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Abstract: CO2 storage is a greenhouse gas mitigation instrument for many countries. In this paper, we
investigate the possibility of CO2 storage in the region of the Precaspian basin using the compositional
flow model that was verified by the data of the Frio pilot project, USA. We use local grid refinement
in the commercial reservoir simulator. In the reservoir simulation for data of the Frio Pilot project, we
have achieved a good history matching of well pressure. Different scenarios were tested, and post-
injection migration was shown for both case studies. The long-term reservoir simulation shows the
potential amount of trapped CO2 by residual and dissolved trapping mechanisms in the Precaspian
basin. The performed uncertainty study covered the uncertainty of the model’s parameters resulting
in P10, P50 and P90 cases in terms of the amount of trapped CO2.

Keywords: CO2 storage; compositional flow model; reservoir simulation

1. Introduction

In the last few years, there has been a growing interest in studying many mechanisms
to achieve reductions in CO2 concentration in the atmosphere. The growing infrastructure
of countries requires increased consumption of fossil fuels that can result in the greenhouse
effect. Efforts of many countries in controlling greenhouse gas emissions were documented
in the Paris Agreement. One of the methods to mitigate CO2 emissions is to inject CO2 into
the geological storage including depleted oil and gas reservoirs or aquifer formations. The
injection of CO2 should be at sufficient depth to allow CO2 to be in a supercritical state (in
general, the depth should approximately be larger than 800 m so that the pressure is above
7.4 MPa and the temperature is above 31 degrees Celsius) in which the storage capacity is
maximized. CO2 has a liquid-like density and gas-like viscosity in the supercritical state
and occupies approximately one hundredth of the volume it does as a gas at standard
conditions. The recognition of the viable role of carbon sequestration is increasing, and the
implementation of such technologies can be found in many projects around world from
USA, UK, China, Norway, etc. In [1], the method for evaluating CO2 storage capacity was
proposed in the global context in order to achieve “two degree scenario” objective.

The assessment of the storage capacity is sophisticated since there are many trapping
strategies. We highlight four main trapping mechanisms of carbon dioxide in the aquifer
such as hydrodynamic trapping when CO2 migrates upwards and remains just below
the cap rock (a structural or stratigraphic trap must exist); immobile phase as residual
gas saturation during the imbibition process; dissolution in water; and mineral trapping.
The first three trapping mechanisms are the most important instruments as the mineral
trapping effects can be observed only after a long period of time (many years, maybe even
thousand of years). The most desirable mechanisms for trapping are immobile phase and
dissolution in water, because hydrodynamic trapping is risky as the cap rock can partially
seal; hence, CO2 can migrate through it, and its storage efficiency can be reduced.

Energies 2021, 14, 8023. https://doi.org/10.3390/en14238023 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8666-0998
https://orcid.org/0000-0002-3958-8871
https://doi.org/10.3390/en14238023
https://doi.org/10.3390/en14238023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14238023
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14238023?type=check_update&version=1


Energies 2021, 14, 8023 2 of 17

To address modeling CO2 storage in the subsurface, many researchers have proposed
various numerical models with different realistic data [1–4]. There are many case studies
of such mechanisms around the world such as Johansen formation [5], Utsira formation [6],
Cranfield pilot project [7,8], Frio pilot project [9] and others. Large-scale modeling helps
to evaluate the behavior of the injected CO2 in various scenarios, and the models were
verified by using additional sources of field projects including the pressure measurements,
seismic surveys, etc.

Kazakhstan’s plan on fulfilling the Paris Agreement (2016) may require additional
actions in order to be able to achieve the goals of achieving a 25% emission reduction
strategy by 2030. According to [10], the current mitigation activities in Kazakhstan may
not be enough to reach a reduction of 15% (unconditional target) based on the business as
usual(BaU) model. CO2 sequestration can be a solution for the country in the reduction in
CO2 emissions. Potential locations in Kazakhstan for CO2 storage were discussed in [11,12],
and the locations were estimated to possess around 1003 Mt CO2 storage capacity of the
gas reservoirs of Kazakhstan in [13]. However, most of previous studies do not take into
account numerical reservoir simulations of CO2 storage in Kazakhstan.

