in the structural
information [41]. SSIM index was used to calculate the similarity of the average manual
curve and the average model curves in this study. The highest SSIM index that can be
achieved is one. Values closer to one have high similarities. Table 4 summarizes the SSIM
indexes for the model curves against the manual curves.

Table 4. Structural similarity index (SSIM) between the manual and model curves.

Model
Type

Path
Type

SSI
Values Performance

Camera

LiDAR
Left Turn

0.8996

0.9138

Good

Better

Camera

LiDAR
Right Turn

0.9076

0.9149

Good

Better

Camera

LiDAR
Straight

0.8743

0.9107

Good

Better

Table 4 shows that, for all three path types, the LiDAR model had better performance
compared to the camera model, as its SSI values are closer to 1.

6. Discussion and Future Work

The benefits of the Ridon and the motivation for developing such a platform have
been discussed in earlier sections. To summarize, using a full-scale car to carry research
in the field of autonomous driving is not a suitable solution owing to the high expense
and safety issues. As a result, suitable alternatives, such as scaled vehicles and simulation
environments, are required. Most embedded systems for scaled vehicles have hard-to-avoid
constraints, such as sensor package limits and computing problems. Although simulation
is important, hardware-in-the-loop (HIL) testing of perception and control algorithms is
still required. The Ridon platform is intended to overcome all of these concerns while also
providing a viable alternative to employing a full-scale vehicle. Table 5 emphasizes these
distinctions by comparing the choices for developing a drive-by-wire system.

Table 5. Comparing different options for drive-by-wire system development. * it could be possible
using a remote computer connected to the on-board computer.

Full-Scale
Vehicle

RC-Based
Car

Simulation
Environment Ridon

Cost High Low Low Low

Saftey
Concerns High Low Low Medium Low

HIL Yes Yes No Yes

Onboard
Computer Yes No N/A Yes

Deep-Learning
Capabilities Yes No * Yes Yes
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The findings indicate that driving the Ridon automobile using a remote controller to
collect data from the sensors was a successful operation (i.e., camera and LiDAR). These
tests would not have been possible if the platform had not been well-designed. After
end-to-end behavioral cloning was used to validate the proposed platform, the Ridon
platform was found to be adequate for research applications requiring high computing
capacity in the field of autonomous vehicles and mobile robots.

Sensor fusion should be included in future work through the use of a third neural
network model for fused data between the camera and the LiDAR. Furthermore, because
our platform was only tested indoors, further tests with diverse applications in the field of
autonomous driving should be conducted both indoors and outdoors (e.g., path planning).

7. Conclusions

This paper illustrates the design and transformation of a ride-on car equipped with
various sensors with an affordable budget for testing autonomous vehicle algorithms
and/or ADAS systems. The platform designed here is scalable and economically viable
(approximate cost is shown in Appendix A, Table A1). Sensors such as LiDARs and
cameras can be replaced according to the user’s requirements, even though this paper
proposed the optimal choices of sensors for this particular platform. Using hierarchical
software design, the lower control part enabled by microcontrollers can be replaced with
other feasible choices. Furthermore, the higher computation part can be replaced with
higher performance laptops. This would not be easy to accomplish if the platform uses
embedded solutions such as NVIDIA’s Jetson TX1 or TX2 on a small chassis. The study
also emphasizes the usage of the ROS, which allows us to visualize messages in both
numerical and visual formats using a visualization tool, in addition to passing messages
across processes on different computing platforms. Finally, this platform was validated by
conducting machine-learning-based end-to-end lateral control using camera and LiDAR
sensors. The suggested platform is expected to be widely used for research and education,
allowing the entire user community to contribute to the ADAS/AD study domains by
testing and confirming various unique algorithms.
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Appendix A

Table A1 is a Bill of Materials (BOM) of the proposed vehicle platform. The MIR
Vehicle platform is flexible and scalable so that sensors can be easily replaced with others
based on budget and specific requirements of the research activity from the users.
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Table A1. Bill of Materials.

Item Description Q’t Price Total

Camera Logitech USD 1 USD 66 USD 66
Lidar Sensor Neato XV Lidar 5Hz scan rate 1 USD 75 USD 75
Arduino Uno 80 MHz frequency CPU USD 2 USD 20 USD 40
Incremental rotary
encoder signswise
LBD 3806

600 pulse per revolution 2 USD 17 USD 34

Other accessories Fixture, screws, and wires - USD 20 USD 20
Logitech gamepad F710 2.4 GHz Wireless Controller 1 USD 39 USD 39
Motor Controller Shields Robot Power 13 A 5–28 V H-bridge 2 USD 45 USD 90
Newsmarts
Spur Gear module

17 teeth 7mm bore—NS27IU001-25 2 USD 6 USD 12

Extra Battery 9.6 V—2000 mAh
Rechargeable with charger

1 USD 33 USD 33

Ride-on-Car One Motor rear drive 1 USD 210 USD 210

Total of the core items USD 619

Optional Items
Laptop i7 7700HQ 2.8GHz 16GB RAM

with GTX 1060 TI 6 GB GDDR
1 USD 1050 USD 1050

Intel Realsense Depth Camera 1 USD 149 USD 149
IMU Razor 9 DOF Sparkfun 1 USD 36 USD 36
Camera Logitech C260 1 USD 19 USD 19

Total of optional items USD 1254
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