
energies

Article

A Dynamic Optimization Tool to Size and Operate Solar
Thermal District Heating Networks Production Plants

Régis Delubac *, Sylvain Serra , Sabine Sochard and Jean-Michel Reneaume

����������
�������

Citation: Delubac, R.; Serra, S.;

Sochard, S.; Reneaume, J.-M. A

Dynamic Optimization Tool to Size

and Operate Solar Thermal District

Heating Networks Production Plants.

Energies 2021, 14, 8003. https://

doi.org/10.3390/en14238003

Academic Editor: Azharul Karim

Received: 25 October 2021

Accepted: 23 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

LaTEP (Laboratory of Thermics, Energetics and Processes), E2S UPPA, Universite de Pau et des Pays de l’Adour,
64000 Pau, France; sylvain.serra@univ-pau.fr (S.S.); sabine.sochard@univ-pau.fr (S.S.);
jean-michel.reneaume@univ-pau.fr (J.-M.R.)
* Correspondence: regis.delubac@univ-pau.fr

Abstract: The aim of the ISORC/OPTIMISER project is to increase and improve the use of solar
thermal energy in district heating networks. One of the main tasks of the project is to develop an
optimization tool for the sizing and operation of a solar district heating network. This is the first
optimization tool using an open-source interface (Julia, JuMP) and solver (Ipopt) to solve nonlinear
problems. This paper presents the multi-period optimization problem which is implemented to
consider the dynamic variations in a year, represented by four typical days, with an hourly resolution.
The optimum is calculated for a total duration of 20 years. First, this paper presents the modeling
of the different components of a solar district heating network production plant: district network
demand, storage and three sources, i.e., a fossil (gas) and two renewable (solar and biomass) sources.
In order to avoid prohibitive computational time, the modeling of sources and storage has to
be fairly simple. The multi-period optimization problem was formulated. The chosen objective
function is economic: The provided economic model is accurate and use nonlinear equations. Finally
the formulated problem is a nonlinear Programming problem. Optimization of the studied case
exhibits consistent operating profiles and design. A comparison is made of different types of storage
connection at the production site, highlighting the relevance of placing the storage at the solar
field outlet. The optimum configuration supplies 49% of demand using solar energy, achieving a
renewable rate of 69% in combination with the biomass boiler.

Keywords: solar thermal energy; district heating networks; multi-sources; economic nonlinear
optimization; Julia (JuMP)

1. Introduction
1.1. Context

Reducing CO2 emissions is one of the major challenges of the 21st century. In France,
the tertiary/residential sector represents almost 45% of national energy consumption [1]
(66 tonnes of oil equivalent) and 27% of greenhouse gas emissions. In this sector, 11%
of consumption still comes from petroleum products, 30% from natural gas and 45%
from mainly nuclear-based electricity. Heating represents 66% of a household’s energy
consumption and the production of domestic hot water 11% [2]. It is in this context that
the development of urban heating networks makes sense and especially fourth generation
networks, which, among other things, are reducing network temperatures. This reduction
facilitates the use of renewable energies across wider geographical areas [3–6].

Notably, solar district heating networks (SDHNs) are an interesting solution for
heating buildings for many reasons [7,8]:
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studied in the 1980s [9] with the aim of improving its interaction with other sources and 
seasonal storage. The IEA proposes a review of the 40 years of existence of SDHNs [10]. It 
highlights that the use of solar energy in DHNs is very relevant, although regional energy 
policy and regulatory frameworks, in combination with a general lack of awareness about 
solar heating among stakeholders, are the main obstacles to developing SDHNs. Numer-
ical tools could be an efficient way to overcome this lack of awareness. Some are already 
commonly used (such as TRNSYS), but they hardly use real mathematical optimization. 
In addition, most of the applications described in the IEA review were not suitably opti-
mized, mainly because computer power did not allow for real digital optimization 40 
years ago and also because mathematical optimization makes the use of numerical tools 
trickier. However, optimizing SDHNs can be very relevant since the suitability of using 
solar energy in DHNs has already been proven: Numerical optimization tools could help 
to make the use of solar energy more efficient. 

In this context, the ISORC project (a consortium including design offices—Tecsol, 
NewHEAT and Sermet—and a research laboratory—LaTEP—supported by ADEME) 
aims to increase and develop solar thermal energy in existing and new district heating 
networks (DHNs). Among the different tasks of the project, the one led by the LaTEP is to 
develop a numerical optimization tool devoted to the use of solar energy in the mix energy 
dedicated to supply DHNs. 

1.2. Optimization Issues of State-Of-The-Art District Heating Networks and Tools Used to Ad-
dress the Problem 

The optimization of heating and cooling networks is a subject that has been covered 
in numerous articles, which in turn have been summarized in various reviews. Figure 1 
shows the strong tendency to use mathematical optimization in heat networks over the 
past decade. Sameti and Haghighat [6] carried out a review of DHN optimization studies 
divided into four topics: connection of sources to the network, network configuration (size 
and number of each component), operation and scheduling and subsystem building 
blocks (focused on specific technical aspects). Whatever the topic, in most of the studies, 
the formulation of the optimization problem led to a mixed integer linear programming 
(MILP) formulation, which was then solved with commercial solvers. The authors con-
cluded that considerable computational times were required for large networks. Gao et 
al. [11] carried out a review of state-of-the-art optimization methods used for energy co-
generation systems, which therefore included DHNs. They noted in particular a growing 
tendency to use solar heat in new DHNs. Gao et al. [11] noted that there was a need for 
more in-depth research on small-scale networks and on the economic models used to op-
timize DHNs, in order to facilitate their development. Finally, Wang et al. [12] recently 
assessed the performances of the optimization methods used in DHNs. They outlined the 
methods along with their purpose and environment, concluding, like Sameti and 
Haghighat [8], that the MILP approach is most often used in the MATLAB/Simulink en-
vironment in order to minimize total costs. The authors highlight the need to be aware of 
data such as flow rates, temperatures and energy levels in order to better assess network 
performance and better identify possibilities for optimization. 

Here we present the most relevant optimization studies, starting with steady-state 
optimization followed by different dynamic modeling approaches, and finally we explain 
the multi-period approach. 

Reduction in CO2 emissions;
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Centralization of heat production, which introduces a scale effect, reducing costs;
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Improving the integration of solar heating into DHNs is a subject that started to be
studied in the 1980s [9] with the aim of improving its interaction with other sources and
seasonal storage. The IEA proposes a review of the 40 years of existence of SDHNs [10].
It highlights that the use of solar energy in DHNs is very relevant, although regional
energy policy and regulatory frameworks, in combination with a general lack of awareness
about solar heating among stakeholders, are the main obstacles to developing SDHNs.
Numerical tools could be an efficient way to overcome this lack of awareness. Some
are already commonly used (such as TRNSYS), but they hardly use real mathematical
optimization. In addition, most of the applications described in the IEA review were
not suitably optimized, mainly because computer power did not allow for real digital
optimization 40 years ago and also because mathematical optimization makes the use
of numerical tools trickier. However, optimizing SDHNs can be very relevant since the
suitability of using solar energy in DHNs has already been proven: Numerical optimization
tools could help to make the use of solar energy more efficient.