In this study, we investigate the reservoir simulation of CO2 storage in 3D using
the compositional flow model for the Frio CO2 project in the USA and the Precaspian
Basin in Kazakhstan. We study the effect of parameters that can be essential in modeling
CO2 storage evaluation in a potential subsurface of Kazakhstan. Model verification was
performed by history matching of the well pressure profile based on the data of the Frio field
experiment. We utilize the commercial simulator Eclipse 300. To the authors’ knowledge,
3D numerical simulation of CO2 sequestration in the Prescaspian formation has been
scarcely investigated from the point of view of evaluating capacity. We propose the potential
location of the CO2 storage and demonstrate the possible amount of trapped CO2 and
present also plume migration in the post-injection period. The possible amount of trapped
CO2 was presented in terms of P10, P50 and P90 cases resulting from the uncertainty study
that covered the most uncertain parameters of the reservoir simulation model. This study
uses machine learning algorithms to conduct sensitivity analysis incorporated with the
reservoir simulator.

The remainder of the paper is organized as follows. Section 2 describes settings in the
compositional flow reservoir simulation. We use the data from the Frio CO2 project as a
case study. Reservoir simulation results for regions from the Frio and Precaspian formation
are presented in Section 3. The compositional flow model was verified and applied to Frio
CO2 Project, and then it was applied to the Precaspian formation, Kazakhstan. Section 4
summarizes the results of this study and draws conclusions.

2. Model Description

In this section, we provide an overview of the upper part of the Frio formation in
USA and describe the compositional flow model setup and input parameters used for the
simulation.

2.1. Overview of the Frio CO2 Model

The injection pilot project in Frio brine formation is used as a case study for reservoir
simulation of CO2 sequestration. The Frio brine field is a sandstone formation with
high porosity and permeability and is located in Houston, TX, USA. In this pilot project,
1600 tons of CO2 was injected during 10 days into the formation 1500 m below the surface
(see for more details [14]). The target for injection was the upper Frio Formation (“C”
sandstone), which is a 23-meters thick brine-bearing interval above an oil production zone.
The upper part of the “C” formation has a porosity of 30 to 35% and permeability of 2000
to 2500 md. There is also some finer grained sandstone with porosity of 24 to 28% and
permeability of 70 to 120 md in the middle of this zone. Finally, there is a cap rock (seal)
at the top of “C” formation and that is why the injected CO2 can be trapped by using a
hydrodynamic trapping mechanism. The project consisted of two wells: one injection well
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and one observation well. The existing oil production well was plugged and recompleted in
“C” formation as an observation well. A new injector was completed in “C” formation for
the CO2 injection. There are no faults or fractures between injection and observation wells.
The distance between wells is about 33 m, and the dip angle is approximately 16 degrees.

2.2. Compositional Reservoir Simulation Model Set-Up

The compositional reservoir simulation was designed by using the ECLIPSE 300 simu-
lator with CO2 storage option and was used to investigate the development of the larger
scale CO2 storage experiment.The CO2 store option can be applicable for a temperature
range of 12–100 ◦C and a reservoir pressure of up to 600 bar. There were two components
present in the model: CO2 and water. In the ECLIPSE 300 simulator, the solubility of CO2 in
water was calculated by using the procedure of Spycher and Pruess [15], which was based
on fugacity equilibration between water and CO2. The fugacities for water and CO2 were
calculated by using Henry’s law and the Redlick–Kwong equation of state, respectively.
The compositional model takes into account the important processes happening during
the interaction of CO2 with water, namely the process of CO2 dissolution in the water,
density changes of CO2-water mixture, trapping of gas as residual saturation and gas
gravity effects resulting in hydrodynamic trapping by the cap rock.

The corner point geometry grid was implemented by using a Python script. An angle
of 16 degrees was chosen during the construction of the grid (see Figure 1).

Figure 1. Grid for Frio project.

The domain of the model was discretized by 150 × 150 × 23 cells. The lateral width
of each grid cell was 15 m and layer thickness was 1 m. As there were two sealing faults
and salt dome based on the Frio geological model, the no-flow boundary conditions were
applied from all sides. The further description on the configuration of the grid could be
found in Section 3.

The local grid refinement (LGR) was used where finer grids were set in the area where
the CO2 plume migration may occur in order to obtain accurate calculations (see Figure 2).
LGR allows improving the accuracy of the model, and it was reported in many studies of
flow and transport problems with error evaluations [16–18]. The eight cells in the area of
injection and observation wells were refined laterally by a factor of 15, providing cells 1 m
in terms of width, and the further two cells from each side was refined by a factor of 10,
providing cells 1.5 m in width.

A rock compressibility value of 1.28 × 10−4 1/bar was applied to the model [19]. The
realistic porosity and permeability were digitized from [14] and were averaged over each
1 m in the z-direction using a Python script (see Figure 3). As data were obtained only from
one well, permeability and porosity are the same along the layers. Moreover, horizontal
permeabilities in both directions x and y were assumed to be the same, i.e., there was no
anisotropy in x and y directions.
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Figure 2. Local grid refinement around wells: 1—injection well; 2—observation well.

(a) (b)

Figure 3. The porosity and horizontal permeability curves from Frio field and averaged values per meter. (a) Porosity.
(b) Permeability.

Two components were considered in the model, such as CO2 and water with the
density of 1026 kg/m3. The initial pressure and temperature were set as 152 bars and
57 ◦C, respectively. All equations of state parameters for CO2 component including critical
temperature, critical pressure and molecular weight were standard in the simulator that
was specified in previous study [9].

In the model, the relative permeability and capillary pressure figures were digitized
from the data in [19], fitted using Corey function (for more details see Equations (1)–(3))
and used in the reservoir simulation model. The fitting for drainage and imbibition relative
permeability curves is illustrated in Figures 4a and 4b respectively and the fitting for
drainage and imbibition capillary pressure curves is illustrated in Figures 5a and 5b respec-
tively. The saturation of connate water and critical water was defined to equal 15%, the
Corey coefficient for drainage and imbibition gas curves (Cg) was two, for drainage water
curve it was three and for the imbibition water curve (Cw) it was 2.5. Relative permeability
and capillary pressure hysteresis options (both curves drainage and imbibition were used
in the simulation model) were switched on in the reservoir simulation model. The critical
gas saturation was assumed to be 5%. The formulas of the relative permeability [20] and
the capillary pressure [21] were as follows:

krg = krgmax

[
1− sw − sgcr

1− swi − sgcr

]Cg

(1)
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where Sw is the water saturation, Swi is the intial water saturation, Sgcr is the critical gas
saturation and Cg is the Corey gas exponent. Moreover, the following is the case:

krw = krwmax

[
sw − swcr

swmax − swcr

]Cw

(2)

where Sw is water saturation, Swmax is the maximum water saturation, Swcr is the critical
water saturation and Cw is the Corey water exponent.

pc =
cw(

Sw−Swr
1−Swr

)aw +
cg(

Sg−Sgr
1−Sgr

)ag (3)

Sw is the water saturation, Swr is the critical water saturation, Sg is the gas satura-
tion, Sgr is the critical gas saturation, Sw is the water saturation, aw and ag are pore-size
distribution coefficients for water and gas (aw = 0.4 and ag = 0.03 for drainage curve;
aw = 0.34 and ag = 0.06 for imbibition curve) and Cw and Cg are the entry capillary pres-
sures for water and gas (Cw = 0.347 and Cg = −0.307 for drainage curve; Cw = 0.33 and Cg
= −0.3 for imbibition curve).