In this context, the ISORC project (a consortium including design offices—Tecsol,
NewHEAT and Sermet—and a research laboratory—LaTEP—supported by ADEME) aims
to increase and develop solar thermal energy in existing and new district heating networks
(DHNs). Among the different tasks of the project, the one led by the LaTEP is to develop a
numerical optimization tool devoted to the use of solar energy in the mix energy dedicated
to supply DHNs.

1.2. Optimization Issues of State-Of-The-Art District Heating Networks and Tools Used to
Address the Problem

The optimization of heating and cooling networks is a subject that has been covered
in numerous articles, which in turn have been summarized in various reviews. Figure 1
shows the strong tendency to use mathematical optimization in heat networks over the
past decade. Sameti and Haghighat [6] carried out a review of DHN optimization studies
divided into four topics: connection of sources to the network, network configuration (size
and number of each component), operation and scheduling and subsystem building blocks
(focused on specific technical aspects). Whatever the topic, in most of the studies, the
formulation of the optimization problem led to a mixed integer linear programming (MILP)
formulation, which was then solved with commercial solvers. The authors concluded
that considerable computational times were required for large networks. Gao et al. [11]
carried out a review of state-of-the-art optimization methods used for energy cogeneration
systems, which therefore included DHNs. They noted in particular a growing tendency to
use solar heat in new DHNs. Gao et al. [11] noted that there was a need for more in-depth
research on small-scale networks and on the economic models used to optimize DHNs,
in order to facilitate their development. Finally, Wang et al. [12] recently assessed the
performances of the optimization methods used in DHNs. They outlined the methods
along with their purpose and environment, concluding, like Sameti and Haghighat [8], that
the MILP approach is most often used in the MATLAB/Simulink environment in order to
minimize total costs. The authors highlight the need to be aware of data such as flow rates,
temperatures and energy levels in order to better assess network performance and better
identify possibilities for optimization.

Here we present the most relevant optimization studies, starting with steady-state
optimization followed by different dynamic modeling approaches, and finally we explain
the multi-period approach.

Considering steady-state optimization in more detail, Mertz et al. [13] developed a
mixed integer nonlinear programming (MINLP) optimization methodology for the topol-
ogy and design of fourth generation DHNs, including the choice of technologies and of the
consumers to be supplied. Again in MINLP optimization, Marty et al. modeled a cogener-
ation system including an ORC and a heating network. They studied different objective
functions (economic [14] and exergetic [15]) and finally demonstrated the advantage of car-
rying out a multi-objective optimization taking both these aspects into consideration [16].
Using these steady-state approaches, it is possible to optimize sizing, but as they are based
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on constant operation, they are not able to optimize the dynamic operation of a network.
This is essential, however, when considering intermittent renewable energy sources and
thermal storage.
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With the dynamic approach it is also possible to optimize operation by taking the
temporal variability of certain variables into account. Powell et al. [17–19] modeled and
optimized a mid-season thermal plant with an orthogonal collocation method. As they
introduced a model for a solar thermal parabolic mirror, a model for thermal energy storage
(TES) was also implemented with hot and cold volumes. The dynamic model was then
transformed in an algebraic system using orthogonal collocations and solved as a nonlinear
programming (NLP) optimization. The same methodology was also applied to dynamically
optimize a hybrid solar thermal and fossil fuel system. The authors showed that coupling
solar with fossil fuels could increase the share of solar thermal energy in the global energy
mix. Again with an NLP-type problem, Scolan et al. [20] optimized the operation of a
low-temperature solar plant by minimizing operating costs over a 5-day time period. The
dynamic model is discretized into an algebraic system using the orthogonal collocations on
finite elements method. The studies mentioned above present optimized heat production,
while others study the network in more detail by considering production in a simplified
way [13,21–23]. Nova-Rincon et al. [21] used 2D orthogonal collocation to dynamically
optimize the operation of a cooling network to obtain flow rate and temperature profiles to
meet consumer demands.

One way to discretize time differential equations can lead to a multi-period formu-
lation. In multi-period approaches, some equations are considered as steady state, while
others can be discretized on the selected time step. In literature, many studies on energy
management have used the multi-period approach to take into account the variability of
energy prices and the availability of sources to ensure the operability performance of the
system at the early design stage [24,25]. For example, Morvaj et al. [26] optimized a DHN
layout and its sizing and functioning with an hourly time step on typical days to optimize
both cost and CO2 emissions using a MILP-type formulation. Carpaneto et al. [27] used
a MILP formulation to optimize solar thermal field size by considering an economical
objective function. They concluded that solar inputs reduce management costs during
mid-season periods and summer when solar thermal energy can replace the use of boilers.
The case they studied in Northern Italy demonstrated how the storage operation could
allow solar energy to cover total demand. Solar thermal energy integration has also been
studied in an industrial sector [28,29] using MILP approaches. This showed that, in a
combined heat and power (CHP) system, the optimized solar field produced around 55%
of user annual demand. All these problems were formulated as MILP since convergence
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is easier than for MINLP formulations. However, this suggests that all models had to
be linearized, which sometimes leads to strong assumptions. In particular, for equations
representing economic models it is difficult to take account of the effects of scale, which
can lead to a strongly nonlinear reduction in costs, depending on the size of the systems.
Calculating temperatures with a linear formulation using Grossmann’s “transhipment”
method [30,31] increases the number of variables considerably.

Another limitation on the use of these tools in the industrial field is the complexity
of handling this analysis, which is usually carried out in an academic context. Despite
the high number of solar DH systems in countries as Denmark, the development of those
technologies is still limited across the world. When considering the commercial tools used
to study the integration of renewable energies in DHNs, it soon becomes clear that there
is a real need for a quick and simple tool which is nevertheless still precise. This is also
the conclusion reached by Connolly et al. [32] or more recently by Limpens et al. [33,34].
Connolly et al. [32] carried out a study of 37 tools. Most focus on electricity planning
and perform simulations rather than mathematical optimization. There are some accurate
commercial tools, such as EnergyPLAN or TRNSYS, which are mainly used for simulation
even though they propose optimization solvers [35,36]. Relevant open-source tools such as
Balmorel can be found in the Open Energy Modelling Initiative (Openmod) community [37].
Finally, A. Le Denn (Tecsol), carried out a study of calculation tools and methods used for
solar district heating. None of them use mathematical optimization as most cannot be used
by a non-expert.