(a) (b)

Figure 4. Relative permeability curves for CO2 and water where Sw = 0.15. Corey function was fitted to drainage and
imbibition relative permeability curves from [19]. (a) Drainage relative permeability curves, KRG-relative permeability of
gas, KRW-relative permeability of water, Digitized-data from [19]. (b) Imbibition relative permeability curves, KRG-relative
permeability of gas, KRW-relative permeability of water, Digitized-data from [19].

(a) (b)

Figure 5. Corey function was fitted to drainage and imbibition capillary pressure curves from [19]. (a) Drainage capillary
pressure. (b) Imbibition capillary pressure.

3. Numerical Results

In this section, we describe the history matching results of the compositional flow
model for the injection well pressure and CO2 plume migration for the Frio project in the
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USA. Moreover, we show the possibility of CO2 storage in the proposed region of the
Precaspain basin and provide compositional model setups and simulation results.

3.1. History Matching of the Well Pressure for Frio Project

The initial grid for the reservoir simulation of Frio project was set as a square with
equal sides of 2250 m (150 cells in each direction with lateral width of 15 m) for the x-y
directions (see Figure 6). Another option tried was to shorten the width of the model to
855 m (see Figure 7).

Figure 6. Square model with a length and width of 2250 m.

We should note that based on the Frio field geological model in [9,19], there are no-
flow boundary conditions from three sides of the reservoir (salt dome from one side and
two main faults from the remaining two sides). To improve history matching, we tested
different values of pore volume multiplier for the remaining side.

As observed from Figure 8, the width of the reservoir seems to be ambiguous, as
when the width of the reservoir is shortened to 855 m (Figure 7), the BHP (bottom-hole
pressure) of injector started to deviate from the historically recorded pressure, which was
also observed in [22]. It seems that the width should be larger than the width based on the
geological model, and the deviation of BHP is shown in Figure 8. The distance from the
one of boundaries to the injector in the rectangle model is closer than in the square model
(see Figures 6 and 7). Pressure disturbance achieves the closest side boundary earlier in the
rectangle model and affects well pressures. The alternative option was tested by placing
wells in the center of the grid and retaining the width of 855 meters (see for more details
Figure 9). In that case, we can obesrve that well pressure is less affected by the closest
boundary as the wells are now situated in the center of the grid. However, we still observe
the deviation of the simulated well pressure from the historical BHP (Figure 8). In order to
achieve history matching on injector’s BHP and to receive a consistent CO2 plume shape
with width = 2250 m, the different parameters were varied, which are discussed below.



Energies 2021, 14, 8023 7 of 17

Figure 7. Rectangle model with a width of 855 m and length of 2250 m.

Figure 8. History match of injector’s BHP. BHP for model with width = 2250 m (black line), model
with width = 855 m (blue line), model with width = 855 m and wells placed in the center of the grid
(green line). Length of the models = 2250 in all 3 cases.

Figure 9. Rectangle model with a width of 855 m and length of 2250 m where the well is in the center.

Due to the uncertainty of permeability in the reservoir, we conducted numerical
experiments for the vertical to horizontal permeability ratio (kv/kh) from 0.01 to 0.1. We
should note that the vertical direction of CO2 plume flowing towards the reservoir top
can be impacted by this ratio. The various numerical experiments demonstrated a small
impact of kv/kh variation on injector’s BHP. Finally, the value of 0.1 was kept as a base case
because it is commonly used in the industry [23] to account for vertical flow restrictions.
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The horizontal permeability far from the injection well trajectory was a key parameter
for variation in order to match the injector’s observed BHP and CO2 plume migration.
The simulations indicate that the value of BHP increased when the value of horizontal
permeability decreased. Moreover, this slows down horizontal migration of CO2 plume
from the injector towards the producer. The horizontal permeability in x and y directions
was multiplied by 0.5 outside the injection well (but not for cells perforated by well, because
the data in the well area are measured and known) in order to obtain a history match
on injection well flowing BHP. The alternative option is the change of productivity index
(PI) of the well instead of changing horizontal permeability. However, the PI application
will impact the perforated cells, which should be untouched because permeability was
taken directly from the measured permeability curve. Critical gas saturation was one
of the main parameters that had to historically match with CO2 plume migration, as it
can impact the movement of gas and the amount of gas left as residual saturation. The
values of this parameter such as 0, 1%, 5%, 10% and 20% were tested by using end point
scaling (three-point scaling) in order to achieve a comparable CO2 plume to that of the
conducted seismic survey from [24]. The value of 5% was chosen as the best one to match
available data.