The same conclusions were also reached by Limpens et al. [33], who created a cross-
sectoral (electricity, heat and transport) open-source optimization tool, EnergyScope TD. It
uses different objective functions (economic, CO2 emissions, renewable percentage) with
a MILP formulation, to optimize the design and operation of energy systems taking all
energy carriers into account, with an hourly resolution and for an urban to regional scale.
The open-source GLPSOL solver can be used, but performances (speed) are improved by
the use of a commercial MILP solver such as CPLEX.

1.3. Objectives of the Present Work

The tool presented here is written in an open-source language (Julia [38] and its
optimization package JuMP [39]) and uses open-source solvers but with the possibility
of using commercial ones. The creation of this tool responds to an industrial demand in
order to respond to projects in a more competitive way, i.e., more precisely. It studies solar
district heating networks (SDHNs) with an NLP formulation to model all components
more accurately than in MILP approaches. It needs to be fast, open-access and easy to use
by different kinds of users (expert or not), such as communities, engineering consultants
and companies.

This paper presents a nonlinear formulation to model a multisource DHN, including
solar thermal energy. Certain production elements can be modeled in more detail due to
the NLP approach (storage volume, solar field area, etc.) as with the flow rate and the
network and storage temperatures that can be calculated and settled at different levels.
The decision to use the NLP approach allows for better precision in the physical models
and highly nonlinear tendency of the cost functions due, among other things, to a scale
effect. The larger the system, the lower the unit cost. On the other hand, the resolution is
more difficult, requiring the development of a more elaborate resolution strategy. To our
knowledge, an optimization tool for the sizing and operation of such multisource DHNs
with an NLP approach has not been studied yet. The novelty lies in three interrelated issues:
a multisource approach, including solar thermal and NLP solving, with an open-source
interface and solver.

In the following, we first present the models used to represent the SDHN and in par-
ticular the heat production site. This consists of inter-seasonal storage and three production
sources, a gas boiler, a biomass boiler and a solar field. Next, the resolution methodology is
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presented and applied to a DHN with inter-seasonal storage to study the different possible
storage connections.

2. Methodology

The tool presented here solves a multi-period NLP optimization problem. The dy-
namic DHN model results in a set of differential equations (objective function and con-
straints) which are discretized. At each time step (period) the system is assumed to be in a
steady state. As shown in Figure 2, the system includes three heat sources (biomass boiler,
gas boiler and solar thermal plant) connected in series as in some existing SDHNs and a
thermal storage unit connected in parallel. For each period (denoted “i”), parameters such
as DHN demand, solar energy availability and ambient temperature are known. Next, the
optimization tool calculates the optimal size for each source (over the whole integration
period) and operation variables (temperatures, mass flow rates, etc.) for each period. The
objective function, which aims to minimize the total cost, is resolved for a total duration of
20 years. Since this study focuses on multi-source optimization, all of the DHN consumers
are modeled in this study by a single substation, which represents total heating demand,
as in [40,41].
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2.1. Creation of Typical Days

Due to the large number of variables and constraints necessary for the correct rep-
resentation of the system over a period, optimizing every day in the year is difficult to
achieve, especially if the aim is to have short calculation times. Hence, it is necessary to
simplify the problem by trying to find a compromise between precision of results and
calculation time. There are various methods in the literature for defining typical days. They
have been summarized by different authors [33,42,43]. The method used by Domínguez-
Munoz et al. [44] was adapted with the aim of representing a year as typical days with
an hourly time step: one day in winter, one day in summer and one day representing
mid-season, i.e., spring and autumn, which is therefore be used twice. This is a method
for creating typical days using mathematical optimization. The optimized variables are
network demand Pdemand,car, amount of sunshine Gcar and outside temperature Text,car. The
purpose of the optimization is therefore to create typical days that minimize the objective
function (Equation (1)) written as the sum of the squared deviations between the day that
has been created and all the other days in the season provided by a database (network
demand, amount of sunshine and outside temperature being furnished in this database for
one year with an hourly time step). The letter “l” represents the index for the period that
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here represents one hour of a 24 h day, “k” is the season index denoted by 1 to 3 and “j”
represents the index for the day of the season considered Seas.

obj Pcar,k = min
P

Seas,k

∑
j

24

∑
l

(
Pdemand,car,k,l − Pdemand,j,k,l

)2
, ∀ k ∈ [1, 3] (1)

obj Gcar,k = min
G

Seas,k

∑
j

24

∑
l

(
Gcar,k,l − G j,k,l

)2
, ∀ k ∈ [1, 3] (2)

obj Tcar,k = min
T

Seas,k

∑
j

24

∑
l

(
Text,car,k,l − Text j,k,l

)2
, ∀ k ∈ [1, 3] (3)

This minimization is therefore carried out 3 times in order to create a typical profile
for winter (k = 1, Seas = 90), summer (k = 2, Seas = 92) and mid-season (k = 3, Seas = 183).

To simplify the writing of the equations, the season index “k” is not written in the
following equations. The index “i” indicates the time index for each typical day in all
seasons by taking values from 1 to 96 (1–24: winter, 25–48: mid-season, 49–72: summer and
73–96: mid-season).

2.2. Model of the DHN

In this study, the heating network is very much simplified. It is represented by an
equivalent substation which replaces the whole network. For each period, demand Pdemand,i
must be satisfied (Equation (4))

Pdemand,i =
.

mdistrict,iCpηnetwork (Toutward,i − Treturn,i) (4)

with ηnetwork = 0.9 the average annual efficiency of a heating network taking into account
in particular heat losses. ηnetwork is a value supplied by the various partners of the ISORC
project based on their expertise and knowledge. Toutward,i and Treturn,i, are the outward and
return temperatures of consumers.

2.3. Model of the Heat Production Systems

For each period, the sizing of heat production sources and storage must respect
Equation (5) (Pstor,i is negative in the case of storage and positive in the case of discharge of
storage): (

Psol,i + Pbiom,i + Pgas,i + Pstor,i
)
ηnetwork = Pdemand,i (5)

Details of power by type of production unit are given in the following subsections.

2.3.1. Solar Field

The solar field (shown in Figure 3) is modeled by a single equivalent solar panel [45].
The norm EN12975 equation is used to calculate the outlet temperature Tout,pan,i from the
inlet temperature Tin,pan,i using Equations (6) and (7):

.
msol,i Cp

(
Tout,pan,i − Tin,pan,i

)
= Apan

[
η0Gi − α1(Tav,i − Text,i)− α2(Tav,i − Text,i )

2
]

(6)

Tav,i =
Tin,pan,i + Tout,pan,i

2
(7)

Apan represents the total surface area of the panel,
.

msol,i the flow rate for solar irra-
diance Gi and coefficients η0, α1 and α2 are dependent on the characteristics of the panel
(η0 = 0.906, α1 = 3.36 W/m2K and α2 = 0.0109 W/m2K2, issued from the website “the
solar kermark”).
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The exchanger between the solar field and the primary loop is modeled to respect a
given pinch (Equations (8) and (9)):

.
msol,i

((
Tout,pan,i − Tout,prod,sol,i

)
− pinch

)
≥ 0 (8)

.
msol,i

((
Tin,pan,i − Tin,prod,sol,i

)
− pinch

)
≥ 0 (9)

The flow rate
.

msol,i appears in Equations (8) and (9) to allow for two operating states:

1. If the output temperature of the solar field is too low to be able to exchange with the
network while respecting the pinch,

.
msol,i becomes zero so that Equations (8) and (9)

remain verified. In reality, during these periods the output temperature of the solar
field can gradually increase. Our model is quasistatic; thus, our modeling leads to
Tin,pan,i = Tout,pan,i, and the solution of Equation (6) leads to an average equilibrium
temperature of the field for the considered period.

2. If the temperature is high enough, Tout,pan,i, Tin,pan,i and Tav,i are calculated using
Equations (6) and (7) and are able to deliver heat to the network provided that the
fixed pinch is respected. In this study, the pinch value is set at pinch = 2 K.

2.3.2. Boilers

3 Two kinds of boiler are modeled: a wood-fueled boiler (called biomass boiler) and a
gas boiler. They are modeled by Equations (10)–(12).

Pboil,prod,i =
.

mprod,boil,iCp (Tout,boil,i − Tin,boil,i) (10)

Pboil,prod,i is the boiler power actually supplied to the network. This power corre-
sponds to the power of the boiler Pboil,i multiplied by efficiency ηboil (Equation (11)) which
depends on the boiler type (boil = biom or gas).

Pboil,prod,i = Pboil,i ηboil,i (11)

This boiler power is also calculated as a ratio of the maximum power that the boiler
can provide:

Pboil,i = Kboil,i Pboil,max (12)

It should be noted that a boiler’s efficiency depends on its rate of use. For the biomass
boiler, efficiency is expressed via Equation (13) with abiom = −0.0014, bbiom = 0.249 and
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cbiom = 72.125 and for the gas boiler via Equation (14) with agas = −0.045 and bgas = 96.7,
efficiency rates specific to boilers commonly used in France:

ηbiom,i = −abiom K2
biom,i + bbiomKbiom,i + cbiom (13)

ηgas,i = agas Kgas,i + bgas (14)

For the particular case of biomass boilers, additional constraints (Equations (15) and (16))
are considered [46,47] in order to represent inertia in such a way that does not allow rapid
variations in temperature or power or operation below a threshold value Kbiom,th.

Biomass operation is represented in Figure 4, which explains the range of acceptable
values for Pbiom,i+1 depending on Pbiom,i and i + 1 period duration. Concerning the inertia
influence, Pbiom,i+1 can only operate within a determined range of acceptable values defined
by αbiom rise and αbiom f all . Equations (15) and (16) represent these operating constraints
with αbiom rise = 0.22 kW/s and αbiom f all = 0.28 kW/s.

Pbiom,i+1 ≤ Pbiom,i + αbiom rise∆ti (15)

Pbiom,i+1 ≥ Pbiom,i − αbiom f all∆ti (16)
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For Pbiom,i+2, if the value is below Kbiom,th Pmax,biom, it is in the “Non-operating zone”
so the value is 0 (here, Kbiom,th = 0.3). In order to prevent the boiler from operating below
Kbiom,th using a defined, continuous and differentiable formulation, a sigmoid function is
used (18). Figure 5 is a representation of the sigmoid function as a function of coefficient
ksig which acts on the slope of the sigmoid. When x is negative, the value of the sigmoid
is 0, and when x is positive, the value is 1; we therefore have the equivalent of a binary
variable while still retaining a defined, continuous and differentiable formulation. A steep
slope gives more reliable results, but the digital complexity is greater (as the derivatives are
more difficult to obtain). This function is used in Equation (18) (replacing Equation (12))
to ensure that zero power is supplied to the network when the usage rate is less than the
value of Kbiom,th. The purpose of Equation (19) is to ensure that for values of ksig > 10 the
sigmoid function does indeed return values of 0 or 1, depending on the usage rate of the
boiler Kbiom,i.

sig(x) =
1

1 + exp−ksigx (17)

Pbiom,i = Kbiom,iPmax,biom sig(Kbiom,i − Kbiom,th) (18)
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abs(Kbiom,i − Kbiom,th) ≥ 0.5 (19)
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2.4. Storage Model

The storage model is a total volume divided into two zones (hot and cold) as a
thermocline [48] with a constant heat capacity considered at a mean temperature between
the hot and cold zones. Each zone is perfectly mixed and cannot exchange heat with the
other zone. The storage is connected to the network, as shown in Figure 6, where the
flow

.
mstor,i can be positive or negative, depending on whether the storage is in charge or

discharge mode (if
.

mstor,i > 0 the storage is in charge mode, whereas it is discharging if
.

mstor,i < 0). Equations (20)–(22) present mass and energy balances on storage nodes shown
in Figure 6.

.
mprod,i =

.
mdistrict,i +

.
mstor,i (20)

.
mdistrict,i Toutward,i =

.
mprod,iTout,prod,i −

(
max

( .
mstor,iTout,prod,i, 0

)
+ min

( .
mstor,iThot, i, 0

))
(21)

.
mprod,i Tin,prod,i =

.
mdistrict,iTreturn,i +

(
max

( .
mstor,iTcold,i, 0

)
+ min

( .
mstor,iTreturn,i, 0

))
(22)

A sigmoid function (17) is used for a continuously defined and differentiable formula-
tion for both charge and discharge so the energy balance Equations (21) and (22) become
the following (23) and (24):

.
mdistrict,i Toutward,i = Tout,prod,i

.
mprod,i −

.
mstor,i

(
sig
( .
mstor,i

)
Tout,prod,i +

(
1− sig

( .
mstor,i

))
Thot,i

)
(23)

.
mprod,i Tin,prod,i = Treturn,i

.
mdistrict,i +

.
mstor,i

(
Tcold,isig

( .
mstor,i

)
+
(
1− sig

( .
mstor,i

))
Treturn,i

)
(24)

The energy balance per zone results in a differential equation due to the presence of
an accumulation term. The finite difference discretization of this differential term links
together periods i and i + 1. A sigmoid function is again used in order to have a single
formulation with which to calculate the new temperature level in the hot zone during
charging without the temperature of the cold zone being modified (except for losses) and
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vice versa. Equations (25) and (26) present mass balance on each zone and (27) and (28)
present energy balances:

Vhot,i+1 = Vhot,i +

.
mstor,i

ρ
∆ti (25)

Vcold,i+1 = Vcold,i −
.

mstor,i

ρ
∆ti (26)

Thot,i+1 = (1− Kloss∆ti)·

Thot,i
(
1− sig

( .
mstor,i

))
+ sig

( .
mstor,i

)Vhot,iThot,i +
.

mstor,i
ρ ∆ti Tout,prod,i

Vhot,i +
.

mstor,i
ρ ∆ti

 (27)

Tcold,i+1 = (1− Kloss∆ti)·

Tcold,isig
( .
mstor,i

)
+
(
1− sig

( .
mstor,i

))Vcold,iTcold,i +
.

mstor,i
ρ ∆ti Treturn,i

Vcold,i +
.

mstor,i
ρ ∆ti

 (28)

with ∆ti period duration, Kloss thermal storage losses.
The storage considered in this study is the inter-seasonal type. Coupling seasonal

storage with characteristic days and the transition between these days has been studied
by Kotzur et al. [43] and Heijde et al. [49]. Thus, to represent a typical year with 4 specific
days, the state of the storage at the end of the last period (index np) must be equal
to that at the beginning of the first period (index 0). We therefore have the following
volume and temperature constraints: Vhot,0 = Vhot,np, Vcold,0 = Vcold,np and Thot,0 = Thot,np,
Tcold,0 = Tcold,np.

The methodology presented here is adapted to an inter-seasonal model as follows: by
considering a year to be 365 days, the typical days method involves considering that each
day is repeated 91.25 times and the mid-season day 182.5 times because we choose the
same typical day for spring and autumn. The storage is therefore broken down into 91.25
small equal volumes called Vpart, and we assume that storage use on one of the typical days
is the same as for the other 91.25 times. The terms Vhot and Vcold from Equations (26)–(29)
become Vhot,part and Vcold,part with

(
Vhot,part + Vcold,part

)
= Vpart and Vtotal = 91.25×Vpart.

According to Equations (26)–(29), when moving from one typical day to another (i.e., from
one season to another) the state of the storage at the end of a season is retained at the start
of the next.

Energies 2021, 14, x FOR PEER REVIEW 10 of 27 
 

 

The energy balance per zone results in a differential equation due to the presence of 
an accumulation term. The finite difference discretization of this differential term links 
together periods i and i + 1. A sigmoid function is again used in order to have a single 
formulation with which to calculate the new temperature level in the hot zone during 
charging without the temperature of the cold zone being modified (except for losses) and 
vice versa. Equations (25) and (26) present mass balance on each zone and (27) and (28) 
present energy balances: 𝑉 , =  𝑉 , + 𝑚 ,𝜌 Δ𝑡  (25)

𝑉 , =  𝑉 , − 𝑚 ,𝜌 Δ𝑡  (26)

𝑇 , = (1 − 𝐾 Δ𝑡 ) · 𝑇 , (1 − 𝑠𝑖𝑔(𝑚 , )) + 𝑠𝑖𝑔(𝑚 , ) 𝑉 , 𝑇 , + 𝑚 ,𝜌 Δ𝑡  𝑇 , ,𝑉 , + 𝑚 ,𝜌 Δ𝑡  (27)

𝑇 , = (1 − 𝐾 Δ𝑡 ) · 𝑇 , 𝑠𝑖𝑔(𝑚 , ) + 1 − 𝑠𝑖𝑔(𝑚 , ) 𝑉 , 𝑇 , + 𝑚 ,𝜌 Δ𝑡  𝑇 ,𝑉 , + 𝑚 ,𝜌 Δ𝑡  (28)

with Δ𝑡  period duration, 𝐾  thermal storage losses. 

 
Figure 6. Connection of storage to the network. 

The storage considered in this study is the inter-seasonal type. Coupling seasonal storage 
with characteristic days and the transition between these days has been studied by Kotzur et 
al. [43] and Heijde et al. [49]. Thus, to represent a typical year with 4 specific days, the state of 
the storage at the end of the last period (index 𝑛𝑝) must be equal to that at the beginning of 
the first period (index 0). We therefore have the following volume and temperature con-
straints: 𝑉 , =  𝑉 , , 𝑉 , =  𝑉 ,  and 𝑇 , =  𝑇 , , 𝑇 , =  𝑇 , . 

The methodology presented here is adapted to an inter-seasonal model as follows: 
by considering a year to be 365 days, the typical days method involves considering that 
each day is repeated 91.25 times and the mid-season day 182.5 times because we choose 
the same typical day for spring and autumn. The storage is therefore broken down into 
91.25 small equal volumes called 𝑉 , and we assume that storage use on one of the 
typical days is the same as for the other 91.25 times. The terms 𝑉  and 𝑉  from Equa-
tions (26)–(29) become 𝑉 ,  and 𝑉 ,  with 𝑉 , + 𝑉 , = 𝑉  and 

Figure 6. Connection of storage to the network.

2.5. Economical Model

In this part, the costs shown take into account aid provided by the French State for a
solar heating network giving a renewable energy rate of over 50%.
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As the objective function is economic, the aim was to create functions that are as close
as possible to the real data while keeping a formulation that the optimization solver can
solve. The reference data were supplied by the various partners of the ISORC project, all
specialists in DHNs or solar thermal power plants. In the case of storage costs, for example,
4 types of function were considered in order to approximate real data, as presented in
Figure 7, which shows the change in the cost of m3 of storage according to the total storage
size. Costs are a function of storage size, and the proposed function considers values
representing different types of technologies, from water tanks for smaller sizes to pit
storage for larger ones.
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The Figure 7 is also an example of the relevance of the choice of a nonlinear for-
mulation for our optimization problem. The approximate functions are the following
(Equations (29)–(32)), with astor, bstor and cstor the function coefficients:

polynomial CapExstor =
(

astor V2
stor + bstor Vstor + cstor

)
Vstor (29)

logarithmic CapExstor = (astor log(Vstor) + bstor) Vstor (30)

exponential CapExstor =

(
astor exp

(
−Vstor

bstor

)
+ cstor

)
Vstor (31)

power CapExstor =
(

astor Vstor
bstor
)

Vstor (32)

Different tests were carried out before ultimately choosing the exponential approach
(31) (astor = EUR 1918.45/m3, bstor = 309.77 m3 and cstor = EUR 117.62/m3) to calculate
the installation costs (CapEx) while keeping a reasonable degree of precision, as can be
seen in Figure 7. The exponential approach has the advantage of being able to take into
account storage larger than 10,000 m3 because the costs converge to the value of cstor. This
same approach is also used for modeling solar costs represented by Equation (33) with
asol = EUR 572.64/m2, bsol = 4069 m2 and csol = EUR 216.5/m2:

CapExsol =

(
asol exp

(
−Ssol

bsol

)
+ csol

)
Ssol (33)

Storage operation costs and pumping costs for the entire network were assumed to
be zero as they are negligible compared to the other operating costs which are presented
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below (usually representing less than 1% of the total costs [1]). Concerning the operating
costs for the boilers and the solar plant, they were broken down as follows:

First the operating costs OpEx were broken down into 3 parts:

- The first part (Equation (34)) covers the use of fuels across all time periods. The
cost per unit f uel costx can vary every year depending on scenarios (here they are
constant: f uel costbiom = EUR 27.5/MWhLHV, f uel costgas = EUR 40/MWhHHV);
nby is the lifespan of the installation. This cost is zero in the case of solar:

OPEX P1boil =
nby

∑
y=1

3

∑
k=1

Seask

24

∑
i=1

f uel costboil,y·Pboil,k,i·∆i (34)

- The second part of the operating costs covers light maintenance. This is expressed
by Equations (35)–(37) with ap2,biom = EUR 3/kWh2, bp2,biom = EUR 10, 000/h,
ap2,gas = EUR 4200/kWh, bp2,gas = EUR 7000/h and ap2,sol = 0.04 h−1:

OpEx P2biom = li f espan (ap2,biom

np

∑
i=1

(Pbiom,i·∆i) + bp2,biom) (35)

OpEx P2gas = li f espan
(
ap2,gas Pgas,max + bp2,gas

)
(36)

OpEx P2sol = li f espan
(

ap2,sol CapExsol

)
(37)

- The last part of the operating costs covers heavy maintenance, which depends
on the size of the installation, represented here by CapEx (ap3,biom = 0.015 h−1,
ap3,gas = 0.02 h−1 and ap3,sol = 0.017 h−1):

OpEx P3boil = li f espan ap3,boil CapExboil (38)

OpEx P3sol = li f espan ap3,sol CapExsol (39)

CapEx is calculated from Equation (40) (acapex,biom = EUR 629.179/kW, bcapex,biom =
EUR 1, 250, 716, ccapex,biom = 0.55, acapex,gas = EUR 105.44/kW, bcapex,gas = EUR 549, 397
and ccapex,gas = 1):

CapExboil =
(

acapex,boil Pboil,max + bcapex,boil

)
ccapex,boil (40)

Finally, the objective function of the optimization problem is written as the sum of all
operational expenditures and capital expenditures (41). This function minimizes the costs
while taking into consideration the physical constraints from (4)–(29):

Objective = min(CapExsol + OpEx P2sol + OpEx P3sol + CapExstor + OpEx P1biom + OpEx P2biom

+OpEx P3biom + CapExbiom + OpEx P1gas + OpEx P2gas + OpEx P3gas + CapExgas

) (41)

2.6. Resolution Strategy

In contrast to MILP optimization problems, which are often used in the literature
for this kind of study, NLP allows nonlinear constraints, thus giving better modeling of
physical or economical phenomena. However, there is no guarantee that the solution of
an NLP problem will converge, and if it does, there is doubt as to whether it converges
towards the global optimum (compared to LP problems). This is why a methodology is
required in order to introduce and initialize the complete model gradually, as shown in
Figure 8, to obtain a confident solution as Marty et al. have done in [11].
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Starting from a simplified model ensuring rapid convergence (Figure 9), several
sequential optimization steps were initialized with the optimum results from the previous
steps, which gradually complexified the model until the final model was achieved with the
desired complexity (Figure 8).
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In this approach, shown schematically in Figure 8, the objective function is still
economic, and the first step takes into account the system as a whole for the production
part but considers a simplified model to represent storage (Figure 9). The aim is to initialize
the flows and the power provided by the storage, with sizing being free of charge (in order
to start from a solution promoting the use of solar energy and storage). The hot branch
Thot v,i takes either the production output value Tout,prod,i when charging (

.
mstor,i > 0 and

Pstock,i < 0) or the fixed value of 80 ◦C when discharging (
.

mstor,i < 0 and Pstock,i > 0)
according to Equation (42). The cold branch Tcold v,i has a constant value set at 40 ◦C
(Equation (43)) as there is little variation in temperature in the cold branch. Equation (43)
calculates storage power, which may be positive or negative depending on the value of
the flow.

Thot v,i = sig
( .
mstor,i

)
Tout,prod,i +

(
1− sig

( .
mstor,i

))
× 80 ◦C (42)

Tcold v,i = 40 ◦C (43)

Pstor,i = −Cp
.

mstor,i(Thot v,i − Tcold v,i) (44)

The additional Equation (45) ensures that over a typical year, inter-seasonal storage
does indeed have a storage/loss of storage energy balance of zero:

np

∑
i=1

Pstor,i = 0 (45)

Thus, using this first approach gives an initial sizing of the production site promoting
the use of storage, which also tends to favor the use of the solar heat plant.

Secondly, storage alone is optimized to show optimum sizing for storage capable of
supplying the power for storage/loss of storage Pstor,i calculated in step 1.

Once these two steps have converged, the results of these optimizations are used to
initialize step 3 which uses the full model. Using this 3-step sequence, the full model can
be converged. Next it is necessary to ensure that optimum confidence is obtained.
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For this reason, step 3 is itself broken down into 3 parts, which use different approaches
to obtain a set of optimum solutions (often the same) in order to choose the best. These
three approaches carry out the following:

a. Random perturbation to the initialization of all the variables.
b. Random perturbation to the bounds of the 3 most sensitive variables:

• Lower bound of the maximum power of the biomass boiler.
• Lower bound of the surface area of the solar field.
• Lower bound of the power that the storage can supply.

c. Random perturbation to the initialization of these same 3 sensitive variables.

Concerning the sigmoid functions used to operate the biomass boiler and storage
Equations (23) and (24), optimizations were carried out with an initial data slope for
ksig = 10, and, in the event of convergence, a new optimization was carried out using the
same initialization but this time with a greater slope (i.e., with ksig increased by 5). It was
thus possible to converge towards the example with the greatest possible slope and hence
towards an operation that corresponds best to reality.

2.7. Julia (JuMP)

The open-source Julia programming language [12] was selected for its fast computa-
tion and its optimization package JuMP. With this package, different optimization solvers
are used while keeping the same formulation. Therefore, a different complexity for the
system to be optimized can be resolved with open-source Ipopt or commercial Knitro NLP
solvers. In this study, optimization was carried out with the open-source Ipopt solver as
the final optimization tool must be open-access.