The pore volume multiplier on the edge cells of the model was the second most
influential parameter on injectors’ BHP trend. The application of pore volume multiplier
made the BHP trend consistent with the observed BHP trend. Its value of 1000 was chosen
based on the iteration process to obtain a BHP trend consistent with an observed one. The
multiplier was applied only to edge cells at the opposite side of the salt dome.

As shown in Figure 8, we achieved excellent matching between measured BHP (red
dots) and modeled BHP (black line). It is important to note that the history match was
improved by utilizing a width of 2250 m.

The CO2 plume from the history-matched reservoir simulation of the current study at
different days is shown in Figure 10. The results are similar to CO2 plume migration from
Figure 7 of [22].

Figure 10. CO2 plume migration for the Frio project based on the history-matched simulation model.
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3.2. Application of the CO2 Storage Model Using Data from Kazakhstan

Kazakhstan has many sedimentary basins or formations that can be used for potential
CO2 storage [13]. The largest basin among them is the Precaspian basin, which has huge
storage capacities compared to other basins, and it was chosen for modelling to show
CO2 storage efficiency using a compositional flow simulation. In reservoir modeling, we
consider a region of the postsalt formation, which is a good target for CO2 sequestration
with the good reservoir characteristics where porosity is higher than 20% and permeability
varies from 30 mD to several hundred millidarcies [13] with a presence of a good cap rock.
As shown in Figure 11, the proposed region is located in a Cretaceous reservoir at depths
of approximately 1000–2000 m. As its depth is more than 800 m, hydrostatic pressure is
above 7.4 MPa, and the temperature is above 31 ◦C, CO2 should be in a supercritical state
in which the storage capacity is maximized. Another advantage of the proposed region
is from economic point of view as the potential cost for drilling a new well is lower with
lower formation depths.

In our model, the width and height of the region were set at 14 km and 450 m,
respectively. A constant porosity value of 20% and a permeability value of 100 mD were
taken as input for the reservoir model. As there was no SCAL (special core analysis) data
available, the Frio field’s relative permeability and capillary pressure curves were taken
as the basis for building the Precaspian model. The curves were taken only as a starting
point; therefore, the study was performed to investigate the uncertainty of curves and
their impact on the trapped amount of carbon dioxide. All other settings of the model are
presented in Table 1.

Figure 11. Potential reservoirs for CO2 storage in Precaspian basin adopted from [13].
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Table 1. Settings for the Precaspian model.

Parameter Value

Depth of reservoir top, m 1073
Top perforation depth, m 1121
Pore pressure at reservoir top depth, bar 109
Overburden pressure at 1073 m and 1121 m, bar 232, 242
Reservoir temperature, C 55.7
Porosity, % 20
Horizontal permeability, mD 115
Kv/Kh ratio 0.1
Number of cells in I and J directions 90
Number of layers 15
Cell dimensions in I and J directions, m 150
Layer thickness, m 30
Injection rate, tons/day 223
Injection period, years 100
Post injection period, years 130
Total amount injected, millon tons 8.14

Similarly to the Frio model, local grid refinement around the injector was used for the
the Precaspian basin model in order to achieve a good resolution and accurate movement
of CO2 plume (see Figure 12).

Figure 12. Grid with local grid refinement in the center of the Precaspian model.