3. Case Study

The tool for which the methodology is presented above was applied to the case of
a low-temperature (60 ◦C outward/40 ◦C return) DHN located in the south of France
considering a global DHN demand and climate of this region. Optimization was conducted
over one year using four typical days (winter, mid-season, summer and mid-season).
Demand (kW), external temperature (◦C) and global irradiance G (W/m2) of these 3 days
are presented in Figure 10. The characteristic profiles of these days are obtained by using
the minimizations presented in Equation (41).

For this case study, sizing variables are solar field area Asol , maximum storage volume
Vtot and maximum power for the biomass boiler Pmax,biom. Relevant operation variables are
mass flow rates:

.
mprod,i,

.
mdistrict,i,

.
mstor,i, and transferred power Pbiom,prod,i, Pgas,prod,i, Pstor,i

and Psol,i.
It was stated previously that for each period demand had to be satisfied (Equation (5)).

In addition, for safety reasons and in order to ensure the supply of heat to consumers, the
maximum power of the gas boiler is sized so that it is able to meet maximum demand
on its own. This sizing is commonly used for DHNs in France, and consequences are
discussed in part 4. The sizing variable Pgas,max thus becomes a written datum such that
Pgas,max = max

i
Pdemand i.
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4. Results and Discussion

Optimization was carried out to minimize total cost, as expressed in Equation (41) over
a period of 20 years (nby = 20, fuel costs per unit are constants) with one year represented
by four typical days. It is essential to consider costs over the long term because, depending
on the type of production unit, the proportion of CapEx compared to OpEx can vary
considerably. Those production units (solar + storage) where costs are due mainly to
installation (CapEx) are compared to those (gas and biomass) where operational costs
(OpEx) represent a major share. First, the advantage of the resolution methodology is
shown, then the results of the optimizations are given.

4.1. Results of the Resolution Strategy

Table 1 shows the results for optimal sizing for each approach. We note that approach
b converges for the steepest sigmoid slope. It is also the approach which finds the best
optimum (for the value of ksig = 10). Differences between the approaches are small (2–3%).

Table 1. Optimal configuration for each approach for step 3.

Approach Solar Area (m2) Storage Size (m3) Pbiomass,max (kW) Total Costs (Million EUR)

a 5707 20,068 2265 24.931
b 7749 35,006 1137 24.811
c 4500 12,159 2221 25.333

Table 2 enhances these results by giving the confidence that can be placed in the results
from the number of optimizations that converged for each approach. Approaches a and
c had more difficulty in obtaining convergence (<5% of the time) and remained close to
the average result (standard deviation ~0.065), while convergence with approach b was
more reliable (20%) but resulted in a higher total average cost than the other approaches
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(standard deviation ~0.56). This means that it often obtains a local optimum. Concerning
solar coverage, it reaches 45% of the supplied heat with approach b, while it covers 34%
for approach a and 20% for approach c. Calculation times are around 3 h 50 min which is
important for this kind of tool. However, it includes the runs of the three steps especially
the 3 × 100 optimizations, although solving the problem one time takes around 2 min.

Table 2. Computational results and convergence analysis.

Approach Convergence (%) Average Total Costs (Million EUR) Standard Deviation Calculation Time

a 3 25.040 0.0770 3 h 43 min
b 20 25.759 0.5611 3 h 49 min
c 5 25.420 0.0627 3 h 48 min

Figure 11 is a graphic representation of the distribution of optimal power supplied
during each period. Only the storage power can be negative, which corresponds to periods
when energy is stored, and conversely, during phases of loss of storage, this power is
positive. The different heat production sources have their specific operating mode for each
season. The gas boiler is operational for almost the entire winter and at the beginning of
spring but only rarely during the rest of the year. In winter, the gas boiler power is reduced
in some periods, when either the storage or the solar field can make up for this decline in
power. The biomass boiler operates at its maximum power throughout the winter and in
early spring, then operates at low power for the rest of the year. It stops completely during
periods when sunlight is at its maximum and solar can meet demand on its own. Storage
is sized according to the solar heat, and must be able to store the power supplied during
the sunniest period, i.e., the 63rd period. With storage in place, production can be adjusted,
especially from spring onwards, and thus the gas boiler is turned off as much as possible
in favor of using solar then biomass power.

There are a few periods when the gas boiler produces more power than is needed to
supply demand and this is intended for storage. This is because among all the possible
operational solutions, some are identical. There is a need to store power in winter so that
the storage can take over from gas in satisfying demand in the other seasons. The gas boiler
is more efficient when its usage rate is high, and in addition, the cost of using stored power
is zero (no pumping costs), and thus energy is stored in the form of available energy which
will be utilized in later periods. The gas boiler power is therefore greater than demand in
one of the periods in order to anticipate its use in the periods that follow.

4.2. Study of Different Storage Connections

Three different types of storage connection are shown in Figure 12. The cold zone is
always connected to the return pipe from the consumers, while the study covers different
connections for the hot pipe:

The optimum results for these different configurations are summarized in Table 3,
which shows the values of the different optimum sizing variables according to the hot
storage volume connections: Operational costs are obtained by multiplying the operational
costs for a typical day by the number of times this is repeated. We therefore see that the
minimum cost over 20 years is EUR 24.348 million for an outlet pipe from the solar field
(configuration 1) when approach “b” is used for the resolution strategy. This is the same
approach that gives the optimum result for connection 3 (gas outlet).
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Table 3. Optimal configuration for each connection studied.

Connection Approach and ksigValue Total Costs (Million EUR) Ssol (m2) Pbiomass,max (kW) Vtotal (m3)

1—Solar b. 10 24.348 7812 916.3 35,209
2—Biomass a. 10 24.975 6576 983.7 26,516

3—Gas b. 10 24.811 7749 1137 35,006

Regarding connection 2 (biomass outlet), it can be seen that the optimum is obtained
by using the “a” approach, although this approach converges less frequently. This result
therefore justifies the choice of resolution with approach “a” because even though it
performed less well in terms of convergence, it provided an optimum that approach “b”
was not able to obtain. We observe that the total costs varied by 2.51% between connections
1 and 2, the solar surface area by 15.82% and the biomass boiler by 19.43%. It is in the
storage volume that we can see the most significant difference, as much as 25%. One
explanation for the optimum obtained with the storage connected to the solar outlet is
that the temperature at the solar field outlet is always lower than or equal to that at the
gas boiler outlet (see Figures 13 and 14), and therefore it is easier to use the stored heat
without risking lowering the temperature level. This is why configuration 1 is better than
configuration 3; the temperature at the solar field outlet is always lower than or equal to
that at the gas boiler outlet. In Figures 13 and 14, it can be clearly seen that for connection
1, it is easier to use the storage as the temperatures are much lower than for connection 3,
linked up to the gas boiler outlet.
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Concerning storage size, the volume is about 5–10 times larger than the SDHNs
identified on SDH.eu [50]. An upper bound was added to the storage, and the new optimal
results converged to a solution 3.78% more expensive with 24% solar and 56% biomass
coverage (the usual sizing that can be found in [50]). This application case could confirm
that using the optimization tool could at the same time improve solar rate in DHNs and
reduce costs.
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Figure 15 shows, for the best storage connection (1), the power supplied by the
different installations in response to demand for each period. First, we note that the
operation of the biomass boiler is similar to that observed in Figure 11; power is usually at
its maximum, and for a few periods its operational function declines in order to reduce the
use of the gas boiler (more expensive). Moreover, Table 3 shows that total costs are lowest
when maximum power for the biomass boiler is at its lowest and storage volume and solar
field surface area are at their largest.