Using a digitization tool, the depth of the reservoir top was taken as 1073 m (see
Figure 11). The pore pressure of 109 bar at that depth was calculated by the hydrostatic
formula by using a brine density of 1035 kg/m3. The reservoir temperature was taken as
homogeneous in the reservoir, i.e., constant of 55.7 ◦C. It was calculated by assuming an
ambient surface temperature of 20 ◦C and average geothermal gradient of 27.5 ◦C/km. The
gas injection rate was set at 120,000 m3/day (223 tons/day). This value is approximately
equal to the injection rate in the Frio CO2 project. The consideration of fracture pressure
should be taken into account while injecting CO2 into the Precaspian basin in order to
avoid a generation of fractures around the well, which can act as a potential path for
CO2 migration upwards to the surface. For several years, a great effort has been devoted
to study of the properties of the fractured system such as pressure, geometry and other
factors [25,26]. Fracture pressure was assumed at 65% from overburden pressure. Sixty-
five percent of overburden pressure is potentially the minimum fracture pressure in the
reservoir, but it can be higher than this value, achieving the overburden pressure itself. As
Cretaceous formations mostly comprise clastic rocks, the average rock density was taken as
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2200 kg/m3. The approximate overburden pressure at perforation depth of 1121 m is about
242 bar; hence, the minimum fracture pressure is 157 bar. In other words, the bottomhole
pressure of injector should not increase the pressure of 157 bar.

The amount of trapped CO2, which includes dissolved CO2 in water, immobile resid-
ual CO2 and remaining amount of CO2 in mobile gas phase, was computed by using the
reservoir model. The single realization homogeneous model with a constant porosity of 0.2
and permeability of 115 mD showed that after 100 years of injection, most of the CO2 was
left in mobile phase, i.e., 80% of all injected CO2 (6.47 Mtons). Twelve percent of injected
CO2 was dissolved in water (0.97 Mtons), and 8% was trapped as residual gas (0.69 Mtons).
The reason for such an amount of trapped residual CO2 is that the saturation table of
CO2-water has only 5% of irreducible gas saturation. Here, it should be noted that residual
CO2 saturation is one of the uncertain parameters and can be higher than 5%, which will
definitely result in an increased amount of trapped gas by capillary forces.

The extent of the CO2 migration after 1, 10, 30, 50 and 100 years after its injection is
shown on Figure 13.

Figure 13. CO2 migration in Precaspian model for 1, 10, 30, 50 and 100 years.

In order to model the post injection migration, we show the possible effect of residual
gas trapping within 130 years after the end of injection. After stopping CO2 injection, it
continues to dissolve in water. The amount of dissolved CO2 increased over time from
12% to 18% (1.43 Mtons), and the amount of CO2 trapped as residual gas increased from
8 to 10% (0.81 Mtons). The total of 28% of injected CO2 is trapped permanently, which
is an indication of a good potential for CO2 storage. The remaining part of CO2 is in the
mobile gas phase, but it also can be trapped by a sealed cap rock. To make it happen, the
impermeable cap rock should exist. Moreover, injection pressure should be monitored in
order to refrain from fracturing the cap rock. In addition, the spill points should also be
monitored in order to prevent CO2 migration to other formations.

The uncertainty study was performed in order to observe how relative permeability
taken from the Frio field and other most uncertain parameters (absolute permeability,
porosity, residual CO2 saturation, critical water saturation, Corey gas and water coefficients)
impact the trapped amount of CO2. The uncertainty range for permeability was taken as
30–200 mD [13]; for porosity it was taken as 10–30% (the porosity range was constrained
between 10% and 30%, because the model is homogeneous and the average value should
be over 20%); for residual gas saturation it was taken as 1–15%; for critical water saturation
it was taken as 1–30%; for Corey gas coefficient it was taken as 1–3; and for Corey water
coefficient it was taken as 1–5.
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The uncertainty study included the following steps:

• Sensitivity analysis to determine how different parameters affect the trapped amount
of CO2;

• Monte Carlo Latin Hypercube sampling method was used as experimental design in
order to cover the entire range of uncertainty for six parameters;

• The supervised learning algorithm was used to train the model using 75% of data
taken from Monte Carlo simulation results;

• The trained model was used to explore the uncertainty range in more detail by
generating an additional 10,000 cases;

• The probability density function was built based on results of the Monte Carlo simula-
tion and regression model, which gave us P10, P50 and P90 cases.

Firstly, sensitivity analysis on six uncertain parameters was performed to determine
their impact on the trapped amount of CO2 using the OVAT (One-Variable-at-a-Time)
technique when only one parameter was changed at a time (the value of parameter set to
minimum and then to maximum; for absolute permeability, they are 30 mD and 200 mD;
for porosity, they are 10 and 30%; for residual gas saturation, they are 1 and 15%; for critical
water saturation, they are 1 and 30%; for Corey gas coefficient, they are 1 and 3; and for
Corey water coefficient, they are 1 and 5) keeping all others at their original base values
taken from a single realization homogeneous model (for absolute permeability, it is 115 mD;
for porosity, it is 20%; for residual, gas saturation it is 5%; for critical water saturation,
it is 15%; for Corey gas coefficient, it is 2; and for Corey water coefficient, it is 3). As
observed from Figure 14, the trapped amount of CO2 in the gas phase is influenced mostly
by residual gas saturation (the higher the residual gas saturation, the higher the amount
of trapped CO2 in gas phase). The second most influential parameter here is porosity.
Porosity is also a primary parameter that impacts the amount of CO2 dissolved in water
mostly. Hence, the two most important and sensitive parameters are porosity and residual
gas saturation. Other parameters have lower levels of impact. In addition, it should be
mentioned that the only parameter that does not have any impact at all on the amount of
trapped gas is critical (residual) water saturation.

Figure 14. Sensitivity analysis on uncertain parameters and their impact on trapped amount of CO2 during 100 years of
injection and after 130 years of post injection.
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Due to a limitation in computational power, we were able to run a small amount
of cases. For this purpose, we used the Monte Carlo Latin Hypercube sampling method
and generated 150 cases by mixing six most uncertain parameters. The Latin Hypercube
sampling method is a good option when we need to cover evenly the entire area of
uncertainty with a minimum number of samples [27]. The total injected CO2 was the same
in all 150 cases.

The correlation between parameters and trapped amount of CO2 on Figure 15 shows
that porosity strongly and positively correlates with the amount of CO2 dissolved in water
and residual gas saturation with the amount of CO2 trapped in the gas phase as residual
gas. The other four parameters (permeability, critical water saturation, Corey gas and water
coefficients) do not correlate well with the amount of trapped CO2. These results from
uncertainty analysis support the observations made during sensitivity analysis, which also
confirms that the most influential parameters are porosity and residual CO2 saturation.

The last step was to use a machine learning tool to generate much more cases than
we could create if using the reservoir simulator. The following supervised learning algo-
rithms were tested for this purpose: random forest, linear regression and the second order
polynomial regression model. Data consisting of 150 cases were divided randomly into
two parts: 75% of data (e.g., using 112 cases out of 150 cases) for training the models and
25% of data (e.g., using 38 cases out of 150 cases) for testing the performance of models.
All six uncertain parameters were used as input parameters for training models. The total
amount of trapped CO2 (including dissolved amount of CO2 in water and trapped amount
of CO2 in gas phase as residual gas) after 130 years after the post injection period was used
as a target. The best algorithm was selected based on the following performance metrics:
MAE (mean absolute error), MSE (mean squared error), RMST (root mean squared error)
and coefficient of determination R2 (Equations (4)–(7)):

MAE =
1
n

n

∑
j=1
|yi − yj| (4)

where n is the total number of data points, yi is predicted value of target and yi is true
value of target:

MSE =
1
n

n

∑
j=1
|yi − yj|2 (5)

where n is the total number of data points, yi is predicted value of target and yi is true
value of target:

MRST =

√√√√ 1
n

n

∑
j=1
|yi − yj|2 (6)

where n is the total number of data points, yi is predicted value of target and yi is true
value of target:

R2 = 1− SSres

SStot
=

∑n
j=1(yi − yj)

∑n
j=1(yi − ymean)

(7)

where n is the total number of data points, yi is predicted value of target, yi is true value
of target, ymean is mean value of all true values of target, SSres is residual sum of squared
errors and SStot is total sum of squared errors.