In winter, the three production sources together ensure that demand is met: Biomass
and solar produce heat at their maximum level. The gas boiler and the storage provide the
shortfall in power at each period.

From spring onwards, power supplied by the solar field in the middle of the day is
greater than demand. Surplus power can thus be stored when there is a lot of sunshine
and drawn off when there is a lack of power during less sunny periods. By operating in
this way, there is almost no longer any need to use the gas boiler; from spring onwards,
it is only brought into operation to make up for small differences between demand and
production. It can be seen that in this configuration the gas boiler power is never greater
than the demand as it happened twice in Figure 11.

During peak periods of sunshine, temperatures may be high, and therefore heat
storage can be replenished. Maximum power levels in the solar field and storage are
greater than those for Figure 11, which means that it is possible not to resort to gas during
certain periods, as can be seen from the sizing of sources in Table 3. These variations in
temperature are shown in Figure 14, which presents temperature levels at different points
of the network according to the period. Periods when the temperature at the solar outlet is
equal to that at the gas boiler outlet correspond to the periods when solar is able to meet
demand on its own and can even store excess power to inlet consumers.

Let us now turn to an analysis of the “technical–economic” results. Figure 16 shows
the distribution of energy supplied throughout the total lifespan of the installation in
percentages. We note that the renewable energy rate (solar + biomass) is 69% (use of the
economic model based on a network with a renewable energy rate higher than 50% is
therefore justified). Next, Figure 17 shows the percentage of total costs that correspond
to each item of expenditure. By analyzing these two figures together, we observe that
the solar-storage couple represents 37% of total investment costs, ultimately providing
49% of the total energy produced. The biomass boiler represents 23% of investment costs
(OpEx + CapEx) to supply 20% of total energy. Finally, the gas boiler represents 40% of
investment costs and only 31% of the energy supplied. This clearly highlights the relevance
of a heating network powered by solar. It is important to remember that the gas boiler
is still indispensable because during the winter it is the only source that can ensure that
demand is met (Figure 15). Added to this is the sizing constraint linked to supply needs,
with the result that the gas boiler is oversized by 18% compared to the maximum power
that it supplies on its average days. This involves an increase in costs of EUR 400,000.
The biomass boiler acts as a buffer, meeting demand at the lowest cost (compared to gas)
during periods when the solar resource is not available. The optimum obtained therefore
corresponds to the sizing and operation of these sources (with storage), minimizing costs
over a period of 20 years.

Over this period, the cost of the heat obtained is EUR 54.00/MWh, which makes it
competitive given the price of heat in networks in major French cities (Paris, EUR 60/MWh,
Lyon EUR 85/MWh [1]).

This study has therefore enabled us to analyze the optimal sizing and operation of
a heating network powered by three sources (solar, biomass and gas). The sizing is such
that solar can fully meet demand for many periods and also store excess heat. Thus, with
the inter-seasonal storage model, heat stored in summer can be used in winter in order to
optimize the use of solar energy.
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5. Conclusions

In the context of energy transition, heat production with low carbon emissions is
needed. The use of solar thermal energy in heating networks in France but also in many
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other countries must be amplified. The possibility of optimizing the dimensioning of
this type of system with the help of open-access tools will certainly help to increase the
development of solar thermal energy. This study presents the methodology used in a new
optimization tool written in Julia to size a thermal production site to supply a district
heating network. The dynamic model of the system is discretized into a set of algebraic
equations allowing the formulation of a multi-period nonlinear optimization problem. This
model was applied to optimize the thermal production of a district heating network using
inter-seasonal thermal storage. As nonlinear optimization guarantees neither systematic
convergence nor a global optimum, a solution strategy was developed to guarantee a
confidence optimum. Three thermal storage connections were studied, and the results
showed the relevance of a storage connection at the solar field outlet. Results show that the
model works properly and that the solar plant/storage couple is an interesting solution
from an economic and environmental point of view. In fact, the economic optimum, taking
state aid into account, assesses the value of solar energy at 49% of total energy supplied
for a total renewable rate of 69%. These first results also validate the choice of the Julia
environment and the JuMP package for optimization. However, special attention must be
paid to the problem-solving methodology to avoid getting a local minimum. The next step
will be to apply this methodology to other types of networks, looking at existing networks,
studying optimal operation or possible extensions and new networks where sizing will also
be optimized with daily or inter-seasonal storage. Other perspectives are the consideration
of other topologies of the production plan including parallel connections, consideration of
cloudy days and their occurrence and computational time reduction.
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Nomenclature

A area, m2

a, b, c coefficients for functions
C product of

.
m and Cp, W K−1

Cp specific heat, J kg−1 K−1

Ctot total costs, EUR
E efficiency
G global Irradiance, W m−2

K using rate of boiler
Kloss loss factor of storage, s−1

k sigmoid coefficient, specific to use
.

m mass flow rate, kg s−1

nby lifespan, years
P power, W
.

Q heat transfer, W
T temperature, ◦C
U overall heat transfer coefficient, W m−2 K−1
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V volume, m3

y year
Greek symbols
α biomass inertia coefficient, W s−2

α1 first panel coefficient, W m−2 K−1

α2 second panel coefficient, Wm−2 K−2

∆t time step between two periods, s
η0 optical yield
η efficiency
ρ density, kg m−3

Subscripts and superscripts
av average
biom biomass boiler
boil boiler
car characteristic
ex exchanger
ext external
i time step
in/out inlet/outlet
min/max minimum/maximum
np number of periods
pan panel
prod production
p1 operational cost of fuel
p2 operational costs of low maintenance
p3 operational costs of major maintenance
sol solar
stor storage
Abbreviations
CapEx capital expenditure
DHN district heating network
HEX heat exchanger
HHV higher heating value
NLP nonlinear programming
NTU number of transferred units
LHV low heating value
OpEx operational expenditure
SDHN solar district heating network
Seas season
Sig sigmoid function
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