As observed from Table 2, the best algorithm was the second order polynomial
regression model, which has the lowest MAE, MSE and RMST errors and the highest R2.
The performance metrics in Table 2 are calculated on the test data (25% of data which were
not used for training the models, i.e., on 38 out of 150 cases) and train data(75%).
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Figure 15. Correlation between parameters and trapped amount of CO2 at 130 years after the end
of injection.

Table 2. Amount of CO2 after 130 years after the post injection period.

Algorithm R2 MAE MSE MRST

Random forest 0.94 0.15 0.03 0.17
Linear regression 0.97 0.09 0.01 0.12
Second order polynomial regression 0.99 0.04 0.003 0.06
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The polynomial regression model shows a very good prediction capability (see more
details in Figure 16).

Figure 16. Correlation between predicted amount of trapped CO2 by the second order polynomial
regression and actual amount of trapped CO2 simulated by reservoir simulator.

The cumulative density function is illustrated in Figure 17. P10, P50 and P90 values
from the cumulative density function are as follows: 3.65 Mtons, 2.68 Mtons and 1.77
Mtons, respectively. Single realization homogeneous case (2.24 Mtons) lay between P90
and P50 values being closer to the P50 value.

Figure 17. Cumulative density function for total amount of trapped CO2 after 130 years after the end
of injection.

We also should mention that the lower the injection point (the lower the perforations),
the more contact area there is between CO2 and the formation water, which should result in
improved trapping efficiency. The usage of horizontal injection wells should also increase
the contact area between CO2 and the formation water; however, the drilling of such wells
should be considered from an economic point of view as the drilling cost of such wells is
more expensive.
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4. Conclusions

In this paper, we used compositional flow simulation to model CO2 storage pro-
cesses for the Frio CO2 project, USA, and a geological formation in the Precaspian basin,
Kazakhstan. We obtained good history matching of the well pressure of the Frio project
in the model. The impacts of different parameters on the model behavior were studied
and analyzed with provided data. The result of CO2 migration in the Frio formation is
consistent with other studies [22]. Next, we built a compositional flow model for a region
of the Precapsian basin by using the relative permeability curves from the verified Frio
field CO2 model.

An uncertainty study was performed to observe how relative permeability taken from
the Frio field (end points as residual CO2 saturation and critical water saturation; and
the shape of relative permeability curves as Corey gas and water coefficients) and the
other two most uncertain parameters (absolute permeability and porosity) impacted the
trapped amount of CO2. Sensitivity analysis showed that the most influential parameters
are porosity and residual CO2 saturation. It was clear from the uncertainty study that the
residual CO2 saturation has a strong positive correlation with the amount of CO2 trapped
in the gas phase and that porosity has a strong positive correlation with the amount of
CO2 dissolved in water. The overall study has shown that approximately 8.14 million tons
of CO2 can be injected into the region of the Precaspian basin within 100 years with an
injection rate of 223 tons/day. The period of 130 years of post injection showed that the
total amount of trapped CO2 is about 2.68 Mtons (which is about 33 % of total injected CO2)
based on the P50 case. The minimum amount of CO2, which is expected to be trapped,
should be about 1.77 Mtons based on the P10 case. On the other hand, the results show
that most of injected CO2 remains in mobile gaseous phases and can be trapped only by
hydrodynamic trapping mechanisms due to having a good cap rock. The findings suggest
that this approach could be useful for decision makers in considering a CO2 sequestration
project in Kazakhstan.
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